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FOREWORD 

A workshop was held in Tucson at the University of Arizona from March 12 
through March 16, 1979 to furnish a forum for both theorists and observers to study 
and exchange ideas on some of the current problems in nonradial and nonlinear stel lar 
pulsation. This workshop, sponsored by the Department of Physics in conjunction with 
Steward Observatory was organized into morning sessions of invited and contributed 
papers and into afternoon sessions of discussions and informal contributions. This 
structure was quite successful with many of the contributions to these workshop 
proceedings motivated by interactions at these sessions. The scienti f ic success of 
the workshop must in large measure be the result of the strong international 
character of the l i s t  of participants and the constructive mode in which they worked 
together. 

The idea for the work grew out of discussions with Drs. Robert ~ Rosenbaum, 
former President of Wesleyan University and John P. Schaefer, President of the 
University of Arizona, on the scientif ic program at SCLERA and on how the scholarship 
and teaching in each of these two respective ins t i tu tes  might be brought closer 
together. The f inancial support which made the workshop and these proceedings 
possible was furnished by President Schaefer. In the planning and execution stages 
of the workshop, the advice and counsel of Dr. Robert H. Parmenter, Head of the 
Department of Physics, was frequently sought. 

The Scient i f ic  Organizing Committee was Drs. W. Dziembowski, W. Fitch, H. 
H i l l ,  E. Nather ~, S. Starrfield, H. Van Horn and R. White. The aim of the organizing 
committee was to maintain a balance between theory and observation and through the 
organization of the meeting, encourage the interaction of those working in these more 
often than not isolated areas of science. 

The local organizing committee consisted of Drs. T. Caudell, W. Dziembowski, 
W. Fitch, H. Hi l l  and R. White, and Mr. R. Bos. They were al l  helped during the 
running of the symposium by J. Logan and R. Rosenwald and by J. Brown, conference 
coordinator. 

I would also like to thank MacMillan Journals LTD for granting permission to 
reprint the material in the Introduction from the workshop review by Douglas Gough in 
Nature. 

The scientif ic editing was performed at the University of Arizona and in part 
at Wesleyan University in collaboration with visi t ing professor Dr. W. Dziembowski. 
His broad knowledge of the f ield of stellar pulsation was invaluable. The editing of 
the manuscript was performed pr imari ly by Ms. A. Whitehead with some of the 
responsibility being shared by Dr. G. Harwood. The final production, supervised by 
Dr. T. Caudell, was a collaborative ef for t  of al l  of us at SCLERA. In addition to 
the SCLERA staff, a significant contribution was made to the final production by Ms. 
J. Twehous. I express my sincere personal thanks to each person who helped complete 
this project. 

Henry A. Hi l l  
Tucson, Arizona 
March, 1980 
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INTRODUCTION* 

D. Gough 
University of Cambridg~ 
United Kingdom 

In recent years considerable attention has been devoted to the observation 

and theoretical description of variable stars. In this context the term "variable" 

should be taken to mean pulsating or oscillating as opposed to cataclysmic or nova. The 

distinction here is important; when a system is observed to oscillate, be i t  a star 

or a molecule, there exists then the potential of probing the workings of that system 

in a quanti tat ive manner. I t  is in th is sp i r i t  that the fol lowing summary of the 

workshop, both discussions and papers, is presented. 
* ~ * * * 

Over the past two decades the theory of the pulsation of the Classical 

Cepheid and RR Lyrae stars has reached a high degree of sophistication. This kind of 

pulsation is the simplest mode of oscillation a star can undergo: i t  is periodic and 

the motion is purely in the radial direction. Although there remain some niggling 

discrepancies between theory and observation, the agreement is sufficient to convince 

most astrophysicists that our ideas are basically correct. Thus we seem to have a 

firm foundation from which to extend our studies to stars whose osci l la t ions are 

nonradial and nonperiodic. 

Walter Fitch (Steward Observatory) reviewed observations of variable stars of 

Scuti and related type. These stars pulsate at low amplitude, and many exhibit two 

characteristic frequencies which bear a ratio close to that of two small integers. 

Consequently much of the subsequent discussion concerned direct resonances between 

two modes of oscillation. Arthur Cox (Los Alamos Scientific Laboratories) reported 

his failure to reproduce this behavior theoretically from in i t ia l  value integrations 

even when the resonance conditions had been careful ly engineered, and Robert 

Stellingwerf (Rutgers University), who had analyzed the stabi l i ty of pairs of singly 

periodic l i m i t  cycles of potential double mode Cepheid models, never found both 

cycles to be simultaneously unstable to l inear perturbations. The double mode 

behavior remains unexplained. During discussions of parametric resonances, i t  was 

pointed out that many of these stars seem to exhibi t  characterist ics of strange 

*Reprinted from Nature, 278, 685(1979) 



a t t r a c t o r s .  Some a Scut i  s tars  appear to pu lsate in many modes s imu l taneous l y ;  

Wojciech Dziembowski (Copernicus Astronomical Center) estimated that non l inear i t i es  

developed by any one mode alone were too small to l i m i t  i t s  amplitude to a value as 

low as those observed, and concluded tha t  mode i n t e r a c t i o n s  must be respons ib le .  

D e f i n i t i v e  c a l c u l a t i o n s  have not yet  been performed, but techniques developed f o r  

studying oceanic grav i ty  wave in teract ions and plasma turbulence are avai lable for  

tack l ing problems of th is  kind. We can therefore ant ic ipate considerable advances in 

th is  study in the near future. 

A c lass  of  s t a r s  f o r  wh ich  t he re  i s  no c o n v i n c i n g  e x p l a n a t i o n  i s  

characterized by B Cephei. Myron Smith (Universi ty of Texas at Austin) reviewed the 

observat ions.  The s tars  are of spect ra l  type B, and l i e  in  a s t r i p  in the 

Her tzsprung-Russel l  diagram a l i t t l e  above the main sequence. Mike Je rzyk iew icz  

(Wroclaw U n i v e r s i t y  Observatory) and C. Sterken (Free U n i v e r s i t y  of Brussels)  

reported new observations and pointed out that almost a l l  stars in the B Cephei s t r i p  

show signs of  v a r i a b i l i t y .  They appear to pu lsate in both rad ia l  and nonradia l  

modes. As wi th the B Scuti stars simple period rat ios are found, which suggest again 

t ha t  resonance mechanisms are operat ing .  Frequency s p l i t t i n g ,  presumably by 

ro ta t ion,  has been measured, which of fers the exc i t ing  prospect of t r y ing  to i n fe r  

the angular ve loc i t y  w i th in  these stars. Unfortunately we are not yet i n a p o s i t i o n  to 
do t h i s  because the modes of o s c i l l a t i o n  have not been unambiguously i d e n t i f i e d ;  

d i f f e ren t  workers expressed contradic tory opinions about the modes they thought were 

responsible for  the v a r i a b i l i t y .  

An i n t r i g u i n g  proper ty  of some B Cephei s tars  is  t ha t  they sw i tch  from one 

mode of o s c i l l a t i o n  to another on a t imesca le  of  no longer  than about I0 per iods.  

Smith argued tha t  t h i s  is  evidence t ha t  the o s c i l l a t i o n s  are conf ined to a ra the r  

th in  outer layer of the star,  because otherwise i t  would be d i f f i c u l t  to envision how 

d i s s i p a t i v e  processes could e f f e c t  the enormous energy t r a n s f e r  tha t  would be 

involved. Others contradicted that claim, c i t i ng  simple nonl inear osc i l l a to rs  that 

can a l t e r  t he i r  character on a dynamical timescale. I t  is un l i ke ly  that  i t  w i l l  be 

es tab l i shed  in  the near f u t u r e  whether such o s c i l l a t o r s  a c t u a l l y  represent  the 

behavior of B Cephei stars in any way, because the basic physics of the v a r i a b i l i t y  

is not yet understood. 

How are the o s c i l l a t i o n s  dr iven? Morr is  Aizenman (Nat ional  Science 

Foundation) reviewed the many ingenious ideas that have been proposed in the past, 

a l l  of which have fa i led .  A recent suggestion by Ste l l ingwer f  that the mechanism is 

no more than the Eddington valve that drives c lassical  Cepheids and RR Lyrae stars 

was debated. He proposed that in te rpo la t ion  in opacity tables on too coarse a gr id 

had led to an underestimate of the ef f icacy of the valve, but Arthur Cox, one of the 

ch ie f  suppliers of opacity data to the astrophysical community, claimed that though 

f i n e r  r e s o l u t i o n  decreased the s t a b i l i t y  of  the t h e o r e t i c a l  models i t  was never 



s u f f i c i e n t  to render them unstable. The suggestion was made that i f  a l l  the 

mechanisms reviewed by Aizenman were operating in unison the sum of t h e i r  

contr ibut ions might be su f f i c i en t  to maintain the pulsations against dissipation. 

This idea, which is reminiscent of an early suggestion for solving the solar neutrino 

problem, was unenthusiastically received. 

A signif icant fraction of the workshop was devoted to discussing osci l lat ions 

of the sun. F i r s t ,  Henry H i l l  (Univers i ty  of Arizona) reviewed the observations 

spanning the period range 3min-16omin and discussed the evidence already in the 

l i terature for the osci l lat ions in the data being of solar origin. There followed a 

sequence of presentations of new observations and discussions of the longer period 

osci l lat ions in the upper atmosphere and the evidence for phase coherence. 

By comparing d i f f e ren t  diameter measurements made at the Santa Catal ina 

Laboratory for Experimental Relat iv i ty  by Astrometry (SCLERA), Hi l l  argued that the 

amplitudes of osci l la t ion rise more steeply with height above the photosphere than 

can be comfortably accommodated wi th in  the framework of l i near  theory. At f i r s t  

sight this should be no cause for alarm, because the amplitudes thus inferred in the 

low chromosphere are so great that non l i near i t i es  must surely be important. 

Nonetheless several par t ic ipants  were uneasy with the resu l t ,  because in the 

photospheric regions, where presumably l i near  theory is va l i d ,  the eigenfunctions 

have the appearance of waves penetrating an evanescent region from above yet having 

frequencies charac te r i s t i c  of the resonating cav i ty  beneath. Tuck Stebbins 

(Sacramento Peak Observatory) presented measurements of r e l a t i v e  o s c i l l a t i o n  

amplitudes at d i f f e ren t  posit ions in the wings of a spectrum l i ne  which support 

H i l l ' s  conclusion, and Timothy Brown (High Alt i tude Observatory) found contradictory 

evidence from shape changes of the limb darkening function. The issue is currently 

unresolved. 

For many people, the most convincing evidence that the osci l la t ion data arise 

from genuine dynamical solar v ib ra t ions is t h e i r  phase coherence. Peter Worden 

(Sacramento Peak Observatory) c r i t i c i z e d  ear ly  analyses of the SCLERA data, but 

Thomas Caudell (University of Arizona) presented new measurements of solar equatorial 

diameter variations which, i t  was f i na l l y  agreed, convincingly maintained phase over 

an interval of 23 days. This did not terminate the discussion; however, because as 

Maurice Gabriel (Universite de Liege) pointed out, unless there were a considerable 

difference in the amplitudes of eastward and westward propagating waves one would not 

expect phase coherence over a period longer than half the mean rotation of the sun. 

The detai ls of the phase data may indeed be consistent with beating phenomena induced 

by rotation, but further analysis must be done. Polar diameter measurements, which 

have not yet been analyzed, are not subject to this cr i t ic ism. 

One of the most exciting aspects of solar osci l lat ions is the i r  potential for 

providing diagnostics of the solar i n t e r i o r .  To rea l i ze  th i s  potent ia l  i t  is  



essential to examine the theory quite meticulouslY to ensure that the physics is well 

understood, and that measurable properties of the oscillations of theoretical models 

can be computed accurately. In this respect, greatest attention has been paid to the 

five-minute oscillations, because i t  is of these that the most refined measurements 

have been made. Investigations by groups at the University of California at Los 

Angeles and the Observatoire de Nice have revealed that of the uncertainties beneath 

the photosphere only the value of the adiabat deep in the convection zone 

substantial ly influences the osc i l la t ion  frequencies; in addition, the Nice group 

have found that the frequencies of all but the chromospheric modes are insensitive to 

variations in the structure adopted for the solar atmosphere, within the framework of 

the usual l inearized theory. The results of both groups seem to imply that the 

adiabat must be that of a convection zone whose depth is at least 20% of the solar 

radius. This conclusion is s imi lar  to the findings of Beckers and Gilman, who 

reported at the EPS Workshop on Solar Rotation in Catania [Publication No. 162 of the 

Astrophysical Observatory of Catania (Eds. Belvedere and Paterno) 1978] that they 

could not explain the observed absence of a polar vortex unless the depth of the 

convection zone were at least of the order of 40% of the sun's radius. 

The case for  so deep a convection zone is not completely closed. 

Participants of the workshop were reminded of the EPS conference on solar physics 

[Pleins feux sur la physique solaire (Ed. Rosch) CNRS, Paris, 1978] held in Toulouse 

last year, where Dziembowski and Pamjatnykh pointed out that the observations by Hill 

and Caudell (Mon. Not. R. astron. Soc., 186, 327; 1979), apparently of solar g modes 

of degree about 30, are d i f f i cu l t  to explain in terms of the so-called standard solar 

model (see Nature, 274, 739; 1978). At the Arizona workshop Jorgen Christensen- 

Dalsgaard (Universite de Liege) presented computations of g modes in a solar model 

with low in te r io r  heavy element abundance Z; such models have shallow convection 

zones through which modes of the kind reported by Hill and Caudell can penetrate with 

ease. Solar models with low Z also predict low neutrino fluxes in agreement with 

Davis' measurements, but they do pose many problems, such as how to explain the 

frequencies of the five-minute oscillations. Ross Rosenwald (University of Arizona) 

pointed out that i f  the claim of the SCLERA group concerning the nonlinear behavior 

of the osci l la t ions high in the solar atmosphere were correct, the l inear 

calculations performed to date may not be relevant, and this problem may disappear. 

The claim has not yet been substantiated. 

Another new observation which may shed l ight on this issue was reported by 

George Isaak (University of Birmingham). His group has measured variations in the 

Doppler shift of a potassium line in l ight integrated from the entire solar disk, and 

have measured discrete frequencies of what appear to be acoustic oscillations of low 

degree with periods of about 5 minutes. Unlike the most common 5-minute modes, these 

penetrate beneath the convection zone and provide an integral measure of the 



structure deep in the solar interior. A preliminary theoretical analysis favored a 

model with a somewhat lower value of Z than that of the standard model, and a 

shallower convection zone. This model lies between the two extremes discussed above, 

and so serves to remind us how uncertain we are of the sun's internal structure. 

The f inal  day of the meeting was devoted to degenerate variables. Edward 

Robinson (Univeristy of Texas at Austin) gave a st imulating review of the 

observations, many of which have been obtained only in the past few years. Most of 

these variables appear to be DA white dwarfs lying in a narrow range of specral type 

with B-V = 0.2, though John McGraw (University of Arizona) in particular has observed 

variable white dwarfs of different colors. Of the DA dwarfs, about 25% are observed 

to be variable, and aside from the i r  va r i ab i l i t y  show no other dist inguishing 

feature. Luminosity amplitudes range from a few tenths of a magnitude down to the 

l imi t  of detectability. 

The low amplitude variables have stable periods; one such star, R548 is even 

more stable than the Crab pulsar. The larger the amplitude the longer the period, 

and the less stable the power spectrum of the pulsations. I t  is not unusual for the 

stars with larger amplitudes also to switch entirely from one mode to another. 

Oscillation periods range between about 100 s and 1,000 s, which are much too 

long to be p modes. Explanations in terms of g modes have been attempted, but i t  is 

sometimes d i f f i c u l t  to f i t  the periods satisfactori ly. Moreover, with the longer 

period variables i t  is d i f f i cu l t  to explain why neighboring g modes in the densely 

spaced spectrum are not observed, a problem faced also by those who argue that the 2 h 

40 min osc i l la t ion  of the sun is a g mode. Car l  Hansen (Joint Ins t i tu te  for 

Laboratory Astrophysics) suggested that perhaps the osc i l la t ions were toroidal 

elast ic modes of a rather mushy material, but re l iable estimates of the elast ic 

properties of these degenerate stars are not available to test this hypothesis. In 

any case i t  was d i f f i cu l t  to explain why only oscillations of the periods observed 

should be driven, and the others damped. Arthur Cox pointed out that (with the eye 

of faith) one could imagine the region in the HR diagram where pulsating white dwarfs 

have been found to be an extension of the classical Cepheid i n s t a b i l i t y  str ip.  He 

found models that were unstable to radial pulsations, but the periods of such modes 

are only about I s. 

In summary i t  seems teat both theory and observation are getting to a crucial 

point where tentative inferences are being made which are not al l  in the same 

direction. There is evidence that these contradictions arise from a lack of 

understanding of the physics. Time was, therefore, very ripe for the experts in the 

f i e ld  to get together and discuss the assumptions on which these inferences are 

based, to discuss the accuracy and the implications of the observations and to decide 

which observations and which theory should be done in the immediate future to clar i fy 

the most outstanding of the uncertainties. 
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ABSTRACT 

(1) For 29 (and possibly 30) multimode radial variables in the Cepheid 

i ns tab i l i t y  str ip I suggest that necessary and suff ic ient  conditions for the 

existence of their multimode excitation may be that the excited periods be close to a 

direct resonance with each other and that their excitation growth rates be relatively 

small. (2) Discussion of the observational evidence on nonradial modes observed in 

Scuti and B Cephei stars suggests that radial mode excitation is always dominant 

when nonspherical perturbations are small or variable and that nonradial modes only 

appear when figure perturbations are signif icant,  so that one seldom (or perhaps 

never) observes in these stars the f i r s t  order m-splitting discussed by Ledoux for 

the case of slow rotation. 

1. INTRODUCTION 

We address in the following sections the more general aspects of nonradial 

and nonlinear stellar pulsation problems rather than the particular stellar types in 

which they occur. In connection with nonlinear problems the observational evidence 

of radial mode resonances in Cepheid str ip stars w i l l  be discussed f i r s t ;  

consideration wil l  be given to nonradial oscillations in ~ Scuti and B Cephei stars 

in succeeding sections. 

2. SIMPLE RESONANCES IN MULTIMODE RADIAL PULSATORS 

Double (or occasionally triple) radial mode excitation is fa i r ly  common in 

the Cepheid str ip at fundamental periods of less than approximately 6-7 days. 

Following especia l ly  Christy 's (1966a,b) now c lassical  work, theoret ica l  

investigations have been very successful in elucidating the properties of single mode 

radial pulsators. With regard to double mode excitation, Stell ingwerf (1975) has 

constructed a model with two simultaneously excited radial modes; unfortunately, with 

a more realistic interior boundary condition, neither he nor anyone else could later 



reproduce this result. This strongly suggests that, in order for a star to exhibit 

double radial mode excitation, i t  must possess some unique properties. Quite 

recently, Simon (1978) has proposed that the double mode state (fundamental frequency 

fo and f i r s t  overtone frequency f l  ) requires a resonance with a higher mode of 

frequency fk, such that fo + f l  " fk; he also identi f ied fk with the third overtone 

f3 for the 2-6 day double mode or beat Cepheids and with the fourth overtone f4 for 

the dwarf Cepheids or AI Velorum stars. Petersen (1978) has enthusiastically 

seconded this suggestion, but neither Simon nor Petersen have been completely 

successful in reproducing the observed periods and period ratios for reasonable mass 

models. 

These resonances pose an exciting possibility, but can be criticized for the 

invocation of an unobserved (and therefore ad hoc) mode to explain the presence of 

the observed modes. Simon and Petersen both considered only double mode Cepheid and 

RRs-type variables. There are now at least 29 (and provisionally 30) stars in the 

Cepheid strip known to show double radial modes, and i f  the work reported in § 3.4 on 

4 CVn is not erroneous, there are 34 observed radial mode period ratios, 31 of which 

now seem securely established. Some of these ratios of observed periods are 

obviously very sharp low order simple resonances, such as 3/5, 4/5 and 3/4, 

suggesting that al l  of the ratios should be examined from this viewpoint. Simon 

(1978) has pointed out the importance of the second order coupling frequency f l  + fo 

when discussing the nonlinear coupling of fo and f l ,  but to be theoret ical ly 

consistent, one should also examine the other cross coupling term in second order, f l  

- fo" I f  for generality we consider two radial modes j and k, where k > j ,  and i f  we 

assume a nonlinear coupling leading to a resonance where nfj ~ mf k (m, n being small 

integers with m < n), then obviously there must also be approximate resonances 

where f j ,  fk, fk + f j ,  and fk - f j  are commensurable. Following Simon, we denote 

the distances from each exact resonance assumed as 

d j ,  k : 1 - ( n f j ) / ( m f  k) , d j , k +  j 

d j , k_  j : I - ( n + m ) f k / n ( f k + f j )  , d j , k_  j 

and dk,k_ j = 1 - (n-m)fk/n(fk-f j )  

= 1 - ( n + m ) f j / m ( f k + f  j )  , 

: i - ( n - m ) f j / m ( f k - f  j )  , 

In Figure 1 we i l lustrate seven different resonances as horizontal lines in a 

plot of observed period rat io versus log Po(day). Here the solid circles are 

observed ratios. The tr iangle is also an observed value for CY Aqr which was 

considered an uncertain value prior to the Comm. 27 IBVS No. 1537 announcement that 

EH Lib has a beat period yielding a period ratio of 0.7559. The plus signs represent 

our new provisional values of period ratios for 4 CVn. The 6-17 day bump Cepheids 

(Simon and Schmidt 1976), involving the basic 1/2 resonance for P2/Po, are only 



i nd i ca ted  schemat i ca l l y .  The f r a c t i o n s  in brackets are the f i v e  assumed d i r e c t  

resonances involved. Please note how the di f ference frequency determines the lowest 

order  resonance poss ib le .  An example of t h i s  is  provided by the P2/Po ~ 3/5 l i n e ,  

where the 3/8 and 5/8 resonances arise from the sum frequency whi le the 3/2 and 5/2 

ra t ios  arise from the di f ference frequency. I f  we adopt the provisional ra t ios  for  4 

CVn, then the top l i n e  fo r  P2/P1 ~ 4/5 is  represented by the a Scut i  s ta r  4 CVn, the 

AI Velorum s ta r  VZ Cnc, and the RR Lyrae s ta r  AC And. At PI/Po - 7/9 we have the 

Scuti star 44 Tau and 7 AI Velorum stars. At PI /Po-  3/4 are the AI Velorum stars CY 

Aqr and EH Lib, the a Scuti stars 4 CVn and 21Mon, and the RR Lyrae stars AQ Leo and 

AC And. For the beat Cepheids we chose P I /Po -  5/7 f o r  the 3 shor tes t  per iod s ta rs  

and PI/Po ~ 7/10 f o r  the remain ing 8. At P2/Po ~ 3/5 are AC And and the 5 ~ Scut i  

s tars  CC And, 1 Mon, a Del, a Sct, and 4 CVn. Table I l i s t s  the s ta rs ,  t h e i r  

fundamental rad ia l  mode per iods,  i d e n t i f i c a t i o n s  of the excited radial  modes, the 

observed per iod r a t i o s ,  and the assumed resonance ra t i os .  The l a s t  5 columns of  

Table I prov ide the 5 d is tances d from the assumed exact resonances. I t  w i l l  be 

noted tha t  gene ra l l y ,  f o r  the d i r e c t  resonance Pk/Pj = f j / f k  : m'/m'J K :m /n  and the 

two resonances wi th the sum frequency fk + f j ,  the distances from resonance are qui te 

small whereas the distances from resonances wi th the di f ference frequency fk - f j  are 

d i s t i n c t l y  larger. The larger distances in th i s  l a t t e r  case may account for  the fact  

t h a t ,  when the observed non l i nea r  coup l ing  of fk and f j  in  l i g h t  and/or  v e l o c i t y  

measures on large amplitude variables is analyzed in to  i t s  harmonic components, the 

amplitude of the second order di f ference term is usual ly smaller than that  of the sum 

term. 

The associations of P2/Po wi th the 1/2 and 3/5 ra t ios ,  of PI/Po in some cases 

with the 3/4 ra t io ,  and of P2/P1 with the 4/5 ra t io  seem inescapable. By extension, 

the remain ing assoc ia t ions  of PI/PO w i t h  the 7/9,  5/7 and 7/10 resonances appear 

qui te plausible. The main shortcoming of th i s  type of argument is that  no a p r i o r i  

upper l i m i t  i s  set w i t h  respect to invoked resonance. I f  we adopt PI/Po ~ 17/22 

instead of : 7/9 fo r  the AI Velorum stars, or PI/Po " 12/17 instead of - 5/7 and 7/10 

f o r  the beat Cepheids, we get be t t e r  r ep resen ta t i ons ,  i .e . ,  sma l l e r  d is tances from 

resonance, for  these groups already discussed by Simon (1978) and by Petersen (1978). 

I f  we keep our adopted resonances for  PI/Po, then examination of Figure I and Table I 

shows that we have nearly exhausted the low order resonances possible for  the range 

of  per iod r a t i o s  expected from model c a l c u l a t i o n s .  F i n a l l y ,  in  order  f o r  any 

resonance such as 7/9 or 7/10 to be e f f e c t i v e ,  the e x c i t a t i o n  growth ra tes must be 

small ,  since the system must "remember" what happened as long ago as 7 fundamental 

per iods.  In f a c t ,  a l l  normal e v o l u t i o n a r y  mass models o f  a Scut i  and AI Velorum 

s tars  (cf .  Dziembowski 1977; S t e l l i n g w e r f  1979; Cox, King and Hodson 1978b) l i s t  

k ine t ic  energy growth rates AE/PE - 10 -3 - 10 -5 per period for  the strongest excited 

modes. Cox, King and Hodson (1978a) do not l i s t  growth rates fo r  t h e i r  most recent 3 
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Figure 1, Observed period ratios as functions of log Pn(day). The horizontal lines 
represent the assumed di rect  resonance rat ios,  which ~re also given as the f i r s t  
f ract ion in the parentheses. The remaining fract ions are the corresponding 
resonances of the lower and higher mode with the sum frequency and with the 
difference frequency, respectively. Individual stars are plotted as solid circles. 
The open triangle represents CY Aqr and the plus signs are provisional values for 4 
CVn (see text) .  



Table 1. Radial Mode Period Resonances 

Notes S ta r  Po(day) j ,k Pk/Pj m/n dj, k dj,k+j dk, k+j dj,k-j dk,k-j 

aN 

6B 
aBN 
a 

aN 
aN 
aB: 
aB: 
aB: 

SX Phe 0.0550 0,1 0.7782 7/9 -0.0005 -0.0003 +0.0002 -0.0024 -0.0019 
CY Aqr 0.0610 0,1 0.7443 3/4 +0.0076 +0.0044 -0.0033 +0.0297 +0.0223 
AE UMa 0.0860 0,1 0.7734 7/9 +0.0056 +0.0032 -0.0025 +0.0248 +0.0193 
EH Lib 0.0884 0,1 0.7559 3/4 -0.0079 -0.0045 +0.0034 -0.0322 -0.0242 
RV Ari 0.0931 0,1 0.7726 7/9 +0.0067 +0.0038 -0.0029 +0.0293 +0.0228 
21Mon 0.0999 0,1 0.7507 3/4 -0.0009 -0.0005 +0.0004 -0.0037 -0,0028 
BP Peg 0.1095 0,1 0.7715 7/9 +0.0081 +0.0046 -0.0035 +0.0353 +0.0275 
AI Vel 0.1116 0,1 0.7727 7/9 +0.0065 +0.0037 -0.0029 +0.0287 +0.0223 
CC And 0.1249 0,2 0.5999 3/5 +0.0002 +0.0001 -0.0001 +0.0004 +0.0002 
1Mon 0.1361 0,2 0.5984 3/5 +0.0027 +0.0017 -0.0010 +0.0066 +0.0040 

44 Tau 0.1449 0,1 0.7729 7/9 +0.0063 +0.0035 -0.0028 +0.0276 +0.0215 
V703 Sco 0.1500 0,1 0.7683 7/9 +0.0122 +0.0069 -0.0054 +0.0526 +0.0409 

a Del 0.1568 0,2 0.6093 3/5 -0.0155 -0.0096 +0.0058 -0.0397 -0.0238 
a Sct 0.1938 0,2 0.6005 3/5 -0.0008 -0.0005 +0.0003 -0.0021 -0.0013 
4 CVn 0.1981 0,1:0.7368 3/4 +0.0176 +0.0101 -0.0076 +0.0669 +0.0502 
4 CVn 0.1981 0,2:0.5874 3/5 +0.0210 +0.0132 -0.0079 +0.0509 +0.0305 
4 CVn 0.1981 1,2:0.7972 4/5 +0.0035 +0.0019 -0.0016 +0.0173 +0.0138 

VX Hya 0.2234 0,1 0.7732 7/9 +0.0059 +0.0033 -0.0026 +0.0260 +0.0202 
VZ Cnc 0.2323:1,2 0.8006 4/5 -0.0008 -0.0004 +0.0003 -0.0038 -0.0030 
AQ Leo 0.5498 0,1 0.7461 3/4 +0.0052 +0.0030 -0.0022 +0.0205 +0.0154 
AC And 0.7112 0,1 0.7383 3/4 +0.0156 +0.0090 -0.0067 +0.0596 +0.0447 
AC And 0.7112 0,2 0.5920 3/5 +0.0133 +0.0084 -0.0050 +0.0327 +0.0196 
AC And 0.7112 1,2 0.8018 4/5 -0.0023 -0.0012 +0.0010 -0.0114 -0.0091 
TU Cas 2.1393 0,1 0.7097 5/7 +0.0064 +0.0038 -0.0027 +0.0221 +0.0158 
U TrA 2.5684 0,1 0.7105 5/7 +0.0053 +0.0031 -0.0022 +0.0183 +0.0131 

VX Pup 3.0117 0,1 0.7090 5/7 +0.0074 +0.0043 -0.0031 +0.0254 +0.0182 
AP Vel 3.1278 0,1 0.7031 7/10 -0.0044 -0.0026 +0.0018 -0.0149 -0.0104 
BK Cen 3.1739 0,1 0.7047 7/10 -0.0067 -0.0039 +0.0028 -0.0227 -0.0159 
UZ Cen 3.3344 0,1 0.7063 7/10 -0.0090 -0.0053 +0.0037 -0.0306 -0.0215 
Y Car 3.6398 0,1 0.7031 7/10 -0.0044 -0.0026 +0.0018 -0.0149 -0.0104 

AX Vel 3.6731 0,1 0.7059 7/10 -0.0084 -0.0049 +0.0035 -0.0287 -0.0201 
GZ Car 4.1588 0,! 0.7052 7/10 -0.0074 -0.0044 +0.0030 -0.0252 -0.0176 
BQ Ser 4.2707 0 ,1  0.7053 7/10 -0.0076 -0.0044 +0.0031 -0.0257 -0.0180 

V367 Ser 6.2931 0,1 0.6967 7/10 +0.0047 +0.0028 -0.0019 +0.0155 +0.0109 

Max Idl 0.0210 0.0132 0.0079 0.0669 0.0502 
Mean Idl 0.0070 0.0041 0.0029 0.0249 0.0180 

Notes: a : a Scuti type; N=nonradial modes also excited; B=close binary; 
:=provisional mode identification for 4 CVn; :=estimated value of Po for 
VZ Cnc. 

References: SX Phe, Kozar 1978; EH Lib, Karetnikov and Medvedev 1979; 1Mon, this 
paper; 44 Tau, Wizinowich and Percy 1978; 6 Del, this paper; 4 CVn, this 
paper; AQ Leo, Jerzykiewicz and Wenzel 1977. References for the other 
stars are given in Fitch and Szeidl 1976 or in Stobie 1977. 
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MB model of AC And, but i t  seems probable that these growth rates are much smaller 

than those of, for instance, the Christy models of RR Lyrae stars. I t  therefore 

seems reasonable to suggest that the RR Lyrae star AQ Leo, the 2-6 day double mode 

Cepheids, and the 6-17 day bump Cepheids may also have relatively low growth rates 

for radial mode excitation. This condition, together with the existence of nonlinear 

coupling leading to a resonance, may constitute the necessary and suff ic ient 

conditions for the excitation of double mode radial pulsation. Stockman (1979) of 

Steward Observatory recently made an excellent suggestion regarding the testing of 

Simon's (1978) resonance hypothesis or that discussed here by a r t i f i c i a l l y  "tweaking" 

appropriate nonlinear models to force a resonance and then observing whether this 

produced double mode excitation. 

3. NONRADIAL MODE EXCITATION IN ~ SCUTI AND B CEPHEI STARS 

3.1 Preliminaries 

In considering nonradial mode excitation, i t  should f i r s t  be noted that, of 

the 17 radial mode variables in Table 1 with PO < 0.25 day, 7 are a Scuti stars and 

10 are AI Velorum or RRs stars. Further, 6 of the 7 a Scutis are either in binaries 

(CC And, 1Mon, 4 CVn) and/or also exhibit nonradial modes (21Mon, 1Mon, ~ Del, 

Sct). Only 44 Tau, which Wizinowich and Percy (1978) recently showed to have PI/Po = 

0.7729, does not display these additional complications. In 6 of these 7 stars the 

strongest excited mode is the radial fundamental. However, i f  the present work 

proves correct, in 4 CVn the strongest excited mode is the second radial overtone P2, 

with PI second and PO the/weakest of these three. In addition, 4 CVn also appears to 

be an eclipsing binary with an orbital period Porb ~ 13.6 day, and i t  maY have t idal 

modulation of PO and P1 but not of P2" 

Before taking up the general question of nonradial mode excitation, new 

results on 1Mon, a Del and 4 CVn wil l  be discussed in some detail. 

3.2 1 Monocerotis 

Mi l le r  (1973) obtained 17 nights of V - f i l t e r  photometry on 1 Mon and, upon 

finding a very strong beat period of 7.7455 day, attributed this to the simultaneous 

excitation at nearly equal amplitudes of periods P1 = 0.13377 and P2 = 0.13613 day. 

Because I thought the star interesting but didn't agree with his conclusions, 

Wisniewski and I placed 1Mon on our observing program. Five nights of Stromgren b- 

f i l t e r  measures had already been obtained when we received from Shobbrook and Stobie 

(1974) a preprint of their  excellent paper in which they discussed both the 25 

nights of V-f i l ter  measures they had Obtained and the 17 nights by Mil l is. We then 

dropped 1 Mon from our own observing program as being a needless waste of available 

time. 

Shobbrook and Stobie (1974) showed that the variations of 1Mon could be 
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explained e i ther  as the resul tant  of nonl inear coupling of three nonl inear ly  excited 

e q u i d i s t a n t  f requenc ies f l  : 7.346132, f2 = 7.475281, and f3  : 7.21718 cyc les /day  

(hereafter c/d), or as the t ida l  modulation of f l  by a companion in a nearly c i r cu la r  

o r b i t  of f requency F = 0.064555 c/d (Porb : 15.4907 ± 0.0036 day). In the former  

case, which they preferred, the three modes would resu l t  from f i r s t  order rotat ional  

perturbations of a nonradial mode, l i f t i n g  the m-degeneracy according to the theory 

in t roduced by Ledoux (1951), w i th  an observed s p l i t t i n g  af  : f2 - f l  = f l  - f3 = 

0.12911 c/d (= 2F f o r  the t i d a l  case). However, the observed per iod r a t i o  P2/Po : 

3/5 (cf .  Table I ) ,  a r a t i o  which one would expect f o r  two rad ia l  modes where 

r o t a t i o n a l  s p l i t t i n g  is  not poss ib le .  For t h i s  reason, we cons ider  the nonrad ia l  

mode m - s p l i t t i n g  exp lana t ion  f o r  fo ( f l  of Shobbrook and Stobie 1974) to be 

questionable. 

Their objections to a t ida l  modulation in I Mon were (a) that no odd harmonic 

combinat ions of  F w i th  f l  (our fo ) are present ,  and (b) t h a t ,  i f  a b i na ry ,  I Mon 

should show an o r b i t a l  v e l o c i t y  v a r i a t i o n ,  KI, o f  the order  of  I00 km s -1,  whereas 

the l im i ted  ve loc i t y  data avai lable indicate K I , 4 km s - I .  We here demonstrate that  

t he i r  basis for  objection (a) is incorrect  and that objection (b) is not necessari ly 

va l id .  

Shobbrook and Stobie (1974) found tha t  there  is  no measurable phase 

di f ference between var ia t ions in yel low and blue l i g h t ,  so in discussing the phase 

var ia t ions i t  is possible to combine the measures of Fitch and Wisniewski (1979) fo r  

f i v e  n igh ts  w i t h  t h e i r s .  By using the l eas t  squares method, s ine curves in  the 

fundamental radial mode fo ( f l  of Shobbrook and Stobie 1974) and i t s  second harmonic 

2f 0 have been f i t t e d  to determine the n i g h t l y  mean values of  the ampl i tudes A and 

phases@ on each of  the 17 n igh ts  by M i l l i s ,  24 of  the 25 n igh ts  by Shobbrook and 

Stobie (1974) ( I  n igh t  has too few measures), and the 5 n igh ts  by F i t ch  and 

Wisniewski  (1979). To combine the phase v a r i a t i o n s  @0 in  fo and @20 in  2f'o , each 

n igh t ' s  @20 is f i r s t  d i v ided  by 2 and then added to a mean ze ro -po in t  phase 

correct ion of 0.5806 cycles appropriate to ou~ chosen time zero-point T O : Hel. J. D. 

2439000.0. Shobbrook and Stobie (1974) demonstrated that  A@20 : 2A@ 0 in i Mon, j us t  

as Fitch (1967, 1976) had ea r l i e r  found in CC And. In other words, in both stars one 

observes a real v a r i a t i o n  in the t ime of  occurrence of a n o n l i n e a r l y  exc i t ed  mode. 

In Figure 2, @0 is plot ted as so l id  c i rc les  and 0.5@20 + 0.5806 as plus signs against 

the n i g h t l y  mean phases of F = 0.064555 and 2F = 0.12911 c/d. Suggest ive smooth 

curves have not been drawn through the points,  but i t  seems obvious that  the double 

cyc le  i n t e r v a l  of  15.491 days (F = 0.064555 c/d) g ives a much b e t t e r  r ep resen ta t i on  

of  the observed phase v a r i a t i o n s  than does the h a l f  per iod (2F : 0.12911 c/d) .  

Further, when we f i t  to a l l  the yel low measures a s ingle expansion invo lv ing jus t  Jfo 

+ kF, where j and k are selected in tegers  i n c l u d i n g  odd values of  k ( -5 ,  -4, -3,  -2,  

- i ,  O, + i ,  +2, +3, +4, +5 when j = I ) ,  a much be t t e r  rep resen ta t i on  of the combined 
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M i l l i s  and Shobbrook and Stobie (1974) data is obtained than i f  only the even k 

integers, such as those adopted by Shobbrook and Stobie (1974), are used. This 

formed the basis for their  f i r s t  objection to the presence of t idal modulation in 1 

Mon. When the M i l l i s  and Shobbrook and Stobie data are combined, the f4 = 12.105 c/d 

of Shobbrook and Stobie are resolved into our f2 = 12.2741 (or 12.2771) c/d and fN1 = 

13.0621 c/d, where f2 (uncertain by I cycle/yr) is the second radial overtone and fN1 

is a presently un ident i f ied nonradial mode of very small amplitude (A 0 = 0.0866 ± 

0.0003, A20 = 0.0158 ± 0.0003, A 2 = 0.0026 ± 0.0003, and ANt = 0.0028 ± 0.0003, in 

units of the mean l ight  level). 

The second objection raised by Shobbrook and Stobie (1974) to the t ida l  

modulation of  f l  was based upon the uncharacteristically low value for K 1, thereby 

raising doubts as to 1 Mon's binary status. In considering the orbital velocity of 1 

Mon on the binary hypothesis, several points must be addressed. 1 The notation used 

in the following discussion w i l l  be that of Fitch and Wisniewski (1979). 

First, because of the small differences in successive half cycles of F, the 

orb i ta l  eccent r ic i t y  e must be small. In the c i r cu la r  orb i t  approximation, i f  we 

start from Kepler's harmonic law and the def ini t ion of the center of mass, we obtain 

the following expression for the orbital velocity of the primary mass MI: 

V 1 = V$ qi/3 (l +q)-2/3 (FPe)I/3 (MI/M~)I/3 , 

where V$ = 29.86 km s -1 for  the orb i ta l  speed of the earth and P~ = 365.25 day for  

i t s  sidereal period. With F = 0.064555 c/d as the orb i ta l  frequency of 1Mon, we 

have V1(km s - I )  = 85.6 q (I + q)-2/3 (MI/Me)I/3" I f  for  i l l u s t r a t i v e  purposes we 

adopt M I = 2.0 M e and M 2 = 0.1MG, so that q = 0.05, then V I = 5.2 km s -1. This is 

not in serious disagreement with the observational K 1 = 4.0 (±2.7) km s -1 determined 

by f i t t i n g  F, fo, fo + 2F, and 2f 0 to the 19 velocities obtained on 4 nights by Jones 

(1971). The d i f f i c u l t y  here is that one should employ a much more complicated 

frequency set to accurately represent the actual velocity variation, and there are 

not enough measures available to permit such a f i t t i ng .  

In an earl ier presentation to this workshop, equations (24), (26) and (27) of 

Fitch and Wisniewski (1979) were used, together with an observational value of A2F = 

0.0045 ± 0.0003, to derive q < 0.2. However, a fundamental error existed in the 

assumption that A2F represents an e l l i p t i c i t y  effect. Using equations (24) and (26) 

together with the de f i n i t i on  of the pulsat ion constant QO ( :  0.033 day for the 

fundamental radial mode), one can show that with M 1 = 2.0 Me, q = 0.05 (as above), x I 

IThe f i r s t  discussion of this problem at the workshop was in error due to the 

inadvertent use of the constant in equation (27) of Fitch and Wisniewski (1979), 

which contained the orbital frequency of 14 Aur A rather than 1 Mon. 
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= 0.55 for  an F2 star in the V - f i l t e r ,  Yl = 1.0, fo = 7.346132 c/d, F = 0.064555 c/d, 

and for  the amplitude of concern, A2F ~ 8.6 x 10 -5 as compared to the observational 

value of 0.0045 ± 0.0003. That is, the observed variation in mean l igh t  level cannot 

be an e l l i p t i c i t y  variation i f  the orbital velocity is small, but i t  can arise from 

nonlinearity effects in large amplitude beats as pointed out by Shobbrook and Stobie 

(1974). Much more extensive velocity measures, uniformly distributed over the phases 

of F, are needed, but we believe the present evidence favors a t idal modulation model 

for  1Mon. 

3.3 ~_ DeIphini 

Leung and Wehlau (1967) analyzed the B- f i l t e r  photometric measures of a Del 

which they had obtained on 33 nights in 1962-63. They described the variation they 

found as being due to the resultant of 3 frequencies centered around 6.4 and 2 around 

12.7 c/d, with a single additional frequency at 10.4686 cfd. None of the frequencies 

they l isted can be described as simple combinations or multiples of others. Because 

their  analysis seemed questionable and because Preston (1966) had announced ~ Del to 

be a binary in a very eccentric orbit of 40.5 day period, a Del was included in our 

Scuti star observing program. On 29 nights between August 1972 and September 1974, 

5431 b-magnitude measures were obtained covering 114.8 hours of the variation, and to 

date the only resul t  has been a confirmation of the 4 lowest frequencies already 

found by Leung and Wehlau. Following an independent analysis of their  data as well 

as an analysis of our own, theelements of the l igh t  variation of ~ Del in 1962-63 and 

in 1972-74 are presented in Table 2. For the f i r s t  two frequencies fo and fN1 phase- 

locking has been forced between the two data sets, even though there is a suggestion 

that al l frequencies have changed very s l ight ly  during the interval between these two 

sets. Because of these apparent small changes and the subsequent ambiguit ies in 

cycle counts, different frequencies for fN2 and f2 were adopted in the two sets. In 

each set, the estimated uncertainty in any frequency is_+ 0.0002 c/d, so that any 

real frequency changes are only ma rg ina l l y  apparent. In both sets, more 

pe r iod ic i t i es  are present near 12-13 c/d, but the precise values of these periods 

di f fer .  No harmonic or sum or difference frequencies appear to be present. Further, 

in both sets the fundamental radial mode fo is the dominant excited mode; the second 

radial overtone f2 is also present; at least two nonradial modes fN1 and fN2 are 

excited; and no possibi l i ty  exists of invoking a constant frequency difference a la 

Ledoux (1951) to explain the nonradial mode exc i ta t ion,  a Del appears to be very 

similar to ~ Scuti in overall pulsation behavior (Fitch 1976). 

3.4 4 Canis Venaticorum 

On 36 nights between February 1974 and April 1976 Wisniewski, Bell and Fitch 

obtained 7984 b-magnitude measures covering 202.0 hours of the l igh t  variation of 4 
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CVn. As we have stated e a r l i e r  (Fitch and Szeidl 1976; Fitch 1976), the Fourier 

transform frequency spectra are extremely complex. At present i t  appears most 

probable that in 4 CVn the 3 radial  modes fo = 5.0489, f l  = 6.85225 and f2 = 8.5949 

c/d are al l  excited with f2 the strongest and fo the weakest of the three. Further, 

the apparent presence of additional frequencies at 1.3270, 1.4016, 4.5292 and 7.3751 

c/d can be rat ional ized by noting that 1.4016/19 = 0.07377 and 1.3270/18 = 0.07372 

c/d, while (5.0489 - 4.5292)/7 = 0.07424 and (7.3751 - 6.85225)/7 = 0.07469 c/d. That 

is,  there are 5 apparent combinations which a l l  suggest the presence of a low 

frequency F ~ 0.0737 - 0.0747 c/d and a modulation period Porb ~ 13.6 - 13.4 day. In 

addit ion, there are present a number of other low harmonics of a frequency F near 

th is value, such that when a 9 term expansion in selected harmonics of F = 0.07379 

c/d was f i t ted to the complete data set and then the mean l ight variation calculated 

over one long period according to these harmonics, a very strong indicat ion was 

obtained that 4 CVn has an orbital period Porb ~ 13.6 day and undergoes two shallow 

eclipses per period (depths = 0.04 mag), but that these eclipses are not equidistant. 

The time intervals between successive mid-minima are about 6.1 and 7.5 days, 

respectively, so that i f  th is in terpre ta t ion  is correct the orb i t  must be 

signif icantly noncircular. In this picture, al l  the low frequency terms arise from 

the attempt to describe eclipses by Fourier expansions in the orbital period, while 

the terms at fo - 7F and f l  + 7F are at t r ibuted to orb i ta l  modulation of the 

fundamental and f i r s t  overtone radial modes. A more complicated possibi l i ty is that, 

since the two eclipse minima appear to be of approximately equal depth, the binary 

members are of nearly equal T e and both may be a Scuti variables. In that case i t  

may be that f~ = 4.5292 and f~ = 7.3751 c/d are the radial fundamental and second 

overtone modes of the second star, with ~ / ~  = 0.6141 and with F " 0.07374 c/d (Porb 

13.56 day). 

Because the strongest pulsation frequency in 4 CVn, which we have termed f2 = 

8.5949 c/d, is clearly present in each of our 6 data subsets as well as in the f i t  to 

the complete data base, we do not agree with the conclusions of Warman, Pena and 

Arellano-Ferro (1979). They analyzed 5 closely spaced nights of V and B photometry 

which they had obtained in 1977, and proposed that the f i r s t  4 radial modes are 

excited in 4 CVn, with fo = 4.796, f l  = 6.540, ~2 = 7.942 and f3 = 8.636 c/d. 

However, we find none of these frequencies. Whatever may be the correct solution to 

the problems posed by the very complex but periodic behavior of 4 CVn, i t  now seems 

certain that there is no observational evidence connecting this behavior with f i r s t  

order rotational perturbation theory. 

3.5 Nonradial Mode Excitation 

In most well-observed 6 Scuti stars the l ight variation is quite complex, and 

in many of these stars the observed frequency spli t t ings are suff ic ient ly small that 
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some nonradial mode exc i ta t ion  must be present. However, as already pointed out in § 

3.1, when rad ia l  modes are also present the fundamental fo is  u s u a l l y  the most 

strongly excited of a l l ,  and the nonradial modes are usual ly an order of magnitude 

weaker than fo (cf .  1Mon, a Del, a Sct). The on ly  a Scut i  s tars  in which constant  

frequency di f ference spacing has been demonstrated are CC And and I Mon, and i t  now 

seems apparent that they are both binar ies wi th the radial fundamental being t i d a l l y  

modulated. Because of the a l te rnat ing character of even and odd hal f -cyc les of the 

long beat period, both of these stars must have e l l i p t i c a l  orb i ts .  In addi t ion,  the 

Cephei s tars  a Sco and ~ V i r  are both b i n a r i e s  in  e l l i p t i c a l  o r b i t s  and both show 

t ida l  modulation of the dominant pulsat ion frequency. 

By con t ras t ,  the a Scut i  s tars Y Cam and 14 Aur and the B Cephei s ta r  16 Lac 

are a l l  b inar ies in c i r cu la r  orb i ts  and a l l  have excited nonradial modes that are not 

t i d a l l y  modulated and that are also not separated by constant frequency dif ferences. 

Y Cam is  an ec l~ps ing b i n a r y ' ( B r o g l i a  and Conconi 1973), 16 Lac is  a spect roscop ic  

and an ec l ips ing binary (Jerzykiewicz et al. 1978), and 14 Aur is  a spectroscopic and 

an e l l i pso ida l  binary (Fitch and Wisniewski 1979). Jerzykiewicz (1978) has recent ly 

reanalyzed the published observations of the B Cephei star 12 Lac, and has concluded 

from the existence of constant Af steps in the frequency spectrum that  in th is  case 

Ledoux's theory  of f i r s t  order  r o t a t i o n a l  s p l i t t i n g  does apply. However, we must 

po in t  out t ha t  the 4 f requenc ies  (h is  f l ,  f3 ,  f4 and f5 ) f o r  which he makes t h i s  

i d e n t i f i c a t i o n  may j u s t  as e a s i l y  be descr ibed as f l ,  f l  + 2F, f l  + F, and 2f I + F, 

where F = 0.15537 c/d imp l i es  an o r b i t a l  per iod Porb = 6.4362 day. Fur the r ,  as he 

admits,  the mean l i g h t  l eve l  va r ies  from n igh t  to n igh t .  We suggest t ha t  when 

adequate observations become avai lable the l i g h t  level var ia t ion  w i l l  be found to be 

periodic wi th period O.5Por b : 3.2181 day, as expected for  a close binary subject to 

the e l l i p t i c i t y  ef fect .  The other two frequencies f2 and f6 do not f i t  t h i s  simple 

s p l i t t i n g  pattern and at least f2 must be a nonradial mode. 

The suggestion that dup l i c i t y  ef fects may commonly complicate the behavior of 

a pu l sa t i ng  s ta r  has met w i t h  a great deal of res i s tance ,  the basis of which is  

d i f f i c u l t  to understand. I f  one reca l ls  that  about ha l f  of a l l  stars occur in binary 

or mu l t ip le  systems, and that  the B Cephei and a Cephei i n s t a b i l i t y  s t r ips  represent 

normal stages in the evolut ionary l i f e  h is tor ies  of stars of various masses, then i t  

is  to be expected tha t  about h a l f  of a l l  these va r i ab les  w i l l  have phys ica l  

companions that w i l l  in many cases be close enough to inf luence the outer s t ructure 

of the pulsat ing star. I f  one ins is ts  that CC And, I Mon and 12 Lac are not b inar ies 

but rather that the strongest pulsat ion mode (which we i den t i f i ed  as fo in CC And and 

1Mon) is  a nonradia l  mode w i t h  f i r s t  order m - s p l i t t i n g ,  then one requ i res  ad hoc 

exp lana t ions  f o r  the f o l l o w i n g  po in ts :  (a) In CC And, I Mon, a Del,  a Sct and AC 

And, we f i n d  P2/Po ~ 3/5,  w i t h  PO the s t rongest  exc i ted  p u l s a t i o n  mode and, in  AC 

And, d e f i n i t e l y  the radial fundamental mode. On the nonbinary hypothesis, PO is not 
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a radial mode in CC And and I Mon, but shows an m-splitting no__t_t seen in a Del, a Sct 

and ACAnd. (b) From a study of the s ta t i s t i c s  of binary orb i ts ,  we expect to see a 

number of pulsators with close companions in noncircular orbits. I f  CC And and 1Mon 

are not representative of this type of system, why have stars such as this not been 

found and how wi l l  their pulsational behavior d i f fer  from that observed in CC And and 

1Mon? (c) CC And and I Mon both show a pulsation behavior which alternates in 

character between even and odd cycles of the m-sp l i t t ing  beat period. This is not 

predicted by Ledoux but is consistent with tidal modulation in an e l l ip t ica l  orbit. 

(d) Both CC And and I Mon are r e l a t i v e l y  large amplitude nonlinear pulsators, with 

significant second harmonic content in the l ight variations due to the dominant mode 

(our PO in each). I_J_f these are nonradial modes, then they must in both cases be 

surface harmonics with ~ ~ 5, since for both stars the accurate analyt ic 

representation of the observed l ight  variations requires terms to at least fo ± 5F. 

To interpret such terms as m-splitting requires that m ~ 5, however, since Iml ~ 4, 

i t  follows that ~ ~ 5, a result which is unreasonable for a large amplitude pulsator 

viewed in l ight integrated over the apparent disk. 

From the preceding discussion, i t  appears that the observational evidence 

implies that nonradial mode excitation in stars above the main sequence wi l l  usually 

occur only in those stars with significant departures from spherical symmetry, due 

either to high rotation or to close companions. I f  this inference is correct, and i f  

the theoretical investigations of nonradial pulsations are to have any relevance to 

the real world, then the model builders w i l l  have to accept the rather grim problems 

posed by the abandonment of simple spherical models. 

This work has been supported in part by a National Science Foundation grant 

GP-38739. 
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6 SCUTI VARIABLES: 
llIE LINK BETWEEN GIANT- AND DWARF-17fPE PULSATORS 

W. Dziembowski* 
Department of Physics 
University of Arizona 
Tucson, Arizona 

ABSTRACT 

An attempt is made to interpret the differences in pulsational behavior 

between horizontal branch and main sequence (or early post-main sequence) variables. 

Results of linear stabi l i ty studies for ~ Scuti stars are reviewed and supplemented 

with new calculations. The function of the opacity mechanism in generating 

i ns tab i l i t y  to a variety of radial and nonradial modes is discussed. The highest 

excitation rates for these variables, though s t i l l  much lower than in the case of 

Cepheids, are found in fundamental modes with higher spherical harmonic orders, ~, 

and among higher overtones with low values of ~. I t  is argued that amplitudes in 

Scuti stars are limited by nonlinear mode coupling, resulting in lower amplitudes and 

multiperiodicity, rather than by saturation of the opacity mechanism as is the case 

with horizontal branch variables. 

1. INTRODUCTION 

The discoveries of many low amplitude variables made in recent years and the 

demonstration that the sun is an osci l lat ing star strongly suggest that s te l la r  

osci l lat ions must be very common. Understanding of this phenomenon may furnish 

insight into the mechanics of atmospheric turbulence and heat balance; i t  may also 

provide a means of probing stellar interiors. 

Most low amplitude pulsators fal l  into the three following types: 

1. ZZ Ceti, 

2. B Cephei and related early type variables, and 

3. a Scuti. 

In all cases, these are stars characterized by dwarf-like or only slightly developed 

giant- l ike structure. This is in contrast to classical pulsating stars, such as 

*Visi t ing Professor on leave-of-absence from the Copernicus Astronomical 
Center, Warsaw, Poland. 
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Cepheids and RR Lyrae, that are helium-burning stars in advanced evolutionary stages. 

I t  now appears l ikely that there is one common cause of var iabi l i ty  in all the above 

stars, namely the fami l ia r  opacity mechanism. There are, however, s t r ik ing 

differences in the pulsation properties of giants and dwarfs, respectively, which are 

listed below: 

1. Pulsations detected in giants are usually of high amplitude, while dwarfs are 

usually low amplitude pulsators. 

2. The number of modes excited in giants is one or, in rare cases, two; a large 

number of excited modes is found in pulsating dwarfs. 

3. There is no evidence for the existence of nonradial modes in giants. 

However, nonradial modes are clearly indicated in many dwarfs studied. 

4. The instabi l i ty  strip in giants is well-defined but poorly defined in dwarfs. 

Our understanding of the pulsation phenomenon in Cepheids has reached a very 

satisfactory level since i t  is, by astrophysical standards, remarkably simple. Small 

amplitude variables present a much more complicated problem due both to a lack of 

spherical symmetry of the motion and to mul t iper iodic i ty .  The nature of these 

differences between giants and dwarfs in their pulsational behavior w i l l  be discussed 

using ~ Scuti variables as an example. This type of variable star comprises both 

main sequence stars and early post-main sequence (thick shell phase) stars. 

Two factors complicate consideration of these variables as members of a 

homogeneous group. One is the problem of whether large amplitude variables 

c lassi f ied as RR s types, which overlap genuine a Scuti stars in the i r  range of 

periods and spectral types, are in the same evolutionary phase as the 8 Scuti stars. 

There is no consensus on this question. However, i t  is more in the s p i r i t  of th is  

paper to assume that these are more evolved objects having low mass and that they 

therefore should not be considered in the same group. This question w i l l  be 

addressed in @ 5 where the possible existence of large amplitude variables among main 

sequence stars wi l l  be discussed. 

The other complicating factor is metallicity. In his recent review, 1 Breger 

(1979) concludes that var iabi l i ty  and strong metall icity are mutually exclusive for 

main sequence variables, but not for post-main sequence variables. I t  has been 

speculated (Vauclair, Vauclair and Pamjatnykh 1974) that since me ta l l i c i t y  may be 

treated as evidence for unsuppressed diffusion, the settling of helium relative to 

hydrogen should occur. Because most of the dr iving is due to the He I I  ionizat ion 

layer, depletion of helium from this zone due to set t l ing may prevent pulsational 

i ns tab i l i t y .  Recently, Cox, King and Hodson (1979) made an extensive survey of 

linear stabi l i ty in models with a reduced helium content in their outer layers. They 

1Readers are referred to this excellent review for a complete survey of the 

properties of a Scuti stars. 
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showed that  the extent  of the i n s t a b i l i t y  s t r i p  is very s e n s i t i v e  to the amount of 

helium and that  the complete dep le t ion  of hel ium in the outer  layers  resu l t s  in 

s tab i l i z ing  the models. 

Although th is  ef fect  is unquestionably important for understanding pulsation 

properties of a Scuti stars, i t  seems doubtful that i t  can account for  the essential 

differences between these stars and Cepheids. This is especial ly borne out by the 

fac t  tha t  many normal main sequence stars which l i e  w i t h i n  the i n s t a b i l i t y  s t r i p  

s t i l l  f a i l  to pulsate with large amplitudes. 

2. CHANGES IN PULSATION PROPERTIES IN THE COURSE OF STELLAR EVOLUTION 

Development of a condensed core and extended envelope during evolution causes 

drast ic changes in the propagation properties of acoustic and grav i ty  modes in the 

s t e l l a r  i n t e r i o r .  An o s c i l l a t o r y  mode character ized by i t s  frequency, m, and 

spher ical  harmonic order,  ~, has almost a l l  of i t s  energy conf ined to the layers  

where i t  can propagate, thereby becoming a trapped acoustic or grav i ty  wave. From 

the point of view of pulsational i n s t a b i l i t y ,  the locat ion of the propagation zones 

and hence the evanescent zones is important because (I) i t  t e l l s  what portion of the 

s te l l a r  mass is engaged in the motion, and (2) the dr iv ing via the opacity mechanism 

depends on the evanescent (non-propagating) behavior of the o s c i l l a t i o n s  in the 

dr iv ing zone. Discussions of the propagation properties of various s t e l l a r  models 

may be found in the fol lowing papers: Scuflaire (1974); Dziembowski (1975); Osaki 

(1975); and Unno (1975). 

Approximate c r i t e r i a  for  propagation can be wr i t ten (c~ Dziembowski 1975) as 

~ c(z + 1)/r, ~ ~ g/c for acoustic waves, and (1) 

~ ng/c, m ~ ncc/r for gravity waves (2) 

where c is the speed of sound, g is the local gravitational acceleration and 

n 2 (~ I_~_~ F(a I nT~ dlRTI (B_~ d~ (3) 
: "\BlnT/p,M L~-Tn-Fia d - ~ ]  + \ B~ Ip,T dlnP 

where p, T, P and ~ denote density, temperature, pressure and the mean molecular 
d~ i weight, respectively, and the derivative ~ s calculated in the equilibrium model. 

The Brunt-V~is~l~ frequency, ng/c, is frequently denoted by N. The above cr i te r ia  

provide, in an approximate way, the necessary and suf f ic ient  conditions for 

propagation. They d i f fe r  in this respect from those obtained by Scuflaire (1974) 

which, although rigorous, represent only necessary conditions. 

The radial behavior of the parameters g2/c2 and c2/r 2, which enter into the 

above cr i ter ia ,  are shown schematically in Figure 1 for an evolved ste l lar  model. 

The characteristic feature for such stars is a pronounced hump in g/c which is 

nonexistent or barely present in zero age main sequence (ZAMS) stars. This hump 
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prevents the penetration of radial modes into the deep interior and, as a result, the 

propagation zone in evolved stars contains a smaller fraction of the total mass. The 

upper boundary of the propagation zone is also moved outward in evolved stars 

because, for a given mode, m varies as R -3/2 and the surface g varies as R -2. 

This effect has another interesting consequence: higher order acoustic modes 

may be evanescent in the driving region for stars with higher surface g. I t  has 

indeed been found by Castor (1970) and confirmed later in several papers that, with 

respect to radial pulsations, ~ Scuti stars are unstable to high order overtones with 

considerably higher growth rates than those of the fundamental mode or the f i r s t  

overtone. 

Consequences of the development of the g/c maximum are different in the case 

of the nonradial modes because these modes may propagate in the interior as gravity 

waves. As shown in Figure 1, there is an intermediate frequency range where modes 

have mixed character; those in the envelope are acoustic-type waves, while gravity- 

type waves are found in the in ter ior .  This gives rise to a new set of modes and 

modifies the properties of previously existing modes. 

The propagation zones are separated by an evanescent zone where the amplitude 

changes monotonically with r. For modes with high values of 4, the increase of the 

amplitude in the envelope for the trapped modes is so large that their properties are 

not affected by the changes in the in te r io r  (Shibahashi and Osaki 1976). On the 

other hand, the properties of low ~ modes are always strongly affected. In the case 

of such stars as RR Lyrae or the Cepheids, such modes either experience a reduction 

in growth rate by orders of magnitude or are entirely damped. I t  has been found, for 

example, that as soon as ~ ~ 6, the growth rates are reduced to the same order of 

magnitude (and remain always less) than those for the radial modes (Dziembowski 1977; 

Osaki 1977). 

Similar, though much smaller, effects are present in the evolutionary phases 

of a Scuti stars. In Figure 2, taken from Dziembowski (1977), the growth rates for 

low ~ modes are compared in two models of a 1.5 Mg star. In the ZAMS star model, a 

weak maximum of g/c establishes the inner propagation zone. In the frequency range 

considered, however, only for ~ = 4 is a mode trapped in this zone. Except for this 

mode, the growth rates of nonradial modes are essential ly the same as those for 

radial modes, both being determined almost exclusively by frequenc~ 

A much larger number of modes is present in the second model which represents 

the phase immediately fol lowing hydrogen exhaustion in the center. Most of these 

modes are trapped in the interior and, therefore, have much smaller growth rates than 

the radial modes. The modes with frequencies close to those of the ZAMS model are 

not trapped within the envelope to a very great extent. This is especially true for 

modes with ~ = 2 or 3, a factor which brings about a noticeable decrease in the 

growth rates of nonradial, relative to radial, modes. 
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Figure I. Regions of acoustic (a)- and gravity (g)-wave propagation in the interior 
of a giant. Cr i t ica l  l ines are drawn schematically. Factor n has to be used to 
determine the cr i t ical frequencies for gravity-waves, while factors £ + I and ~ must 
be used to determine the c r i t i ca l  frequencies for acoustic- and gravity-waves, 
respectively. Note that i f  £ is large, there are two g-regions. 
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I t  should be noted tha t  the modes w i th  the h ighest  growth rates tend to 

c lus ter  close to the frequencies of the radial modes. This may expla in  the c losely  

spaced spikes f requent ly seen in the periodogram for  8 Scuti variables. 

3. SOME RESULTS OF LINEAR STABILITY SURVEYS FOR MODELS OF a SCUTI STARS 

Several surveys concerning l i near  s t a b i l i t y  have been made, the most recent 

and complete one fo r  rad ia l  modes being tha t  of S t e l l i n g w e r f  (1979). The cu r ren t  

discussion is based p r imar i l y  upon the resul ts of th i s  survey and, in addi t ion,  upon 

some new calculat ions pertain ing to nonradial modes. 

Al l  s t e l l a r  models which l i e  w i th in  the range of e f fec t i ve  temperatures for  a 

Scut i  va r i ab les  are unstable to some modes of  rad ia l  and nonradia l  pu l sa t i ons ,  

assuming a standard helium content. The i n s t a b i l i t y  is due to the opacity mechanism 

wi th the He I I  ion izat ion zone playing the dominant role in dr iv ing.  

The highest pulsat ional energy growth rates per period (n = -4~ml/mR, where 

~I and m R are the real and imaginary  parts o f  m) are found f o r  the f o u r t h  over tone,  

where they reach values of about 10 -3 • The growth rates for  the fundamental and the 

f i r s t  overtone modes are at least two orders of magnitude lower. Let us recal l  that  

in Cepheids and RR Lyrae stars only fundamental, f i r s t  overtones, and occasional ly 

second overtones can be driven but the typ ica l  growth rates, n ,  are between 0.05 and 

0.2. 

Though, in a l l  cases, the He I I  ion iza t ion  zone provides the major dr iv ing ,  

there  are d i f f e rences  in d e t a i l s  of  the opac i t y  mechanism. In the case of  a Scut i  

s t a r s ,  H I and He I i o n i z a t i o n  zones play v i r t u a l l y  no ro le  in  d r i v i n g  rad ia l  

pu l sa t i ons .  Instead,  the s i g n i f i c a n t  c o n t r i b u t i o n  to d r i v i n g  comes from the zone 

located at T= 1.5 x 105 K. This d r i v i n g  zone acts on ly  in s tars  w i t h  high sur face 

g; i t  is caused by an opacity bump which occurs when the locat ion in frequency of the 

Planck f u n c t i o n  maximum co inc ides  w i th  the f requency of the He I I  i o n i z a t i o n  edge 

(Ste l l ingwer f  1979). 

Results are s im i la r  for  nonradial modes associated with spherical harmonics 

of  moderately low order (4 ~ 50). Figure 3 gives a comparison of  the d r i v i n g  (or 

damping) rates for  radial and nonradial modes. Only those modes that are e f f ec t i ve l y  

trapped in the envelope were included in th is  survey. Modes corresponding to ~ lower 

than i0 have somewhat reduced dr iv ing (or damping) rates due to imperfect trapping, 

as discussed in  the previous sec t ion .  I t  is  c l ea r  tha t  l i n e a r  theory  p red ic t s  no 

preference f o r  rad ia l  over nonradia l  mode e x c i t a t i o n  f o r  a wide range of  ~ values. 

In dr iv ing fundamental modes associated with high ~ values, the H I ion izat ion zone 

is important and becomes dominant at ~ : 80-100. 

L inear  theory  locates the blue boundary of  the i n s t a b i l i t y  s t r i p  f o r  main 

sequence stars at spectral type A3 in agreement wi th observations. Driving of high 

modes by th is  i n s t a b i l i t y  is expected in much ea r l i e r  types, but t h i s  cannot resu l t  
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in observable variabil i ty. In addition, the shortest period theoretically predicted 

for 6 Scuti stars is somewhat less than 30m, a f igure which coincides with the 

observational evidence. This theory also provides an explanation of why nonradial 

modes are observed in ~ Scuti stars but not in Cepheids. 

The latter point is, however, only one of thedifferences between giant- and 

dwarf-type pulsators discussed in the introduction. I t  is tempting to relate lower 

amplitudes in dwarfs to lower growth rates, but predictions based on linear growth 

rates are subject to a great deal of uncertainty. This may be appreciated by noting 

that we have firm evidence of fundamental mode excitation in a Scuti stars in spite 

of the fact that the undetected overtones have growth rates which are at least two 

orders of magnitude larger than the fundamental mode. Thus, the major differences 

between a Scuti stars and giant pulsators can be understood only by studying 

nonlinear effects leading to amplitude limitation. 

the form of l ight 

nonradial modes 

veloci t ies in the 

total luminosity. 

saturation, since 

kms -1. 

4. LIMITATION OF PULSATION AMPLITUDES 

Christy (1966), in his celebrated paper on nonlinear pulsations of RR Lyrae 

stars, showed that in these stars pulsation amplitudes are limited by saturation of 

the driving mechanism. This occurs when the flux carried by pulsation in the driving 

zone amounts to about 10 percent of the total luminosity. Is the amplitude l imit ing 

process the same in a Scuti stars? The answer is that i t  is almost certa in ly 

different. 

By applying the same numerical technique as used in the case of RR Lyrae 

stars to a Scuti stars, Stellingwerf (1980) has shown conclusively that these stars 

should have very large (> 1 mag) amplitudes, a finding which is in obvious conflict 

with the observations. One may speculate that driving is saturated by a large number 

of nonradial modes which correspond to large £-values and are therefore invisible in 

variabi l i ty. However, an inspection of numerical data on linear 

leads to the prediction of root mean square macroturbulence 

range 101 - 102 kms -1, assuming these modes carry 10 percent of 

This result apparently rules out the possibil ity of this form of 

the observed macro- and micro-turbulence velocities are only a few 

The conclusion must be that the opacity mechanism is not saturated in ~ Scuti 

stars and, consequently, that there must be an e f f i c ien t  mechanism that removes 

energy from linearly driven modes. This situation is apparently similar to that of 

convection in subphotospheric layers, in which case radiative losses prevent the 

temperature gradient from approaching i ts  adiabatic value. I t  seems most l i ke l y  

that, in our case, energy is driven out from the mode as a result of i t s  nonlinear 

interactions with other modes. In Stellingwerf's model, the number of possible modes 

available for interaction was grossly reduced by the assumption of spherical 
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symmetry. 

When considering low amplitude oscillations, only three (and in special cases 

two) mode resonant interactions are important. Such interactions take place between 

any ( j ,  k, m) modes i f  ~j = mk + mm + Am with Am much smaller than any of the three 

m's involved and i f  the projection of the nonlinear terms resulting from interaction 

between one pair of the modes onto the eigenfunction of the third mode is non-zero. 

I f  we write the displacement vector ~ in the form 

~i : Ai(t)~i s ina i  + (mi + am)~ 

where h i is the normalized eigenvector, then by standard techniques known in various 

fields of physics (see, for example, Davidson 1972) we have 

dA i 
dt = ki Ai + Ci ApAq cos@ 

where i ,  p, and q are any of j ,  k, m; C i is the projection of interaction terms for 

the p- and q-modes onto the i-mode eigenfunction; k i is the linear growth rate ( i f  > 

0); ~ = ~ - ¢k - Cm and 

do (c 
~= Am + j ~ -  C k Ak - Am / 

Several special cases of mode interaction have been studied in the past. 

Vandakurov (1965, 1967) investigated the decay instabi l i ty of a radial mode (j) into 

two gravity modes (k,m). I f  nonadiabatic effects are ignored, then i ns tab i l i t y  

occurs i f  

4~2C.C > Am 2 
3 Km 

In the case considered, C k = C m and, consequently, theabove inequality defines an 

instabil i ty band for each value of the radial mode amplitude. 

This i ns tab i l i t y  is prevented by damping of the nonradial modes i f  -k k 

21hjCkl. On the other hand, i f  kj is large, the growth of the radial mode may not be 

disturbed by possible growth of the nonradial modes. This is one reason why this 

instabil i ty is not l ikely to be important in the case of giants. The other reason is 

that, in giants, radial modes tend to be trapped in the envelope, while gravity modes 

tend to be trapped in the deep in ter ior  which results in very low values of the 

projection C. For a Scuti stars, however, the decay instabi l i ty is l ikely to be very 

important. 

In an attempt to interpret amplitude modulation in RR Lyrae stars, Kluyver 

(1935) studied high frequency mode driving using the resonance mj - 2m k, a special 
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case of the more general resonance considered here. Papaloizou (1973) studied the 

l imit ing action of such a resonance on pulsation amplitudes in massive stars which 

are v ibra t iona l ly  unstable due to the ~ mechanism. I t  is l i ke l y  that,  in a Scuti 

stars, this phenomenon is responsible for l imit ing amplitudes of higher overtones. 

The effects of mode coupling in l im i t i ng  amplitudes have thus far been 

considered only for l inearly driven modes. However, the possibil ity of the existence 

of opposite effects emerges from the work of Simon (1978) and the discussion 

presented by Fitch (1980), which indicate that short period variables that are 

characterized by rather large amplitudes show evidence of resonances in the i r  

frequency distr ibut ions. Amplitude amplif ication as a result of resonant mode 

interaction is known in plasma theory (Davidson 1972) and occurs i f  C k = C m = -Cj. 

In the case of oscillation mode interactions in a star, this remains an intriguing 

possibility. Quantitative studies of mode coupling in a Scuti stars and other stars 

are now in progress. 

5. CONCLUSION 

The preceding discussion suggests the fol lowing interpretat ion of the 

differences listed in the introduction between dwarf- and giant-type pulsators: 

I .  Amplitudes in dwarfs are smaller because they are limited by nonlinear mode 

coupling which becomes important before the driving mechanism is saturated. 

The greater importance of mode coupling in dwarfs than giants is related both 

to lower excitation rates and lower values of coupling coefficients. These 

two effects may be understood in terms of differences between propagation 

mode properties in giants and dwarfs. 

2. Multiperiodicity in dwarfs is caused by the fact that the driving mechanism 

is not saturated and by the fact that there are many nonradial modes 

associated with low ~ harmonics having very simiiar properties. 

3. Nonradial modes are not observed in giants because, for low ~ harmonics, they 

are either damped or the i r  excitat ion rates are so low that the driving 

mechanism is saturated by the radial modes. The la t te r  modes saturate in 

driving before nonradial modes grow to any observable amplitude). Again, the 

difference in growth rates between ~ = 0 and ~ > 0 modes, in the case of 

giants, is easily understood in terms of propagation properties. 

4. In addition to the fact that dwarfs tend to be low amplitude pulsators, 

gravitational set t l ing of helium in dwarfs may contribute to poorer 

definition of the instabi l i ty strip. 
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NONLINEAR CALCULATIONS FOR BUMP CEPHEIDS 
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Los Alamos, New Mexico 

ABSTRACT 

Using the von Sengbusch-Stellingwerf relaxation method, hydrodynamic 

calculations have been made to find str ic t ly  periodic solutions for the fundamental 

mode pulsations of 7 M e models. These models have a helium enrichment in the surface 

convection zones up to Y = 0.78. From the l inear theory period rat io R2/~O and the 

Simon and Schmidt resonance hypothesis, the observed Hertzsprung progression of light 

and velocity curve bump phase with period should result. These surface helium 

enhanced models show the proper nonlinear bump phase behavior without resort to any 

mass loss before or during the blue loop phases of yellow giant evolution. At 6000 K 

and the luminosity of 4744 L e given by evolution theory for 7 M e (that is, at a 

fundamental mode period of 8.5 day), the velocity curve bump is well after the 

maximum expansion velocity. At 5400 K and the same luminosity (period of 12.5 day), 

the bump on the velocity curve occurs well before maximum expansion velocity time. 

The Christyechoes appear to be exhibited in the la t te r  case but not in the former. 

The echo interpretation may not be appropriate for these masses which are larger than 

the anomalous masses used by Christy (1975); Stobie (1969a, 1969b); and Adams (1978). 

Resonance of the fundamental and second overtone modes should not necessarily show 

echoes of surface disturbances from the center. The conclusion is that helium 

enrichment in the surface convection zones can adequately explain observations of 

bump Cepheids at evolution theory masses. 

Our calculations deal with the so-called bump Cepheids which have periods 

between about 5.5 and 13 days. Chemically homogeneous models were considered in some 

detail by Christy (1974), Stobie (1969a, 1969b); King et al. (1973); and most 

recently by Adams and Davis (1978). The Goddard model, calculated by a large number 

of computer programs, also possesses a velocity and light curve bump. Until 1977, a 

model mass of about 2/3 the evolutionary theory value was required in order to give 

the proper bump phase and its variation with the fundamental radial pulsation mode. 

All Cepheid mass anomalies can be resolved i f  one adopts models with helium 

enriched convection zones and, for modes with periods between 0.7 and 4 days, a 
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deeper helium enriched zone constituting possibly 10 -3 of the stellar mass (Cox et 

al. 1977). This strategy has had successes in explaining the double-mode Cepheids 

and the sole triple-mode Cepheid, AC Andromedae, in terms of normal evolution theory 

masses. This paper addresses only the bump Cepheids; results for AC Andromedae and 

double-mode Cepheid models are discussed by Cox, King and Hodson (1978) and by Cox, 

Hodson and King (1979) respectively. 

In bump Cepheids, helium enrichment is necessary only in the thin convection 

zones which comprise less than 10 -4 of the s te l la r  mass. The cause of th is  

enrichment may be some fractionation process that operates through a solar-type wind, 

leaving the helium behind (Cox, Michaud and Hodson 1978). The mass loss rate of 

about 10 -10 Me/Yr is probably unobservable, and cer ta in ly  the mass of the yellow 

giants, pulsating or not, is not significantly affected in the 106 - 107 years needed 

for the i r  blue loops in the Hertzsprung-Russell diagram. The helium enhancement 

requires time and cannot operate in fast-evolving stars of mass greater than 8 M e • 

A question relevant to the helium enhancement hypothesis is: Can this 

tremendous helium mass fraction, Y = 0.75, be detected in the stellar spectrum? Kamp 

and Deupree (1979); Sonneborn, Kuzma and Collins (1979); and Kurucz (1978) have 

considered the spectrum of yellow giants. The only effects noted with Y = 0.75 are a 

reduced Balmer jump, a large strengthening of the weak metal lines that is probably 

unobservable, and a moderate strengthening of the strong temperature sensitive lines. 

All the authors feel that the enhanced helium may not be detected, especially since 

all blue looping yellow giants should show the same helium enhancement regardless of 

their pulsation. More work is in progress. 

Another unanswered question is: Will the inverted ~ gradient due to the 

helium enhancement mix downward rapidly enough to destroy the enriched layer, during 

which time fract ionat ion is being brought about by the wind? Two-dimensional 

calculations are currently being made to study this question. A smooth gradient in a 

7 MQ 5900 K Cepheid from Y = 0.30 at 90,000 K and 8 x 10 -8 g/cm 3 (1 - q = 3 x 10 -4 ) 

to Y = 0.72 at 60,000 K and 2 x 10 -8 g/cm 3 (I - q = 6 x 10 -5 ) has been studied for a 

very short run (less than a year of star time). The small effects noted indicate a 

mixing timescale of at least 105 years, but this number is s t i l l  very tentative. A 

mixing time of 106 - 107 years would serve to keep the helium in the convection zones 

for bump Cepheids; this would also allow a slight downward leakage to give correct 

period ratios for the slower evolving double-mode and triple-mode Cepheids. 

Simon and Schmidt (1976) have enabled us to study the bump phase using only 

the l inear theory. From the extensive Stobie (1969b) nonlinear results and the i r  

linear adiabatic periods, Simon and Schmidt have shown that bumps occur for Cepheid 

models when ~2/~0 lies between 0.46 and 0.53. At ~2/~0 = 0.53, the bumps are located 

far on the descending sides of the l ight and velocity curves while, at 0.50-0.46 for 

~2/~0, they are on the r is ing parts. Figure 1 (from Cox, Michaud and Hodson 1978) 
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plots R2/XO versus ~o. 

Consider f i r s t  the results in Figure 1 for the homogeneous models at 7 M e 

using the King IVa composition (X = 0.70, Z = 0.02). On the basis of these l inear 

results, there should be no light or velocity curve bumps for those models between 

the blue (B) and red (R) edge, a finding which is inconsistent with the results of 

nonlinear calculations. I f  the mass is reduced to 5 M e but the luminosity for 7 M e 

retained, the corresponding curve in Figure 1 indicates that one can presumably get 

bumps for periods l ike 10 days or longer. The curve near to the one just discussed 

was obtained using Carson opacities in homogeneous evolutionary mass models for 7 M e 

and evolutionary luminosity. A nonlinear calculation at the t ip of the extension at 

8.7 days and 6000 K, with s l ight ly  lower x2/~O, gives no bumps i f  the pulsation 

amplitude is a normal one such as 30-40 km/s. I f  the amplitude is made s l igh t ly  

larger by a reduced ar t i f ic ia l  viscosity, one gets amplitudes l ike 45 km/s. Because 

of the stronger helium driving, Vemury and Stothers (1978) have found bumps. Surface 

helium enriched models at 6, 7 and 8 M o show the proper observed Hertzsprung 

progression of the bumps. 

A few words about the Vemury and Stothers (1978) result are in order. First, 

the Carson opacities used by them differ greatly from the opacities that have been 

found in other work. The bumps seen in Figure 2 (taken from Vemury and Stothers 

1978) do not seem to be like the well-known echoes from the central regions discussed 

extensively by Christy (1974). We propose that they are surface disturbances, 

perhaps shock waves, due to the large velocity gradients at the surface, and not the 

bumps observed in the Cepheid light and velocity curves. 

Setting aside the Vemury and Stothers results, for which only the opacities 

used are disputed, the question is whether nonlinear calculations can actually 

confirm the observed Hertzsprung progression of the bump phase with period for our 

inhomogeneous models. Surface helium enhanced models for YS = 0.78 have been 

calculated at 7 M e for the evolution theory blue loop luminosity of 1.85 x 1037 

erg/s. Results for the cool T e of 5400 K, near the red edge or possibly just beyond 

i t ,  are given in Figure 3. This model has fundamental mode period of 12.5 days. The 

period rat io, according to the Simon and Schmidt (1976) hypothesis, should give a 

bump on the rising part of the light curve and on the fall ing part of the observer's 

radial velocity curve. This is seen for this red model where radial velocity 

variations at every one of our 49 levels, each d i f ferent ly  amplified and s l igh t ly  

displaced from its neighbors, are plotted against time for five periods. The Christy 

(1974) echo can be seen clearly, which simultaneously ver i f ies the Christy (1975); 

Simon and Schmidt (1976); and Cox et al. (1977) concepts on, respective!y, echoes, 

period ratios and enhanced helium. This case is analogous to the Cepheid Z Sct 

(12.9d). Note that mass loss in early red giant stages, forbidden to us by s te l la r  

evolution research, is not required to give the bumps at the proper phase. 
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Figure 1. Plot of ~P/~n versus ~n for various Cepheid masses and compositions, from 
l inear  theory. Fu~d6mental b~ue and red edges are indicated by B and R, 
respectively. Homogeneous envelopes are indicated for three cases; 7 M e - King IVa 
(7 IVa), 7 M e - Carson 312 (7 C312), and 5 Mo - King IVa (5 IVa). From nonlinear 
calculations all surface helium enriched model~ at 6, 7, and 8 M̂  show bumps with the 
observed Hertzsprung progression. For the homogeneous model~, no bumps are found 
unless the luminosity becomes too large for a given mass (5 IVa) or an extreme 
velocity gradient (7 C312). (Ap. J., June I ,  1978). 



38 

S 

04 0.6 0.8 0.0 0,2 0.4 0.6 0.8 0.0 02 0.4 0.6 0.8 0.0 

PHASE 

Figure 2. Plot of radial velocity versus phase for various levels in the 8.7 d model 
by Vemury and Strothers (1978). The bump on the descending side of the surface 
velocity curve appears to be a surface disturbance and not a well defined echo from 
the core obtained by Christy (1975). 
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A hotter, bluer model is shown in Figure 4. With mass, luminosity and 

composition structure the same as the model used in Figure 3, this 6000 K, 8.5 day 

case, near the fundamental-first overtone transit ion l ine, gives the bump on the 

rising part of the velocity curve like the Cepheids DL Cas (8.00d) and n Aql (7.18d). 

All is not perfect, though. The Christy echo is absent and the bump appears 

at all levels. However, i t  is at least more systematic than the bump of Vemury and 

Stothers (1978) and is comparable to that found in Christy's models with similar 

periods. The ~2/RO period ratio of 0.51 is correct for the Simon and Schmidt (1976) 

hypothesis. The second overtone is indeed unstable for both the 5400 K and 6000 K 

models i f  one feels that ~2 should occur naturally rather than be induced. 

Two final points should be noted. A prediction might be made that, for 

Cepheids which are in the proper period range and could have bumps, perhaps one in 

ten actually do not have them because they are on the rapid f i r s t  evolutionary 

crossing of the instability strip, before any helium enhancement can be established. 

As discussed by Cox, Michaud and Hodson (1978), examples of this type of Cepheids may 

be X Sgr (7.01d) and FN Aql (9.48d). For these homogeneous stars the bumps should 

occur for much longer periods, from 13 to possibly 30 days, as for RU Sct (19.7d), AZ 

Pup (23.2d) and X Pup (26.0d). 

The proposed helium enhancement in yellow giants maintained by a helium poor 

ste l lar  wind, i f  stable enough against downward mixing, offers an adequate 

explanation of the masses and behavior of bump Cepheids. 
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Figure 3. Plot of observer's radial velocity versus time for each level of a surface 
helium enhanced model (Y~ = 0.78) at 7 M~, 4744 L~, and Tp = 5400 K, near the 
fundamental red edge. ~ach level has been ~mplified-and dispTaced from neighboring 
levels. WithIT n = 12.5 u and ]Ip/II n = 0.495, a well defined bump is evident on the 
f a l l i n g  side of~the curve (ris-ing ~ side of l i g h t  curve) as predicted by Simon and 
Schmidt. 

? ~  

Figure 4. Plot of observer's radial velocity curve versus time for each level of a 
surface helium enhanced model (Y = 0.78) at 7 M~, 4744 L~, and Tp = 6000 K, near the 
fundamental f i r s t  overtone t r ans i t i on  l ine .  -E~ach level has Been ampli f ied and 
dis laced from neighboring levels With Rn = 8.5u and xp/~n = 0.508, a well defined 

P • v . - -  • ~ , 

bump is evident on the rising side of the curve ( fa l l lng s l ~  of l lght  curve). 



A NONLINEAR STUDY OF AI VELORUM 
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ABSTRACT 

Using results from earlier studies of double-mode dwarf Cepheids by Cox, King 

and Hodson (1979), hydrodynamic calculations have been undertaken for AI Vel. The 

evolution theory mass of 1.8 M e previously derived, together with a luminosity of 23 

L e and a T e of 7500 K, give the observed period of 0.11 day and the observed period 

ratio ~i/~0 = 0.773. Although the observed T e was 7620 K, a cooler T e is used due to 

the former's location at the fundamental pulsation mode blue edge. The composition 

used is X = 0.70, Z = O.01--a Z value lower than normal in order to make the period 

ratio as large as that observed. The goal is to see i f  double-mode behavior, due to 

either mode switching or a permanent state, can be predicted for the model. Progress 

in converging the model to a periodic pulsation solution by the yon Sengbusch- 

Stellingwerf relaxation method is discussed. 

Earlier studies of double-mode dwarf Cepheids by Cox, King and Hodson (1979), 

have proposed that the observed period ratios of the two simultaneously pulsating 

modes could be correctly predicted theoretically for stars of mass 1.1 to 2.2 M e in 

the i r  normal giant evolution. Some authors such as Bessell (1969); Petersen and 

Jorgensen (1972); Jones (1975); Dziembowski and Kozlowski (1974); and Simon (1979a) 

have concluded that the dwarf Cepheids are low mass stars, probably in a post-red 

giant evolutionary stage. In most recent work, Breger (1976); Bessell (1974); and 

McNamara and Langford (1975) suggested that the dwarf Cepheids or AI Velorum stars 

we-re merely large amplitude ~Scuti variables. Many observed quantit ies, such as 

period distributions, Wesselink radii, space motions, metal abundances, gravities, 

etc., support th is suggestion. A further problem was that the period ratios were 

more typical of the low mass population I I  stars. Our work (Cox, King and Hodson 

1979) and that by Stellingwerf (1979) showed that the large observed period ratios of 

0.763 to 0.778 could be obtained even with the normal heavy element composition, Z = 

0.02. For AI Vel, which is the prototype variable with a fundamental period of 0.11 

day, Cox, King and Hodson (1979) found that the best l inear theory period rat io  f i t  

of 0.773 is obtained with a 1.8 Me, 23 Le, 7500 K stellar model having ;a composition 
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X : 0.70 Z = 0.01. These parameters are consistent with both normal post-main 

sequence evolution and linear pulsation theories. 

Table 1 shows various physical parameters for all the known double-mode dwarf 

Cepheids including our star AI Vel, which wi l l  be used for this nonlinear study. The 

T e for AI Vel, 7620 K, is exactly at the fundamental radial mode blue edge. In order 

to obtain a non-zero fundamental mode growth rate (cf. Cox, King and Hodson 1979), we 

have used a T e of 7500 K in th is sutdy. 

Period ratios for masses and compositions of interest are also found in Cox, 

King and Hodson (1979) and are reproduced here in Table 2. The period ratios were 

obtained for a constant period of 0.11 day, which represents a l ine of almost 

constant radius for each mass in the Hertzsprung-Russell diagram. This l ine of 

constant period is also a l ine of constant period ratio, and that ratio is given for 

T e values all across the instabi l i ty  strip between 7000 K and 8000 K. 

The compositions that give the observed period ratio of 0.773 are the Carson 

C312, Deupree IV, Deupree V and Cogan I I  mixtures. The observed period rat io can 

also be obtained through depletion of the helium content by gravitational settling in 

these high-gravity, slowly evolving stars. Avalueof  Z = 0.01 seems required for 

all except the controversial Carson C312 mixture; the Cox-Davis VI mixture has the 

period ratio too low. Thus in our 50 zone model for  nonlinear studies we have used 

the Deupree IV composition with no surface helium depletion. 

I t  is the purpose of this study to demonstrate double-mode behavior by 

periodic nonlinear calculations. Linear theory analysis of the nonlinear periodic 

solutions should show whether a given f u l l  amplitude mode is stable or unstable 

against decay to another. As Stel l ingwerf (1975a,b) has discovered for RR Lyrae 

variables and some 1.6 M e models, a region in the H-R diagram may exist where the 

fundamental and f i r s t  overtone modes have a tendency to decay to each other, 

result ing in a mixed mode pulsation. However, permanent double-mode behavior 

(changing only on an evolutionary timescale) for the 1.6 M e case could not be 

confirmed by Hodson and Cox (1976). Further, the RR Lyrae permanent double-mode 

domain is clearly beyond the red edge. Therefore, we currently expect that mode 

switching from F to 1H or vice versa alone could cause two simultaneous radial 

pulsation modes for any double-mode variable such as the dwarf Cepheid AI Vel. 

A problem exists in the use of mode switching as an explanation for the 

behavior of the double-mode Cepheids. The switching time is approximately 102 years 

whi le the evolut ion time as pulsators is lO 6 years, leading to an estimate of only 

10 -4 of the Cepheids which should exhibit double-mode behavior. However, about 25 

percent of these stars actual ly do. A domain of i n s t a b i l i t y  toward each mode one 

quarter the width of the i n s t a b i l i t y  s t r ip  is indicated, but no domain at al l  has 

been found by nonlinear periodic calculations as yet. The latest deep helium 

enrichment models for the double-mode classical Cepheids may give such a domain but 
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Table 1. Theoretical Masses, Radii, And Luminosities 

For Double-Mode Dwarf Cepheids 

Var iab le  Ro(d) RI/~O Te(K) MT/M 9 RT/R e LT/L e Qo(d) 

SX Phe* 0.05496 0.778 7850 1.1 ± 0.1 1.3 ± 0.1 5 ± 1 0.0325 

CY Aqr**  .06104 .744: 7930 1.4 ± 0 . i  1.7 ± 0.1 I0 ± i .0326 

ZZ Mic .0654 .763 7500 1.4 ± 0 . I  1.8 ± 0 . i  i0 ± i .0327 

AE U Ma .08602 .773 7500 1.6 ± 0 . i  2.2 ± 0.3 14 ± 4 .0328 

RV Ar i  .09313 .773 7500 1.6 ± 0 . I  2.3 ± 0.3 14 ± 4 .0328 

BP Peg .10954 .772 7500 1.8 ± 0. i 3.0 ± 0.3 25 ± 5 .0328 

AI Vel .11157 .773 7620 1.8 ± 0.1 2.9 ± 0.3 25 ± 5 .0328 

V703 Sco .14996 .768 7000 1.9 ± 0 . I  3.9 ± 0.5 33 ± 8 .0329 

VX Hya 0.22339 0.773 6980 2.2 ± 0 . I  4.8 ± 0.4 48 ± 8 0.0330 

* 1st crossing assumed 

** 1st or third crossing 

T e values for SX Phe, CY Aqr, AI Vel, and VX Hya from McNamara and Feltz (1978). 

For V703 Sco, T e is from Jones (1975). For al l  variables the deep inter ior 

composition is Z = 0.01 with Y between .2 and .3 except for SX Phe with 

Z = 0.001 with inter ior Y between .2 and .3. 
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Table 2. Double-Mode Dwarf Cepheid Period Ratios 

RO = 0~II 7000 ~ T e ~ 8000 K 

Compositions (Ys,Z) 

M/M e C 312 C-D Vl D IV D V D IV I*  C I I  

(.25, .02) (.28, .02) (.29, .01) (.24, .01) ( . I0 ,  .01) (.195, .005) 

1.5 0.768 0.765 0.770 0.770 0.773 0.773 

2.0 .774 .764 .770 .773 .769 .771 

2.5 0.786 0.768 0.776 0.776 0.774 0.780 

*Ys down to 250,000 K 
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the calculations have not yet been done. Certainly the resonance concepts of Simon 

(1979b), i f  correct, also give very narrowdouble mode regions in the i n s t a b i l i t y  

strip. 

To i l lustrate this situation, let us examine the best available picture for 

RR Lyrae variables. Figure 1 gives Stel l ingwerf 's (1975a) graph of growth rate 

versus T e. These data are very s imi lar  to the ear l ier  results of von Sengbusch 

(1974). The linear theory curves, based on studies of equilibrium models, are very 

familiar, giving blue edges of the instabi l i ty  strip for the f i r s t  two radial modes 

simi lar  to those of Iben (1971); Cox, King and Tabor (1973) and others. The 

s t a b i l i t y  of the nonlinear solution is given for the overtone growing out of the 

fundamental and for the fundamental growing out of the overtone. In a small region 

either mode can exist at fu l l  amplitude. Except for those obtained in the red region 

beyond the Deupree (1977) red edge at 6350 K, the fu l l  amplitude solutions are never 

simultaneously unstable to switching from one to another. 

The l inear theory growth rates for AI Vel are given in Figure 2; the log T e 

for our nonlinear model is 3.875. 

With a growth rate of only a few parts in a mill ion per period, really t ight 

convergence by the periodic Stellingwerf method has not been obtained. The velocity 

curve at the l im i t i ng  amplitude is given in Figure 3 for three of the last t r i a l  

periods calculated. The velocity amplitude is about 7 km/s. The l i gh t  curve is 

given in Figure 4 for these same three t r i a l  periods with a Mbo I range of 1.28 to 

1.48. The s t ab i l i t y  of these solutions against decay to the overtone is -0.1% per 

fundamental period. 

Calculations for the overtone show that i t  is also stable, rejecting the 

fundamental mode at a rate of 0.1% per overtone period. Thus, at 7500 K, either F or 

1H behavior is possible. 

What fract ion of the a Scuti variables exhibi t  two or more modes? Nine 

double-mode dwarf Cepheids are l is ted in Table 1. Fitch does not believe ZZ Mic 

should be on the l i s t  so there are probably only eight. Although more double-mode 

stars exist among the a Scuti variables, they are d i f f i cu l t  to detect and then they 

often display nonradial modes such as those found in 1 Mon. Fitch (1980) l is ts  nine 

of these. This provides a numerator total of approximately 20, with the denominator 

being the number of all a Scuti variables. Breger's (1979) latest review gives only 

130 variables, but actually 1/3 of al l  starsbetween A2 V and FO V vary. Thus, the 

denominator should perhaps be in the thousands. The fraction of ~ Scuti variables 

which exhibit two modes is probably less than 10 -2 . This indicates a much different 

case than that of the more luminous classical Cepheids, one-quarter of which exhibit 

double-mode variabi l i ty. 

Mode switching timescales for an evolving AI Vel variable can be obtained 

from the formula given by Stellingwerf (1975b), corrected by a factor of ~ :  
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j2 
~n f~Te~ ' (1) 

where ~ is the switching rate from one mode to another. Here we estimate the mode 

switching rate for  the k inet ic  energy to change from -2 x I0-3/~ 0 to +3 x I0-5~0 as 

T e changes from 7500 K to 7620 K (the F blue edge where Figure 2 data obtains).  In 

the 1H ÷ F case, t h i s  rate may be ten t imes slower per ~ I ,  as shown in the RR Lyrae 

models given in Figure I. This implies that the ~n/~T e rate for  redward evolution 

(IH ÷ F) is 6 x 10 -6 per K per year fo r  our 0.086 day ~ I "  From evo lu t ion  t racks ,  

BTe/Bt is about 5 x 10 -4 K per year. Evaluat ion of the formula gives a mode 

switching time scale of about 2.6 x 104 years. 

With evo lu t ion  t imes l i k e  2 x 106 years to cross the i n s t a b i l i t y  s t r i p ,  i t  

appears that  10 -2 of a l l  a Scuti s tars  might be seen in two modes s imul taneously .  

Those wi th  l a rge r  periods should be going redward wi th increas ing periods and 

increas ing RO ampl i tude. At shor ter  per iods,  e i t h e r  ~0 or ~I ampl i tudes could be 

growing, depending on the evo lu t ion  d i r ec t i on  in the S-shaped t racks on the H-R 

diagram. The very rough theoret ical  expectation that 10 -2 of a l l  a Scuti variables 

e x h i b i t  two modes agrees wi th the ra ther  approximate f r a c t i o n  gleaned from 

observations. No amplitude changes should be detectable over the avai lable time span 

of less than 50 years. 

More study is  needed in order to understand the double-mode behavior of AI 

Vel and others l i ke  i t .  Prel iminary work indicates that they are a l l  mode switching 

at t rans i t ion  l ines which, due to the d i f fe r ing  surface helium content of the stars, 

occur a l l  across the i n s t a b i l i t y  s t r ip .  
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NONLINEAR 8 SCUTI MODELS: THE MAIN SEQUENCE CATASTROPHE? 

R.F. Stellingwerf 
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New Brunswick, New Jersey 

ABSTRACT 

For nonlinear models of 0.4 M e and 2.0 M e a Scuti stars, pulsation amplitudes 

obtained in th is  region depend c r i t i c a l l y  upon a r t i f i c i a l  v iscos i ty  parameters. 

Models with l imited viscosity attain huge amplitudes. Furthermore, i t  is found that 

nonlinear s tab i l i ty  properties depend primarily upon the amplitude. Determination of 

the actual dissipat ion mechanism is thus crucial to our understanding of these 

objects, and probably other main sequence pulsators as well.  At present the most 

l i ke ly  mechanisms appear to be 1) dissipation in the atmosphere, corona and wind; 2) 

turbulent dissipation in the convective zones; 3) magnetic f ields. 

1. INTRODUCTION 

Observed stars in the lower Cepheid s t r ip  generally show very complicated 

behavior. Pulsation in a complex mixture of modes is not uncommon. Linear (small 

amplitude) nonadiabatic ste l lar  models indicate that as many as six radial modes are 

expected to be unstable (Stellingwerf 1979) and nonradial modes are probably present 

as well. 

As an i n i t i a l  step towards understanding this phenomenon, several nonlinear 

models have been studied in some detail. The final result is not encouraging: some 

basic physical dissipat ion mechanism seems to be missing. The evidence for th is 

conclusion and various potential solutions to this dilemma are discussed below. 

2. NONLINEAR MODELS 

A low mass model was computed with the parameters M = 0.4 Me, Mbo I = 2.55, T e 

= 7400 K, X = 0.7, Y = 0.295, Z = 0.005. This model provides a period ratioR1/~O = 

0.773 as observed in AI Vel. The lowest four modes are unstable at small amplitudes; 

periods and growth rates are given in Table 1 (cf. Stellingwerf 1979). 

Periodic l i m i t  cycles were obtained in the fundamental and f i r s t  overtone 

modes. The fundamental l im i t  cycle had amplitudes of 2K = 114 km/s, and aMbo I = 1.51 

magnitudes. The l imit ing amplitude was caused by saturation of the He + driving, but 

this amplitude is too large by about a factor of two. A nonlinear s tab i l i ty  analysis 
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indicated the presence of a s lowly growing i n s t a b i l i t y  associated with the inner 

boundary condition -- also found by Christy (1974) --  but showed no tendency to mode 

switching. 

The f i r s t  overtone l im i t  cycle had amplitudes of 2K = 92 km/s and aMbo I = 1.3 

magnitudes, and was found to be stable, aside from the inner boundary condi t ion 

problem. 

In this model the viscosity is that described in Stell ingwerf (1975) with CQ 

= 4, ~ = 0.1. This form effectively restr icts the viscous dissipation to regions of 

strong shock formation. As a test of how addit ional v iscos i ty  might af fect  the 

amplitude, the model was rerun in the f i r s t  overtone with CQ = 1, m = 0 ( i .e.,  the 

classical  "Christy" form). The l i m i t i n g  amplitude in th is  case was 2K = 40 km/s, 

aMbo I = 0.36. The viscous term contributed roughly one th i r d  of the to ta l  

d iss ipat ion and affected the amplitude profoundly. The amplitude now agrees with 

observations, but is entirely arbitrary, and the viscous dissipation is unphysical. 

A s tab i l i t y  analysis of this l im i t  cycle showed a positive switching rate of 0.12% 

per period toward the second overtone, the most unstable mode. I t  seems un l i ke l y  

that this result is independent of the unreal dissipation. 

A second model was run with the parameters M = 2Me, Mbo I = 0.89, T e = 7000, X 

= 0.7, Y = 0.28, Z = 0.02. This model resembles a Scut i ,  and is unstable in four 

modes as shown in Table 2. 

Table 1. Linear Periods and Growth Rates 

Mode Period (d) Growth Rate (%/c~cle) 

0 0.1132 0.13 
1 0.0875 0.72 
2 0.0705 1.80 
3 0.0591 0,90 
4 0.0502 -2.20 
5 0.0434 -5.70 

The variation of driving and damping as a function of period was determined 

by integrating one period at various i n i t i a l  amplitudes (F-mode). The results are 

shown in Figure 1. Although these crude estimates suggest a l im i t ing  amplitude of 

about 30 km/s (2K = 60 km/s), this is not caused by saturation of driving, but by an 

increase in the damping. Both H and He + dr iv ing continue to increase at large 

amplitudes. 
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Table 2. Linear Periods and Growth Rates 

Mode Period (d) Growth Rate (%/cycle) 

0 0.1889 0.0013 
I 0.1456 0.0168 
2 0.1183 0.0621 
3 0.0988 0.1072 
4 0.084.8 -0.3800 
5 0.0744 -0.7200 

Relaxation to the l im i t  cycle showed that the model can readjust to avoid the 

increase in deep dissipation. The amplitude increased to 2K = 160 km/s, AMbo I = 2.7, 

but did not f u l l y  converge since the outer layers were approaching escape velocity. 

Clearly some mechanism other than saturation must l im i t  the amplitude to the observed 

values ((~.1-0~2). This " l i m i t  cycle" was found to be stable. The huge amplitudes 

could not result from a fa i lure of the i terat ive scheme since a positive total work 

integral was found at each stage of the calculation. A time integration would yield 

the same result, even after roughly ten mi l l ion periods. 

Decrease of the viscous shi f t  parameter ~ from 0.1 produced no effect unti l  a 

value of about 0.01 was reached. At this point, strong, deep damping is present and 

the f inal amplitude drops to well below 10 km/s. 

Decrease of the helium abundance to Y = 0.18 fa i led  to reduce 2K below 50 

km/sec. 

The behavior of this model indicates a very serious deficiency in the theory, 

a deficiency not apparent in l inear analyses. Clearly, rea l is t ic  amplitudes can be 

obtained through manipulation of the viscosity, but this te l l s  us nothing. What is 

the actual mechanism? 

3. DISCUSSION 

Since growth rates for 6 Scuti models are very small, even a small amount of 

d iss ipat ion,  increasing with amplitude, could l i m i t  the pulsations. In terms of 

growth rate, an additional contribution of n = -1.0 x 10 -6 per period would suffice. 

In view of this,  many normally negligible effects must be considered. A few of these 

were checked with numbers taken from the a Scuti model discussed above. The results, 

presented when appropriate as the ratios of the corresponding n to the ~ = -l.O x lO -6 

above are as follows: 

I. Molecular viscosity, atmospheric; fa i l s  by 10 -10 • 

2. Radiative viscosity; fa i l s  by 10 -7 • 
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3. Bulk viscosity, ionization zones; f a i l s  by 10 -4 as long as photoionization 

dominates. I t  could contribute i f  the collisional term becomes important, 

since this is a slower process. 

4. Reynolds stresses. In turbulent convective regions; estimates show that this 

effect could be important. However, models have so far fai led to support 

this, as the convection is very weak. 

5. Shocks, atmospheric dissipation. Again, this is a possibility, but models 

have not clearly demonstrated that shock heating and emission high in the 

atmosphere can stabilize the envelope. 

6. Winds. A more promising idea is the direct loss of energy via waves 

propagating into a stellar wind. Supersonic winds are exceedingly stable and 

can convect energy very efficiently. 

7. Magnetic f ields. The amplitude-limiting effect of magnetic f ie lds has 

probably already been observed as the Blashko effect (long period modulation 

of the l ight  curve) in RR Lyrae stars. I f  true, then a more pronounced 

influence would be expected in stars with lower pulsational excitation. 

Many of these mechanisms represent very d i f f icu l t  mathematical problems. I t  

is, nonetheless, of some importance that this point be resolved. Not only does our 

understanding of the lower Cepheid strip variables rest upon i t ,  but i t  could affect 

other problems as well. A small reduction of the amplitudes of Cepheids, for 

example, is certain to assist in computations of double mode stars. Accurate RR 

Lyrae amplitudes are needed for comparison with globular clusters, etc.  Until this 

issue is resolved, accuracy cannot be claimed for either the computed amplitudes or 

the computed modes of the lower Cepheid strip variables. 

This work is supported in part by NSF grant number AST 79-01165. 
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A PROGRAM TO OBSERVE VERY LOW AMPLITUDE 

RADIAL VELOCITY VARIATIONS IN a SCUTI STARS 

W,D. Heacox 
Lunar and Planetary Laboratory 
University of Arizona 
Tucson, Arizona 

ABSTRACT 

The University of Arizona Radial Velocity Spectrometer is probably capable of 

attaining a resolution of I00 m/s or less on slowly rotating stars of blue magnitude 

5.5 or br ighter  and pulsat ion periods of 0.02 days or greater in the ~ Scuti 

i ns tab i l i t y  region of the H-R diagram. Such performance is approximately equivalent 

to a photometric resolution of 10 -3 magnitudes, and thus represents a possible means 

of improving the detectabi l i ty  of a Scuti pulsations by an order of magnitude. The 

instrument is b r ie f l y  described and a high p r io r i t y  observing program is outlined. 

1. INTRODUCTION 

The University of Arizona Radial Velocity Spectrometer has been designed with 

the goal of detecting the re f lex  o rb i ta l  motion of so lar- type stars due to the 

presence of J u p i t e r - l i k e  planets. The required precision is about i0 m/s, 

representing an improvement over ex is t ing  instruments of more than an order of 

magnitude. The appl icabi l i ty  of this instrument to a Scuti observations derives from 

the pulsat ion amplitude leverage of about 90 km/s/magnitude in such stars (Breger 

1979), so that a radial  ve loc i t y  precision of I0 m/s would be approximately 

equivalent to a photometric precision of 10 -4 magnitudes, g reat ly  exceeding the 

ab i l i t i es  of existing photometric instrumentation. We anticipate that the precision 

ac tua l ly  obtainable on a Scut i - type stars w i l l  be only about I00 m/s for  s lowly 

ro ta t ing stars and for  pulsat ion periods no less than 0.02 days. This nonetheless 

represents an improvement of an order of magnitude in the detectabi l i ty  of a Scuti 

pulsations, and suggests that application of our instrument to a Scuti stars may help 

to elucidate mechanisms responsible for pulsational i ns tab i l i t i es  in this region of 

the H-R diagram. 

2. THE INSTRUMENT 

The University of Arizona Radial Velocity Spectrometer is described b r ie f l y  
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in  the f o l l o w i n g  paragraphs; more complete desc r i p t i ons  have been publ ished by 

Serkowski (1978) and by Serkowski et al. (1979a, 1980). 

The i n s t r u m e n t  i s  a s l i t l e s s  e c h e l l e  s p e c t r o g r a p h  preceded by an 

excep t iona l l y  stable Fabry-Perot interferometer of f inesse i0. The primary purpose 

of the Fabry-Perot is the de f i n i t i on  of well-separated spectral reso lu t ion  elements 

( i .e., transmission maxima) wi th wel l -def ined wavelengths. The spectrum is scanned 

by t i l t i n g  the Fabry-Perot. The instrument is coupled to the Cassegrain focus via a 

single fused s i l i c a  opt ical  f ibe~ about i0 m in length subtending 2.5 arc seconds on 

the sky, mechan ica l l y  i s o l a t i n g  the spectrograph from the te lescope. The op t i ca l  

f i b e r  coupler  is  descr ibed in de ta i l  by Heacox (1980). The de tec to r  is  a GE charge 

injected device (ClD) of narrow aspect ra t io  (TN 2201) preceded by an ITT prox imi ty  

focused i n t e n s i f i e r  (F-4111). Eight  eche l le  orders,  corresponding to a spect ra l  

bandwidth of about 250 A centered at 4250 A, are focused on the detec tor .  The 

spectral resolut ion of the instrument is  about 0.065 

Wavelength ca l ib ra t ion  is provided by a hollow cathode discharge tube and by 

an NO 2 absorpt ion ce l l  i l l u m i n a t e d  by a po in t  source lamp. The image scrambl ing 

properties of the opt ical f i be r  coupler ensure i l l um ina t i on  of the spectrograph by 

the ca l ib ra t ion  sources that is nearly ident ical  to that of s ta r l i gh t .  Addit ional 

ca l ib ra t ion  w i l l  be provided by da i l y  observations of integrated sunl ight ;  according 

to the observat ions reported by Brookes et a l .  (1978) and C laver ie  et a l .  (1980) in  

these proceedings, the radial ve loc i ty  of integrated sunl ight  should be s u f f i c i e n t l y  

stable for  th i s  purpose. 

In a p r o t o t y p e  c o n f i g u r a t i o n  mounted at  the  Cassegra in  f o c u s ,  the 

spectrometer has observed the rad ia l  v e l o c i t i e s  o f  Arc turus and Venus w i th  a 

p rec i s i on  of between i0 and 25 m/s (Serkowski et a l .  1979b). When the improved 

ins t rument  is  completed in  1980 we expect to  achieve a p rec i s ion  of  I0 m/s in a 

s i ng l e  40 minute observat ion  on a 1.5 m te lescope of a s l ow l y  r o t a t i n g  GO dwar f  of 

blue magnitude 5.5 or b r i g h t e r .  Since stars of  e a r l i e r  spect ra l  type conta in  less 

radial  ve loc i ty  information in our passband than do solar-type stars, th is  precision 

w i l l  be degraded somewhat in observat ions of  s tars  as hot as a Scut i  s tars .  In 

summary, we expect the instrument to achieve a precision of 50-100 m/s in a 15 minute 

observat ion on a 1.5 m te lescope of  a s l ow l y  r o t a t i n g  ( v - s i n  i < 20 km/s) dwar f  or 

subgiant  of blue magnitude 5.5 or b r i g h t e r  in the spect ra l  range A8-F5. This 

precision w i l l  be f u r t he r  reduced by an uncertain amount in observations of dwarfs 

ea r l i e r  than A8 and of luminosi ty  classes I I I  and I I .  

3. A PROPOSED OBSERVING PROGRAM 

Both photometr ic  and rad ia l  v e l o c i t y  v a r i a t i o n s  are observed in a Scut i  

s tars .  For s tars  showing detec tab le  v a r i a t i o n s  of  both types and w i th  the same 

per iod,  the ampl i tudes in rad ia l  v e l o c i t y  (km/s) are cons iderab ly  l a rge r  than the 



57 

corresponding photometric amplitudes (magnitudes), probably by a factor of between 60 

and 100 (Frolov 1975; Breger, Hutchins and Kuhi 1976; Breger 1979). I t  is not 

certain that this relation can be extrapolated to the very small amplitude pulsations 

considered here, although Breger, Hutchins and Kuhi (1976) argue that the mean ratio 

of these amplitudes may be even higher for the intr ins ical ly  small amplitude main 

sequence a Scuti stars. In any event, i t  seems l i ke l y  that a radial veloci ty 

resolution o f t  100 m/s wi l l  constitute an improvement of an order of magnitude in the 

sensitivity of measurements of ~ Scuti pulsations. 

We propose to extensively observe selected known a Scuti stars to th is 

precision for at least two reasons. Fi rst ,  we would l ike to know the relat ion 

between radial velocity and photometric amplitudes and phases for the d i f ferent  

frequencies observed in stars showing multiple modes in photometric variations. We 

expect that such observations wi l l  shed some l ight on the mode identifications and, 

in particular, on the question of the existence of nonradial modes. Second, we hope 

to discover new modes with amplitudes too small to be detected photometrically with 

current instrumentation. This would at the very least help resolve the conflict over 

the existence of rotational m-splitting as opposed to perturbations due to duplicity. 

While re la t i ve ly  bright, slowly rotating a Scuti stars are rather rare, there are 

candidates available for such observation (e.g., 44 Tau). 

We also propose to conduct a systematic search for a Scuti stars in an 

unbiased sample of bright, sharp-lined stars which l i e  in the ~ Scuti i n s t a b i l i t y  

region of the H-R diagram. We estimate that nearly 100 such stars wi l l  be available 

to our instrument, about half of them dwarfs or subgiants. We hope that the results 

of such a survey wi l l  address the following subjects, among others: 

1. The fraction of slowly rotating stars in this region of the H-R diagram that 
pulsate; 

2. The fraction of such stars that show pulsation modes of various types and 
mult ipl ic i t ies; 

3. The duplicity rate amongst slowly rotating ~ Scuti stars; 

4. The correlations ( i f  any) of pulsation characteristics with stel lar physical 
parameters in slowly rotating, low amplitude aScuti stars. 

We anticipate that such a search wi l l  reveal that the a Scuti phenomenon is 

much more common in slowly rotating stars than had been previously apparent. The 

results of the search should be particularly valuable in determining the extent to 

which diffusion is the mechanism responsible for the distinction between pulsating 

and non-pulsating stars of otherwise similar characteristics. 

Thus far, limited telescope time and the necessity of extensive instrumental 

development and testing efforts have precluded the poss ib i l i t y  of applying the 

spectrometer to any observational program other than that for which the instrument 

has been spec i f ica l ly  developed. I f  a l l  goes well we hope to i n i t i a t e  a p i lo t  

program of observations of a selected a Scuti star in 1980 and, i f  the results are 
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encouraging, to expand to a program simi lar  t o  that outl ined above short ly 
thereafter. 
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PULSATION MODES IN B STARS WITH VARIABLE LINE PROFILES 
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ABSTRACT 

In t h i s  paper several observa t iona l  c h a r a c t e r i s t i c s  of the l i n e  p r o f i l e  

var iable B stars ("53 Persei variables") are discussed. These stars reside between 

08 and B5 on the main sequence and extend perhaps to class I. We believe the 53 Per 

variables are a separate group related to the classical  B Cephei variables. 

Line pro f i les  of 53 Per variables exh ib i t  periodic changes in l i ne  width and 

asymmetry but not in radial ve loc i ty .  These and various photometric signatures are 

a t t r ibuted to g-mode nonradial pulsations. Unlike the B Cephei variables the 53 Per 

variables exh ib i t  h ighly unstable periods which f requent ly change from one value to 

another in a few days. Ratios of 2:1 among these periods are especia l ly  common, and 

the to ta l  range in period can exceed a factor  of ten in a s ingle star. 

Recently i t  has become possible to make a physical mode i den t i f i ca t i on  for  a 

pa i r  of m-modes in 53 Per: ~ : 3, m : -2 and -3. A d d i t i o n a l l y ,  there  are 

i n d i c a t i o n s  tha t  the nonradia l  o s c i l l a t i o n s  in these s tars  are exc i ted  in  the 

envelope ra the r  than in the core. I f  so, an o p a c i t y - r e l a t e d  mechanism might be 

responsible. 

Among the classical  B Cephei var iables,  our p ro f i l e  observations of a few of 

them can be s imu la ted  on ly  by rad ia l  pu l sa t i on  models. Spectra of severa l ,  i f  not 

a l l ,  members of t h i s  group e x h i b i t  pe r i od i c  "bouncing she l l s "  in v i s i b l e  and/or  

u l t r a v i o l e t  l i nes .  The de tec t i on  of  these she l l s  promises to f u r n i s h  us w i t h  an 

add i t i ona l  means of d i s t i n g u i s h i n g  between rad ia l  and nonradia l  pu l sa t i ons  in B- 

stars. 

1. INTRODUCTION 

Two separate but related groups of stars, the l ine  p ro f i l e  var iable B stars 

(hereinaf ter  referred to as "53 Per variables") and the classical  6 Cephei stars w i l l  

be considered here. Both types of va r i ab les  e x h i b i t  p r o f i l e  v a r i a t i o n s  through a 

pulsat ion cycle, but di f ferences between the character is t ics  of these two groups are 

great enough to minimize problems in c lass i fy ing  a par t i cu la r  star. 

The B Cephei s tars  have pu l sa t i on  per iods in  the range of  3.5 to  6 hours; 

these periods are so stable that an ephemeris may be set up fo r  them over decades or 
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longer. Spectroscopically, the B Cephei variables exhibi t  variations in l ine 

asymmetry. However, contrary to some earlier reports, many do not show variations in 

l ine width; in those stars that do exhibit width variations, they occur nonuniformly 

with phase. 1 The B Cepheids show conspicuous l i gh t ,  color and radial veloci ty 

variations. Many show periodic modulations of the i r  l i gh t  and velocity curves, 

indicating the presence of stable multiple periods (cf. Lesh and Aizenman 1976). 

In contrast the 53 Per variables show smooth prof i le  variations which 

alternate in l ine width and l ine asymmetry. They exhibi t  smaller l i gh t  variations 

than do the B Cephei stars, and s t i l l  smaller variations in color and radial 

velocity. Their periods are long, ranging from 3.6 hours to 2.0 days, and are highly 

unstable. 

With the exception of the final section, this discussion wi l l  be limited to 

various observational results obtained for the 53 Per variables and their theoretical 

implications. However, details of modeling the profile variations with a nonradial 

pulsation velocity f i e ld  w i l l  not be presented, nor w i l l  a mountain of prof i le  

f i t t i ng  results which either have already been discussed elsewhere (e.g., Smith and 

McCall 1978a; Smith 1978a,b) or soon wi l l  be. 

2 .  INCIDENCE OF THE 53 PER VARIABLES 

As Figure 1 indicates, our high resolution (0.1 A) Reticon observations 

show 2 that profile var iabi l i ty exists on the main sequence from 08 or 09 (10 Lac) to 

B5 (53 Per, HR 7119), i.e., from about 7 to 22 M e . In terms of luminosity such stars 

as i CMa (B3 I I ) ,  and possibly Deneb (Lucy 1976; A2 la) and p Leo (B1 lab). 53 Per 

variables may or may not be members of binary systems. 

Unfortunately, i t  is possible to search for l ine profile variations only in 

slowly rotating stars, since rotational broadening does not t o t a l l y  dominate the 

prof i le.  Photometric determinations of v a r i a b i l i t y  in faster rotators may be 

undertaken at some future date. 

Among the sharp-lined stars in the domain just described, all non-B Cephei 

stars but two show variable profiles. One of these two profile-constant stars, 3 Cen 

A, is the prototype 3He-rich star. Its constancy, along with the lack of variables 

1. Nonuniform variations have been noted with photoelectric equipment in BW 
Vul (Goldberg et al. 1974), 12 Lac (All ison et at. 1977) and ~ Sco (Smith 1980). An 
interpretation of the line width changes, apart from nonradial pulsations, is given 
in Section 7-2. 

2. All observations have been carried out using the coud6 Reticon system on 
the 107-inch telescope at McDonald Observatory, or photographically on the 82-inch 
coud~ photographic system. A number of 1979 profiles reported in Table I were also 
obtained on the new coud6 Reticon system attached to the 82-inch telescope. The two 
Reticon systems have comparable speeds. 
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among late B stars, hints at an exclusion between chemical pecul iar i t ies due to 

diffusion (Hartoog and Cowley 1979) and nonradial pulsations. The other prof i le-  

constant star is the quintessential BO V standard, • Sco, which may be a pulsating 

star simply viewed pole-on. 

3. 53 PER VARIABLES AS NONRADIAL PULSATORS 

The following evidence supports the classi f icat ion of 53 Per variables as 

nonradial pulsators: 

1. The detailed l ine prof i le variations are smooth and periodic in time and 

agree very well with predictions of a traveling wave model. This is an enormous 

accomplishment of the traveling wave model. I t  should be noted for these prof i le 

variations that free parameters cannot be continually adjusted to f i t  the different 

l ine shapes. Smith and Stern (1979) have recently performed an extensive set of 

quality control experiments to show that periods can be determined reliably from data 

of this quality. 

2. The periods are too long to arise from radial or pressure (p)-type nonradial 

modes. They are also too short to be consistently explained by orbital motion in a 

marginal SB2 binary. The periods in 53 Per exhibit a range of a factor of fourteen. 

However, a large period range can be incorporated within nonradial pulsation theory 

for gravity (g)-modes i f  one is will ing to accept singly-excited high overtones. 

3. The dominant period appears to sh i f t  approximately every month to another 

value. Period ratios of 2:1 are especially common, a fact which points to resonance- 

coupling between pulsation modes. The nonradially pulsating ZZ Ceti variables 

exhibit very similar characteristics. 

4. There is spectroscopic evidence that, as periods increase, the horizontal 

motions on the disk of the star become more and more dominant, as expected for 

nonradial g-modes (note the extended line wings in long-period profiles in Figure 2). 

5. The presence of a pair of close frequencies in the l ight  curve of 53 Per in 

late 1977 suggests the rotational splitting of modes with two different values of m 

(Buta and Smith 1979). The degree of this sp l i t t ing  agrees well with the observed 

rotational velocity of the star. 

6. The low color- to- l ight  ratio in 53 Per suggests the dominance of a nearly 

color-free contribution to the light curve. The nonradial geometric contribution, 

caused by the distort ion of the star from a spherical shape, is the obvious 

candidate. 

4. PERIOD ANALYSIS 

Any remarks about periods must be prefaced by stating that our spectroscopic 

profile-variation analysis technique does not discriminate low-amplitude secondary 

modes. However, because our single-mode solutions generally f i t  the data so well, i t  
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is probable tha t  most of  the pu l sa t i ona l  energy in the outer  s t e l l a r  envelope is 

usual ly res t r ic ted to one (k,~) mode. 

Table I summarizes the current status of the period determinations for  the 

s ix  best observed variables. With the possible exception of 10 Lac, the noteworthy 

c h a r a c t e r i s t i c  of  these va r iab les  is  tha t  t h e i r  per iods change every month or so. 

Smith and McCall (1978a) f i r s t  pointed out th is  period transience for  53 Per but on 

the basis of only ~ 6 p ro f i l es  per three day observing run. While we have no reason 

to deny any of the periods quoted therein,  we have been very c losely  monitoring the 

behavior of another var iable,  i Her, to confirm the existence of th is  transience and 

to  see whether i t  extends to low ampl i tude s ta rs  as w e l l .  As Table 1 shows, the  

t rans ience  is indeed ub iqu i tous .  Even in a small ampl i tude s ta r  l i k e  i Her, f i v e  

d i f fe ren t  periods have been found over a to ta l  of two observing seasons; four periods 

have been observed on at least two runs. 

At present per iod changes have also been fo l l owed  dur ing an observing run 

three or four  t imes.  Each t ime a change occurs, i t  does so over a t ime span of two 

or three days (e.g., Smith 1978a). 

The extreme range of the periods is a second remarkable character is t ic .  The 

median per iod in  Table I is  11.5 hours. About h a l f  of  a l l  the detected per iods l i e  

in the range of 7.3 to 15.4 hours. Theoret ica l ly ,  f a i r l y  high overtone values (up to 

k = 25) are i nd i ca ted  by these long per iods.  Periods longer  than approx imate ly  15 

hours require observations over several contiguous nights and are more d i f f i c u l t  to 

determine accura te ly .  S t i l l ,  per iods on the order of  a day have been found on 

several occasions. Very shor t  per iods (< 3.5 hours) cannot be determined from our 

data because of the phase,smearing that goes on during the f i n i t e  observation time. 

However, shor te r  per iods than t h i s  would be u n l i k e l y  because the l i m i t i n g  g-mode 

period of a B star l i es  in th is  approximate area (Osaki 1976). 

A t h i r d  remarkable c h a r a c t e r i s t i c  of these per iods,  a l ready noted, is  the 

near- integral peridd rat ios that f requent ly occur. 53 Per i t s e l f  shows several such 

co inc idences,  e.g., 4mO, 2~0, mO and mO/3, i f  ~0 corresponds to P : 14.6 hours. 

There is  also a s l i g h t  preference f o r  o s c i l l a t i o n s  to change d i r e c t l y  from a 

frequency mO to mO/2 or to 2m O. 
Not a l l  per iod r a t i o s  i nvo l ve  magic numbers. For example, cons ider  the 

behavior  of  ~ Her dur ing the spr ing of  1978. In Ap r i l  and Ju ly  i t  showed i t s  

f a m i l i a r  13.9 hour per iod.  In May and June i t  showed a 15.4 hour per iod f o r  two 

months or longer.  These two per iods are too f a r  apart  to a r i se  from r o t a t i o n a l  

s p l i t t i n g ,  and too c lose toge ther  f o r  one mode to be a harmonic of  the other .  A 

possible explanation w i th in  the context of nonradial pulsat ion theory involves mode- 

switching. For example, a change in the overtone value may be occurring (e.g., i f  

: 2, k = 6 ~ 7 ) .  A p i c t u re  begins to emerge in  which o s c i l l a t i o n s  r a p i d l y  t r a n s f e r  

energy from one mode to another for  some inexpl icable reason. However, they prefer  



65 

Table 1. Summary of Observations on Several Line Profi le Variables 

Star 

53 Per 
(B45IV) 

I Her 
(B3V) 

10 Lac 
(ogv) 

22 Ori 
(B21V) 

u Ori 
(BOV) 

Cas 
(BZV) 

Obs'd Periods P-quality No. Runs/No. Profiles Ampl. (km/sec) 
(hr) (Scale 1-3) 

3.59* 1 1/5 8 
4.50: 1/2 1/3 12 
7.29 2 2/4,5t 9-12 

11.43 2 I/7 12 
14.6 2 2/8,8 7-10 
45 3+ 2/7,7 10-12 

Total: 9/49 

4.92 2 1/15 5 
9.9 3 4/2,6,15,18 4-6 

13.9 3 6/5,13,18,10 4-5 
15.4 3 2/17,8 4 
31 2 2/5,3 4 

Total; 13/102 

4.9 3 6/4,5,15,5,9,6 4-10 
? 1/2 28? 

Total: 7/46 

- 8.95 3 3/8,4,11 5 
- 4.5 3 4/5,11,3:,3 3-5 
+14.1 2 3/3,3,7 5-7 
+22.5 2 1.5/9 

Total: 10.5/56 

11.5 3 3/4,4 5 
23.5 2 1.5/10 4 

? 1/7 ~ 2 

Total: 5.5/25 

21.5 2 2/11,2 4 
? 2/18,7 

Total: 4/38 

GRAND TOTAL: 316 OBSERVATIONS (as of February 1979) 

Minus sign denotes retrograde mode. 

"1.5" indicates two observing runs on the same month. 

t An underlined entry implies two periods were found in one set of observations. 

* Period once observed simultaneously with another. 
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to transfer this energy to some stray mode having a (sub)-integral value of the 

in i t ia l  frequency. 

The transient behavior of modes in 53 Per is reminiscent of the large- 

amplitude ZZ Ceti stars. As Robinson and McGraw (1976) and McGraw (1978) have 

pointed out, these stars also exhibit transient long-period oscillations as well as 

period ratios of 2:1.  These authors have bu i l t  a convincing case supporting 

nonlinear coupling for mode-switching on short timescales. Perhaps these attributes 

are common to all overdriven, nonradially pulsating stars. 

There is also another property of these periods which may be worth noting. 

This concerns the trend in the average periods in two well-observed stars, 53 Per and 

Her, during the last 2-1/2 years. As Figures 3 and 4 indicate, their periods were 

rather short when observations began. As time progressed, the periods tended to 

longer values. Obviously, we are dealing with an insuf f i c ien t  time base yet. 

However, because both stars display these tendencies, they might be indicative of an 

important pattern. 

5. CONSTRAINTS ON THE ORIGIN OF THE PULSATIONS 

The ultimate favor the observer can do for the theoretician is to furnish 

clues as to why the observed phenomenon occurs at al l .  In this vein, i t  is suggested 

that the nonradial g-modes are excited in the envelopes of B stars and not in their 

cores. 

Consider f i r s t  the energy involved in a typical g l -osc i l la t ion .  Given the 

surface amplitudes observed in 53 Per and the eigenfunctions of Osaki (1975), Smith 

and McCall (1978a) pointed out that the vibrational energy of a 10 M e ZAMS star can 

be as large as a few tenths of a percent of i t s  gravitat ional energy. As an 

additional complication, there exists the rapid change-over from one mode to another. 

In order for the star to conserve i ts pulsational energy, one expects the amplitude 

at the surface to be very d i f ferent  for di f ferent modes (i.e., the modes should 

occupy very different energy states). However, i t  is an observational fact that the 

pulsational velocity amplitude of a star remains the same at di f ferent times to 

wi thin 50 percent, regardless of i t s  period. The implication is that the 

oscillations themselves are localized and require less energy to shift from one state 

to another. I t  also seems easier to understand the transience of the oscillations i f  

they are confined to the outer tenuous layers of the star. 

An additional argument against a core-instability mechanism may be found in 

the behavior of a very young nonradial pulsator, u Ori. This star has been observed 

to have periods of either 11.5 or 23 hours on a few di f ferent  occasions. According 

to Osaki's (1975) propagation diagrams, the entire inner 50 percent of the mass of a 

zero age main sequence B star is evanescent as far as the propagation of any 

nonradial modes goes. I t  would therefore be d i f f i cu l t  for oscillations in u Ori to 

be propagated, to say nothing of being excited, in the star's core. However, one 
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possible alternative explanation must be explored before the existence of core- 

excited osci l la t ions can be ruled out. Just as in quantum mechanics, the 

eigenfunctions might s t i l l  "tunnel" for some distance through an evanescent region, 

par t icu lar ly  i f  ~ = 1 (Osaki, personal communication). Therefore, no firm 

conclusions can be reached until the spherical harmonic index ~ that is present in 

Ori can be ident i f ied,  presumably through the use of photometry and spectroscopy. 

S t i l l ,  the probable existence of nonradial oscillations in u Ori puts core-related 

pulsation mechanisms on the defensive. I t  is time for the theoretician to begin 

scrutinizing envelope-related processes, such as a modified E-mechanism. 

6. MODE IDENTIFICATIONS 

Last year Aizenman and Lesh (1978) concluded that i t  was not yet possible to 

identify the pulsation modes in B Cephei stars. Under normal circumstances the same 

cautionary notes apply for the 53 Per variables. One cannot merely match theoretical 

periods to observations and so determine k and ~ values for an observed oscillation; 

theoretical uncertainties in period estimates are legion, and the masses and ages of 

f i e ld  B stars are not known with accuracy. Howe~er, one clue concerning the 

identification of the modes became apparent from the in i t ia l  discovery of the 53 Per 

variables: variations in line asymmetry and line width without concomitant radial 

veloci ty changes are a signature of a sectorial travel ing wave (m = ±~). The sense 

of the prof i le  variations with time (except for 22 Ori in 1977-78) indicates a 

preference for m < O. 3,4 Altogether, the observations consistently point to m ~ -~, 

where ~ is necessarily a small integer. 

By combining l ight and color curves with the spectroscopy, as has recently 

been done for  53 Per by Buta and Smith (1979) and Smith and Buta (1979), 

complementary information can be used to ident i fy  the physical mode of an 

osci l la t ion.  This is possible because the h i l l s  and valleys of a nonradially 

pulsating object tend to cancel variations in l ight,  while causing a smearin 9 of the 

spectroscopic line profile. Moreover, photometry provides the displacement produced 

by a travel ing wave, whereas spectroscopy furnishes i t s  time derivative, the 

pulsation velocity. Therefore, simultaneous observing programs are worth the 

d i f f i cu l ty  of implementation. 

Next consider that l igh t  variations are caused pr imar i ly  by pressure and 

temperature changes. In most pulsating objects the geometric effects are small. 

3. I t  is pertinent to note that Hansen, Cox and Carroll (1978) have found 
that rotation produces a greater tendency to i n s t a b i l i t y  for the m = -~ modes in a 
nonradially pulsating star. 

4. However, we now have a well documented case (22 Ori) (Smith 1980) of a 
star pulsating in a m = +~ mode (1977-78) changing to the m = -~ mode, a reversal of 
the direction of the travel ing waves. Perhaps the potential well for m = +~ modes 
exists but is simply too shallow for the star to continue in that mode for an 
extended period of time. 
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However, in 53 Per the period-pair observed by Buta and Smith (1979) is su f f ic ien t ly  

long, and the amplitudes s u f f i c i e n t l y  large, that nonadiabatic effects might well 

render the temperature var iat ions small compared to the geometric ones. Let us 

examine the behavior of 53 Per in late 1977 and 1978 (Buta and Smith 1979; Smith and 

Buta 1979). During that time this star showed a period of nearly two days. I t  also 

showed a low c o l o r - t o - l i g h t  ra t io ,  A(v - y)/av = 0.10, rather than the we l l -  

determined value of 0.18 which is charac ter is t ic  of ~ = 0 or ~ = I pulsations. I f  

the geometric effects upon color changes are assumed to be small, i t  can be shown 

that the geometric component is in fact responsible for most or al l  of the l igh t  

variations. I t  is then possible to integrate the spectroscopic amplitude and compute 

a photometric amplitude which can be compared to the observed photometric amplitude. 

Good agreement between the observed and computed photometric amplitude was found only 

i f  ~ = 3; other ~ values produced l ight  amplitudes which were incorrect by a factor 

of three or more or even possessed the wrong sign. The obvious conclusion is that 

= 3 alone f i t s  the l ight  and prof i le data for 53 Per at that time. 

Another aspect of the behavior of 53 Per during this time concerns i ts  l igh t  

curve, which demonstrated the presence of two closely spaced frequencies. This is 

reasonable i f  the pair is assumed to represent two rotat ional ly -sp l i t  modes. For the 

sp l i t t ing of modes, one can write (in the usual notation): 

Am = Am (1 - C) (vr°t  sin i )  
R o sin i 

I f  Am is known, this equation can be used to compare the frequency sp l i t t ing Am with 

the spectroscopically determined rotational velocity, Vro t sin i. For 53 Per only 

one value works: Am = 1. This value gives complete agreement between the observed 

values Am and Vro t sin i i f  i = 60 ° , a reasonable incl inat ion value. Values of Am > 

1 lead to nonphysical values for sin i and can be ruled out. 

The above exercise does not merely provide a consistency check for  the 

hypothesis of rotational sp l i t t ing of modes. I t ,  and the clues furnished above, lead 

to a complete descript ion of the nonradial surface indices for  the two observed 

osc i l l a t i ons :  ~ = 3, m = -2 and -3. In view of the considerable prejudice against 

odd ~-values, i t  is i ron ic  that the f i r s t  mode i d e n t i f i c a t i o n  of a nonradia l ly  

pulsating B star should prove to be just  such a value, rather than a more widely 

supported one such as ~ = 2. 

7. RECENT DEVELOPMENTS ON B CEPHEI STARS 

Two in terest ing developments have recent ly arisen from studies of l i ne  

profiles of B Cephei variables (Campos and Smith 1980): 

1. (At least) many B Cephei stars are radial pulsators. I t  was i n i t i a l l y  
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expected that nonradial pulsations would explain the large line asymmetries observed 

in B Cephei stars, but this was not found to be the case. Profiles that exhibit 

asymmetry changes but small width changes over the pulsation cycle are the result of 

rotation in the star enhancin 9 small asymmetries due to radial pulsation (see Duval 

and Karp 1978). B Cephei, ~ Ceti and y Peg are examples of stars which show this 

property. Figure 5 depicts these variations and the f i t s  for B Cep assuming a radial 

pulsation. Profiles of ~ Cet and y Peg have been modeled after radial pulsators as 

well. However, no common set of nonradial parameters appears capable of reproducing 

the detailed changes in shape and'radial velocity. CA s l igh t ly  dif ferent result 

reported for B Cephei in Smith (1977) probably results from the use of data 

reproduced on a poor scale.) Figures 6 and 7 show the effect of increasing radial 

pulsation amplitude and of rotational velocity on the prof i le at maximum radial 

velocity (maximum blue asymmetry). Note in Figure 6 that at radial velocity maximum 

(minimum), the blue (red) wing becomes more and more depressed with increasing 

amplitude. The radial velocity range increases at the same time. In Figure 7, note 

that increasing the rotational velocity produces a broader, more asymmetric l ine 

whose radial velocity measurement wil l  not be changed much. When the l imi t  of large 

rotational velocity is approached, the asymmetries decrease in size once again. 

Based on color-to-light amplitudes, Stamford and Watson (1978a) have also come 

to the conclusion that main B Cephei stars have active radial modes. None of these 

findings dispute the possibility that nonradial pulsation may also be going on in B 

Cephei stars, especially inthose with multiple periods. Indeed the close period 

pairs in several B Cephei stars that exhibit beating suggest that one of the 

osci l lat ions is nonradial. Moreover, the surrounding in the H-R diagram of the B 

Cephei stars by the 53 Per variables suggests an underlying instabi l i ty to nonradial 

pulsation in this entire range of the H-R diagram. I t  is quite possible that 

nonradial pulsation actually excites radial pulsation in the B Cephei stars but that 

the amplitude of the nonradial pulsation is exceeded by that of the radial pulsation 

at the surface. 

2. Bouncing shells are common in B Cephei stars. LeContel (1968) and Smith and 

McCall (1978b) have reported the presence of weak shell components in the blue 

spectral lines of y Peg. This shell appears to resonate regularly with the pulsation 

cycle. Our Reticon observations indicate that a much stronger shell is present in a 

Sco and is responsible for much of i ts  prof i le variation. As Figure 8 shows, this 

shell exhibits a redward emission component at some phases and grossly distorts the 

underlying photospheric prof i le of Si I l l  l ines. The shell is also present in 

ultraviolet spectra (Campos and Smith 1980). 

There are several other B Cephei stars which show shell components in the 

u l t rav io le t  range (see the spectra of Lesh 1978). The following evidence from 

Copernicus UV data is presented here for the f i rs t  time and suggests the presence of 
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a shell in B Cephei i tself .  As Figure 9 shows, strong ultraviolet profiles show only 

blue asymmetries and no red ones at opposite phases (in contrast to the behavior of 

visual line profiles). Moreover, at certain phases, fine structure components appear 

in the core of the l ine and remain there during the time the main shell component 

moves upwards. 

Stamford and Watson (1978b) have computed some promising models suggesting 

that the prof i le  variat ions of BW Vul (including i ts  double-lobed structure at 

certain phases) can be produced by a large amplitude "piston" in the subphotosphere 

that drives shocks through the line formation region. 

The relevance of shells to the study of nonradial pulsation is that they may 

help discriminate which B-type variables do not exhibit nonradial pulsation signatures 

at their surface. A picture is emerging in which shell ejection seems to be closely 

linked to radial pulsation. I f  so, observations of key UV l ines wi l l  provide an 

opportunity to test for surface dominance of radial modes independently of the 

analysis of photospheric profi le variations. In summary, three cr i ter ia -- color-to- 

l ight ratios, the character of photospheric profi le variations, and the detection of 

shells in the UV -- may soon be used to characterize the general type of pulsational 

instabi l i ty in the B Cephei stars. 

I am indebted to Messrs. Buta and Campos for permitting me to exhibit results 

of unpublished thesis work. 
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THE STABILITY OF THE B CEPHEI STARS 

M.L. Aizenman 
Div is ion of Astronomical Sciences 
National Science Foundation 
Washington, D.C. 

1. INTRODUCTION 

From an observa t iona l  po in t  of v iew,  the B Cephei s tars appear to be w e l l -  

understood, o rd ina ry  blue s tars .  The i r  spect ra l  types range from BO.5-B2. The i r  

l u m i n o s i t y  c lasses l i e  in the range ( I I - I I I ) - I V .  The stars are, in general ,  s low 

ro ta to rs .  Both the l i g h t  and rad ia l  v e l o c i t y  per iods of these s tars  l i e  between 

three and seven hours, wi th the amplitude of the l i gh t  var ia t ion usual ly less than 

0.1 mag in the v i s i b l e ,  and with radial ve loc i ty  var ia t ions of less than 50 km/sec. 

The l i g h t  curve lags the rad ia l  v e l o c i t y  curve by one-quar ter  per iod. I f  the 

v a r i a t i o n  in l u m i n o s i t y  is  i n t e r p r e t e d  as being due to a pe r i od i c  change in  the 

rad ius  of the s ta r ,  t h i s  phase lag means tha t  these s tars  are b r i g h t e s t  when the 

radius is at a minimum. Conversely, minimum brightness would correspond to maximum 

radius of the star. The periods of the radial ve loc i ty  and luminosi ty  var iat ions are 

ident ica l .  In about ha l f  of the known B Cephei stars, a modulation of the l i g h t  and 

rad ia l  v e l o c i t y  v a r i a t i o n s  is observed, and t h i s  has been i n te rp re ted  as an 

interference between two nearly equal periods. Changes in l i ne  width are observed in 

a l l  of the mu l t i p l y  periodic B Cephei stars and in some of the s ing ly  periodic stars. 

The l i n e s  are broadest on the descending branch of the rad ia l  v e l o c i t y  curve and 

narrowest  on the ascending branch. Approx imate ly  twenty  B Cephei s tars are now 

known, and a complete observational review of these stars has been published by Lesh 

and Aizenman (1978). 

This c lass of s tars  occupies a w e l l - d e f i n e d  " i n s t a b i l i t y  s t r i p "  in  the 

Her tzsprung-Russel l  diagram. Figure I shows the l o c a t i o n  of these s tars  in  a 

theoret ical  HR diagram computed by Lesh and Aizenman (1973). I t  is apparent that the 

s t r i p  is  approx imate ly  p a r a l l e l  to the main sequence. This s t r i p  i s ,  in f a c t ,  

co i nc i den t  w i t h  a region known as the "core -co l laps~  zone," the "S-bend," or the 

"hydrogen exhaust ion phase." This is  a region which is  t raversed by a s ta r  th ree 

t imes in i t s  e v o l u t i o n  away from the main sequence: f i r s t  in  the core hydrogen 

burn ing phase, again in  the secondary con t rac t i on  phase as the s ta r  adjusts  i t s  

st ructure to that of a th ick  hydrogen burning shel l ,  and once more during the i n i t i a l  

phases of hydrogen shell  burning. This region is also traversed by stars contract ing 
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towards the main sequence. 

Despite the abundant observational knowledge avai lable on the B Cephei stars, 

they remain in some ways an enigma. The i n t e r e s t  of these s tars  f o r  t h e o r e t i c a l  

s tud ies  is  obvious: we do not know why they vary. The ea r l y  B stars have been 

considered r e l a t i v e l y  simple and wel l  understood. Models can be computed r e a d i l y  

enough. Nevertheless, we have been unable to obtain a consistent,  simple explanation 

for  the v a r i a b i l i t y  of these stars. 

2. THE INTERNAL STRUCTURE OF B STARS 

From a comparison with evolutionary tracks, i t  is found that the masses of 

the B Cephei stars l i e  between 10 and 20 Me. The only observational mass for  a B 

Cephei star was obtained by Herbison-Evans et al. (1971) for ~ Vir A, who found a 

mass of 10.9 ± 0.9 Me. They also found a radius of 8.1 ± 0.5 R e and a log (L/LQ) = 

4.17 ± 0.10. 

In this mass range, hydrogen is converted into helium via the CN cycle in a 

convective core. As the star evolves away from the main sequence, the mass fraction 

in the core decreases. Because of th is ,  the star has a region of spa t i a l l y  varying 

mean molecular weight. For stars in th is mass range, material in such a region 

maintains neutral equilibrium towards convection. There are problems, however, as to 

what c r i te r ion  one uses to iden t i f y  neutral s t a b i l i t y  in a region of varying mean 

molecular weight. In a region of constant chemical composition, neutral s tab i l i ty  

against convection means the actual temperature gradient is equal to the adiabatic 

temperature gradient. In a region where there is a gradient in the mean molecular 

weight, neutral s tabi l i ty  occurs only when 

B d~np 
V = Vad + 4_---Z~d~n P , 

where the symbols have the i r  usual meanings. In constructing a s t e l l a r  model, a 

question exists as to whether one should use this cri terion or simply 

v = Vad 

Consider a situation wherein the actual temperature gradient l ies between the 

values given by these two equations. Addressing such a situation by using a local, 

l inear s tabi l i ty  analysis, Kato (1966) showed that the material was unstable to small 

perturbations. He argued that such an instabi l i ty  would mix the material, making the 

second equation the relevant one to use. Both Gabriel (1969) and Aure (1971) argued 

that these conclusions applied only on a local scale, and that a fu l l  global analysis 

was required before one could draw such conclusions. They believed radiative damping 

in the exterior layers of the star could effectively cancel any destabilizing effects 

from the interior. Mixing would not take place, and the f i r s t  equation would then be 
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evolution. After Lesh and Aizenman (1973). 
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the appropr ia te  form to use in massive s t e l l a r  models. The quest ion ,  however, 

remains open. 

The ex is tence of the semi -convect ive  region does not change the general 

fea tures  of the e v o l u t i o n  of the s ta r  from the main sequence. As the cen t ra l  core 

decreases in mass, the overal l  radius and luminos i ty  of the star increase. When the 

mass f r a c t i o n  in the convect ive  core drops to  0.03-0.05, the e n t i r e  s ta r  begins to 

contract,  and during th is  contract ion the increase in luminos i ty  is almost en t i r e l y  

due to conversion of grav i ta t ional  po ten t ia l  energy i n t o  r a d i a t i v e  energy. During 

the l a t t e r  stages of t h i s  c o n t r a c t i o n ,  nuc lear  energy genera t ion  s h i f t s  from the 

center  of the s ta r  to a t h i c k  s h e l l :  The inner  core of  the s ta r  begins to con t rac t  

more qu i ck l y  than before and hydrogen- r ich  mater ia l  in the outer  layers  moves in 

towards higher densi t ies and temperatures. This material begins to burn and resul ts  

in an expansion of mater ia l  above the energy source. The expansion uses energy, 

resul t ing in a s l i gh t  drop in luminosi ty.  As the shell  establishes i t s e l f  and begins 

to move outward through the s ta r ,  the s ta r  evolves towards lower  e f f e c t i v e  

temperatures at an essent ia l l y  constant luminosi ty .  

3. ROTATION, MASS LOSS, AND THEIR EFFECT ON THE SEMI-CONVECTIVE REGIONS 

There are a number of ways in which ro ta t ion may af fect  our ca lcu lat ions of 

s t e l l a r  structure. Rotation reduces the e f fec t ive  grav i ty  at any point which is not 

on the axis of r o t a t i o n .  Equ ipo ten t i a l  surfaces are no longer  spheres because of  

t h i s  c e n t r i f u g a l  force.  The r a d i a t i v e  e q u i l i b r i u m  equat ions change because the 

radiat ive f l u x  is not constant on an equipotent ial  surface; th is  in turn can a f fec t  

s t a b i l i t y  towards convection. F ina l l y ,  Cowling (1951) found that ro ta t ion can af fect  

the c r i t e r i on  for  convective s t a b i l i t y .  

Kippenhahn, Meyer -Hof fmeis ter  and Thomas (1970), in an examinat ion of  the 

e f f ec t s  of slow r o t a t i o n  on a 9 M e s ta r ,  tes ted the consequences of  two d i f f e r e n t  

assumptions about the d i s t r i b u t i o n  of  angular  momentum dur ing evo lu t i on .  In the 

f i r s t  case, loca l  conservat ion  of angu lar  momentum was assumed in  a l l  r a d i a t i v e  

regions, whi le sol id  body rotat ion and overal l  conservation of angular momentum were 

assumed in the convect ive  layers .  In the second case, loca l  angu lar  momentum 

conservation was assumed in regions of varying chemical composition whi le overal l  

conservat ion of angular  momentum and s o l i d  body r o t a t i o n  were assumed in  a l l  

chemical ly homogeneous regions. The models were started on the main sequence wi th 

the maximum angular  v e l o c i t y  (~ = 1.55 x 10 -4 rad/sec) cons i s t en t  w i t h  the 

equi l ibr ium of a 9 M e star. The ef fect  of the centr i fugal  forge was equivalent to a 

reduction in the s t e l l a r  mass. The main sequence l i f e t ime  s l i g h t l y  increased (about 

4%). I n t h e  second case, where R was assumed constant in the hydrogen-rich envelope 

(which slowly expands during the main sequence phase), the angular ve loc i t y  decreased 
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with time but the radius of the star increased. Since the rat io of centrifugal to 

gravitational forces at the equator is proportional to ~2R3, there was a sl ight 

increase in the angular velocity which resulted in mass loss near the end of the main 

sequence phase. This was suggested as a possible explanation for phenomena observed 

in Be stars. The total mass loss was small, however, and could be avoided with a 

slightly smaller in i t ia l  velocity. 

Endal and Sofia (1976, 1978) studied rotation on the post-main sequence 

stages. A number of different assumptions were made concerning the redistribution of 

angular momentum in the models. However, the angular momentum was assumed in all 

cases to be constant on equipotential surfaces. The models were chosen so as to 

bracket sets of physically plausible rotation laws. All the models were started with 

solid body rotation and an angular velocity characteristic of main sequence stars; 

none of the models was in rapid rotation. Results were as follows: Rotation 

lengthened the timescale of evolution. All the models were slightly less luminous 

and redder than the nonrotating sequences. There was l i t t l e  noticeable effect in the 

HR diagram. 

Several attempts at understanding the problem of mass loss have been made in 

the past f ive years. We know that the hot luminous stars are losing mass, as 

evidenced by resonance lines in the ultraviolet spectrum or the presence of hydrogen 

emission in the v is ib le spectrum. A paper by de Loore, De Greve and Lamers (1977) 

analyzed the effects of various rates of mass loss, bracketing the observational 

estimates, on massive stars. 1 Irrespective of the mass loss rate, the evolution of 

the star losing mass occurred at lower luminosity than that of a star that did not 

lose mass. Furthermore, the end of core hydrogen burning occurred at lower effective 

temperatures. The net effect was that the hydrogen core burning phase covered a 

wider strip of the HR diagram. De Loore, De Greve and Lamers (1977) also found that 

stars that lose mass enter the Hertzsprung Gap overluminous by factors of 1.3 to 5. 

This difference was due to the fact that such a star has a di f ferent chemical 

composition from a star of the same mass and effective temperature which has not lost 

mass. In the hydrogen shell burning phase, evolution is so rapid that the stars lose 

very l i t t l e  mass, and they move toward the red giant region at nearly constant 

luminosity. At a given luminosity, the masses are much lower than those without mass 

loss. 

Sreenivasan and Wilson (1978a) calculated nine evolutionary sequences for a 

15 M e star. These included evolution for various rates of mass loss, with and 

1The mass loss rates of early type giants and dwarfs are, however, very 
uncertain. Snow and Morton (1976) suggest that stars with log (L/Le) < 4.3 do not, 
with the exception of the Be stars, show significant mass loss. For example the BOV 
star T Sco shows a mass loss rate of only 7 x 10 -9 Me/Yr. 
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w i thou t  semi-convect ion.  They found t ha t ,  because of  the long l i f e t i m e  of the 

central hydrogen burning phase, most of the mass loss occurred between the zero age 

main sequence and the onset of the hydrogen burning shel l  phase. Without semi- 

convection, the rate of evolut ion was slowed. The mass loss shif ted the evolut ionary 

tracks to lower luminosi t ies and e f fec t ive  temperatures. The luminosi ty of the point 

where shell burning occurred dropped. The mass contained in the hydrogen convective 

core was smaller at a given central hydrogen content for  sequences which were losing 

mass, and th is ef fect  increased with increasing mass loss. The mass f ract ion of the 

core was altered only s l igh t l y .  

When semi-convection was included, th is zone formed outside and in contact 

with the convective core as soon as the model evolved away from the main sequence. 

The mass f ract ion of th is semi-convective zone reached a maximum of 0.12 when that of 

the convective zone was 0.26. The semi-convective region disappeared short ly before 

central hydrogen exhaustion. 

Sreenivasan and Wilson noted that as the convective core died out, a detached 

semi-convect ive zone formed and qu ick l y  g r e w t o  a maximum size of  q ~ 0.25. The 

hydrogen-burning shell source became established below th is zone. After the hydrogen 

burning shell source had formed, the model evolved towards the red giant branch on a 

nuclear t imescale, th is  contrasts with models without mass loss or semi-convection 

which moved to the red giant branch on a Kelvin timescale. Sreenivasan and Wilson 

also considered the ef fect  of mass loss on the semi-convective region. They found 

that mass loss great ly reduced the extent of both phases of semi-convection and the 

effects of semi-convection were quite small. 

The effects of ro tat ion in addit ion to mass loss, and semi-convection were 

also considered by Sreenivasan and Wilson (1978b) for  the same 15 M o star discussed 

above. The authors e x p l i c i t l y  incorpora ted the loss of angular momentum due to 

enhanced mass loss caused by the c e n t r i f u g a l  forces.  The e f f e c t  of r o t a t i o n  

increased the mass loss rate by a f a c t o r  of 1.2 on the main sequence. As was to be 

expected, the l a rge r  mass loss led to a l u m i n o s i t y  even lower  than in the model 

w i thou t  r o t a t i o n ,  and increased the t imesca le  of evo lu t i on .  At the end of cent ra l  

hydrogen burning, the enhanced mass loss factor  decreased to I . I .  This was because 

the rotat ional  ve loc i ty  had decreased from 350 km/sec on the zero age main sequence 

to 150 km/sec at the shell burning phase. This decrease was caused by mass loss and 

the net increase in the s te l l a r  radius. 

Ef fec ts  of the l a r g e r  mass loss rate on the semi-convect ive  regions were 

demonstrated in an even greater decrease in the size of the semi-convective region in 

contact with the convective core. There was also a decrease in the size and ef fect  

of the detached semi-convective zone. Rotation appeared to increase the rate of mass 

loss by about 20% in the ear ly evolut ionary phases. 
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4. EVOLUTIONARY THEORIES OF B CEPHEI INSTABILITY 

Wehave noted that the B Cephei variables l i e  in a region that is traversed 

by a star three times during its evolution away from the main sequence. Because of 

this, i t  is tempting to ascribe the instabi l i ty of the Cephei stars to something that 

happens during normal stellar evolution and to assume that an internal change in the 

structure of the star is the cause of i ts  va r iab i l i t y .  For example, Schmalberger 

(1960) speculated on the poss ib i l i t y  that 

overall contraction phase of evolution, 

star's internal structure during this phase 

the B Cephei variables were stars in the 

and that i t  was the readjustment of the 

that led to the observed variabi l i ty. 

The only self-consistent method of examining such a hypothesis is to 

construct a set of equilibrium models and test them for stabil i ty. This was done by 

Davey (1973) for 10 M e and 15 M e stars, from stages before the zero age main sequence 

to hydrogen exhaustion in the core, and through the early hydrogen shell development 

stages. He made a complete nonadiabatic, linear analysis of the models and tested 

the fundamental mode and the f i rs t  overtone of each model for stabil i ty. While the 

periods obtained from his models agreed with the periods of B Cephei stars (a 

situation yielded by all models), no instabi l i ty could be found in either the pre- or 

post-main sequence phases. The fact that the star was not in s t r i c t  thermal 

equilibrium during the overall contraction phase was allowed for in the calculations, 

but i t  had a negligible destabilizing effect. 

Aizenman and Weigert (1977) tested a number of d i f ferent  models which 

simulated contraction toward the main sequence. In the models, they varied the 

in i t ia l  abundances of He 3 and C12, small abundances of which can halt the contraction 

of the star towards the main sequence. This can occur in the region of the B Cephei 

str ip.  In fact, He 3 abundances ranging from 0.001 to 0.005 by mass (homogeneously 

distr ibuted throughout the star) define He 3 burning main sequences which pass 

d i rec t ly  through the region occupied by the 8 Cephei stars. Nonradial, quasi- 

adiabatic calculations were performed on the models, and they were found to be 

completely stable. In all instances i t  was found that the radiation damping of the 

external layers completely dominated the effects of local nuclear driving in the 

exterior. 

Thus calculations of the stabi l i ty of ordinary stars evolving toward or away 

from the main sequence and crossing the B Cephei region have not succeeded in 

explaining the variabil i ty. More exotic models have been attempted. Forbes (1968) 

pointed out that highly evolved stars which have lost considerable mass during the 

red giant stages of evolution can return to the main sequence during the core helium 

burning stage. Such stars are greatly overluminous for the i r  mass. Davey (1973) 

modeled a 10 M e star with a helium burning shell source containing 0.1MQ and 

"removed" 75% of the mass from the outer regions to obtain a converged model of 2.5 

M e . The evo lu t i on  of t h i s  star toward higher effect ive temperatures was 



83 

characterized by two effective nuclear energy sources: a helium burning convective 

core and a thin, hydrogen burning shell. An analysis of this model, however, showed 

no tendency towards instabil i ty. Aizenman and Weigert (1977) also considered a model 

in the v i c i n i t y  of the B Cephei s t r ip  which had experienced mass loss and was 

overluminous for i t s  mass. A nonradial analysis showed that i t  was completely 

stable. In fact the model with mass loss, because of i t s  higher central 

condensation, was more stable than models without mass loss. 

An extensive set of calculations was carried out by Osaki (1975, 1976). In 

his f i r s t  paper, Osaki (1975) studied nonradial oscillations of a 10 M e star in the 

core hydrogen burning stage. He examined both the radial and the nonradial 

quadrupole osci l la t ions and found no i ns tab i l i t y .  However, after reports of 

i ns tab i l i t i e s  found to high-order g-modes during the overall contraction phase 

(Chiosi, 1974) and the i n i t i a l  shell burning phase (Aizenman, Cox, and Lesh 1975a), 

Osaki (1976) undertook an analysis of this section of the HR diagram for high-order 

g-modes. He did not find any instabi l i ty  for the low-order p-, f - ,  and g-modes, nor 

did he find the i ns tab i l i t i e s  claimed by Chiosi (1~74) or Aizenman et al. (1975a). 

He did, however, note that a spurious vibrational instabi l i ty  of the higher-order g- 

modes occurred in evolved models as a result of a numerical inaccuracy. The 

eigenfunctions of high g-modes in evolved models oscillate very rapidly and have many 

nodes in the chemically inhomogeneous zone just outside the convective core, In 

evaluating the stabi l i ty integral, i t  is necessary to compute the term d(aT/T)/d In 

r; i f  this is done by direct numerical differentiation at discrete mesh points in the 

region of varying chemical composition (where there are many nodes), numerical 

inaccuracy results. Osaki proceeded to derive an expression for th is term, thus 

removing the need for numerical d i f ferent ia t ion.  His results did not show any 

instabi l i ty for the overall contraction or i n i t i a l  shell-burning stage. Aizenman, 

Cox, and Lesh (1975b) applied Osaki,s technique to the i r  results and found that 

models which had previously been found to be unstable were stable. The difference 

could be traced to the numerical d i f fe rent ia t ion  technique that had been used 

earlier' 

Osaki carried his analysis beyond these numerical results. He noted that 

eigenmodes of low frequency behave l ike gravity waves in the region of varying 

molecular weight, and have large amplitudes in this region. Thus the question was 

whether or not these large amplitudes, combined with nuclear driving in the shell, 

could overcome radiative dissipation. He found, however, that the least stable modes 

were those such as glO, and that even for such modes the damping was ten times as 

large as the nuclear driving. The damping for these modes arose near the shell. The 

lower-order g-modes had acoustic propagation properties in the envelope. As a 

resul t ,  these modes were stable because of radiative dissipation in the envelope. 

Osaki analyzed his results and found that the growth rate for a mode in the shell 
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region was always negat ive i f  there was no nuc lear  burning and the temperature 

gradient was subadiabatic. I f  there was a source of nuclear energy, there was large 

rad ia t ive d iss ipat ion in the region of varying molecular weight for  short-wavelength 

modes. The longer  wavelengths could be dr iven in t h i s  reg ion ,  but they faced the 

r a d i a t i v e  d i s s i p a t i o n  in the envelope. Osaki concluded tha t  nuc lea r -d r i ven  

v i b r a t i o n a l  i n s t a b i l i t y  of nonradia l  g-modes was u n l i k e l y ,  provided tha t  the 

temperature gradient was subadiabatic. 

I t  is c lea r  then tha t  the region of vary ing molecu lar  weight  is of prime 

in terest  in th is  discussion. I t  is a region that forms immediately a f ter  the star 

leaves the main sequence, i t  is  the region where nuc lear  burning begins to take 

place, and i t  is a region where des tab i l i za t ion  effects can occur, 

Discussions of the semi-convective region began with Schwarzschild and Harm 

(1958), who showed that ,  for  stars wi th masses greater than I0 M e , the temperature 

g rad ien t  became superad iabat ic  in the zone of varying chemical composition as the 

star evolved away from the main sequence. They treated th is  zone by adjusting the 

chemical composition to make the actual temperature gradient equal to the adiabatic 

temperature gradient (Schwarzschild c r i te r ion ) .  However, in determining the onset of 

convection in a zone of varying chemical composition one must take in to  account the 

e f f e c t  of a g rad ien t  of  mean molecu lar  weight  (~); t h i s  changes the c r i t e r i o n  fo r  

convective neu t ra l i t y  (Ledoux c r i te r ion) .  There has been considerable discussion as 

to which c r i t e r i o n  should be used. This problem of  convect ion i s ,  moreover, 

i n t ima te ly  related to the s t a b i l i t y  of g-modes. As we mentioned ea r l i e r ,  whi le Kato 

(1969) argued in favor of g-mode osc i l l a t i ons  causing a mixing of the inhomogeneous 

reg ion ,  Gabriel  (1969) and Aure (1971) argued tha t  on a global  scale such 

o s c i l l a t i o n s  would not occur because they would be damped by the ou ter  r a d i a t i v e  

region. This problem was reanalyzed by Shibahashi and Osaki (1976a). In the local 

analysis of Kato, the inhomogeneous region was stable against ordinary convection. 

In the regions outside th is  zone there was very strong damping. A st ra ight forward 

analysis showed that the conclusions of Gabriel and Aure must hold for  g-modes having 

low ~ and low frequency. However, the p o s s i b i l i t y  existed that an eigenmode that was 

trapped in the semi-convective region would become overstable i f  i t s  value of ~ was 

high enough. In the analysis by Shibahashi and Osaki of a 15 M e and 30 M e star,  some 

modes were found to be unstable.  For the 15 M e s ta r ,  a l l  modes w i t h  ~ < 15 were 

s tab le .  For the 30 M~ s ta r ,  a l l  modes w i th  ~ <8 were s tab le .  The e - f o l d i n g  t imes 

of these osc i l l a t i ons  were found to be of the order of 103 to 104 years. Some mixing 

could be expected to occur,  s ince the e - f o l d i n g  was shor te r  than the e v o l u t i o n a r y  

t imesca le  of  the stars.  As a general r u l e ,  the modes having h igher  ~ were more 

unstable.  Shibahashi and Osaki suggested tha t  some form of overs tab le  convect ion 

ex i s t s  f o r  s tars  more massive than 15 M e in  the core hydrogen burn ing phase, s ince 

molecular and rad ia t ive v iscos i t ies  are not important. Thus, in t h e i r  opinion, the 
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Schwarzschild c r i t e r i on  would be preferable to the Ledoux c r i t e r i on .  But eveything 

depends on the p a r t i c u l a r  model in ques t ion ,  and they be l i eve  tha t  the co r rec t  

physical c r i t e r i on  for  convection cannot be expressed uniquely in the form of a local 

c r i t e r i on .  

Gabriel et al. (1975) and Scuf la i re et al. (1976) have found unstable g-modes 

for  a 30 M e star evolving away from the main sequence, Their unstable modes have ~ : 

I and ~ = 2. The cause of th i s  di f ference is not known. The question now arises as 

to whether th is  i n s t a b i l i t y  is the cause of the v a r i a b i l i t y  seen in B Cephei stars. 

The periods can be matched eas i ly  enough. But the only unstable modes, those trapped 

in the ~-gradient zone, possess amplitudes which are extremely small at the s t e l l a r  

surface. 

Shibahashi and Osaki (1976b) extended t h e i r  c a l c u l a t i o n s  to the stage at 

which a hydrogen burning shell developed in the star. In th i s  case, nuclear burning 

was tak ing  place i ns ide  the semi -convec t i ve  reg ion ,  and the s t a b i l i t y  of such a 

s i tua t ion  was examined. Their analysis led them to expect ove rs tab i l i t y  only for  low 

order g-modes with moderately large ~, and indicated that ove rs tab i l i t y  could occur 

only in the ear l ies t  stages of shell hydrogen burning, i f  at a l l .  A few modes for  11 

< ~ <14 were found to be unstable f o r  the 40 M e s tar .  A s i ng l e  mode was unstab le  

fo r  the 20 M e s tar .  

Van der Borght (1978) also considered th is  problem and did a detai led local 

ana lys is  of the s t a b i l i t y  of  a semi -convec t i ve  nuc lear  burn ing she l l .  His 

conclusions were that the onset of nuclear reactions in hydrogen burning shel ls  could 

be responsible for  overstable osc i l l a t i ons  which would cause periodic var ia t ions in 

luminosi ty.  

Of course, arguments concerning semi-convection lose much of t h e i r  impact i f  

mass loss is  a f a c t o r  in  the B Cephei s tars .  The papers by the groups in  I t a l y  and 

Canada have shown tha t ,  i r respect ive of the way in which semi-convection is treated, 

i t  disappears in  models t ha t  are l os i ng  mass in  the ea r l y  e v o l u t i o n a r y  stages. 

Therefore, i f  mass loss is a factor ,  Sreenivasan and Wilson (1978c) conclude that  the 

B Cephei phenomenon cannot be a t t r ibuted to the presence of semi-convection. 

What can we conclude from the discussion of the semi-convective zone and the 

hydrogen s h e l l ?  E s s e n t i a l l y ,  the idea t ha t  these zones are the cause of  the 

i n s t a b i l i t y  looks extremely promising at f i r s t  glance. The detai led ca lcu la t ions do 

not seem to bear t h i s  out.  While these zones may be d e s t a b i l i z i n g  i f  one uses a 

local analysis,  rad ia t ive  damping appears to remove any hope of ac tua l l y  obtaining an 

unstable mode which would f i t  i n t o  the observa t iona l  framework. Never the less,  

f u r t h e r  c a l c u l a t i o n s  on the e f f ec t s  of semi-convection combined with the hydrogen 

burning shell are needed before t h i s  idea can be conclusively excluded from fu r the r  

considerat ion. 
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5. ROTATION 

The effects of rotat ion on the v ibrat ional  frequencies of a star have been 

studied for quite some time and a number of general results are known. Essentially, 

there are two main cases of interest to us: I f  the perturbations are such that the 

conf igurat ion maintains axial symmetry ( i .e., 3f'~@ = 0), then the effects of 

rotat ion are always proportional to ~2 (Ledoux and Walraven 1958). A more 

interesting case, however, occurs when the perturbations are not axia l ly  symmetric. 

Here, there are terms that are l inear in the angular rotation frequency and, i f  the 

rotat ion is slow enough, terms involv ing the square of th is  frequency can be 

neglected. 

The best known resul t  for  a x i a l l y  symmetric perturbations is the one 

concerning the "pseudo-radial osci l lat ion."  Here one assumes that the fundamental 

mode of pulsation for the homologous, compressible, uniformly rotating star can be 

approximated by holding the re la t i ve  radial component (~r / r )  constant in space, 

obtaining the well-known result 

0 2 4) + 

(Ledoux and Walraven 1958). 

For non-ax ia l ly  symmetric osc i l l a t i ons ,  we have the resul t  concerning the 

sp l i t t ing of the degeneracy that exists for nonradial oscil lations in the nonrotating 

case. For slow rotation the vibrational eigenfrequencies become 

m~(2~ 2 + i )  2 3002 
°m : 00 + -4  , m = 4~Gp ' 

+ ~(~ + 1) 

where o 0 is the frequency of osc i l l a t i on .  The results can be generalized to more 

r e a l i s t i c  s t e l l a r  models. A recent paper by Hansen, Cox and Van Horn (1977) has 

extended the non-ax ia l ly  symmetric case to include the effects of d i f f e r e n t i a l  

rotation. They find that (in the inert ia l  frame) 

o : o 0 - m(1 - C - Cl)~ o 

where o 0 is the rest frequency, the quant i ty C is an integral  which represents the 

behavior of the eigenfunctions in the nonrotating star, n O is the angular velocity of 

ro ta t ion,  and C 1 is a term which can account for  small effects ar is ing from 

di f ferent ia l  rotation. This analysis also assumes that the rotation of the star is 

suf f ic ient ly  slow that centrifugal forces can be neglected (~2 terms are dropped), 

implying implies that the equi l ibr ium and pulsation properties of the nonrotating 

model can be used. 
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In a second paper, Hansen, Cox and Car ro l l  (1978) have computed (using the 

Cowling approx imat ion)  the v i b r a t i o n a l  s t a b i l i t y  of  nonradia l  modes of  r o t a t i n g  

stars. The approximations made are the same as in the ea r l i e r  paper. Their resu l t  

is extremely in terest ing.  They f ind that prograde modes (m < 0), which t ravel  in the 

same d i r e c t i o n  as the s ta r ' s  r o t a t i o n ,  are less s tab le  than when r o t a t i o n  is not 

occurring. On the other hand, retrograde modes (m > 0), which t ravel  in a d i rec t ion  

opposite to that of ro ta t ion,  are more stable when rotat ion is included. The reason 

for  th is  di f ference is not clear at the present time. I t  is qui te possible that th i s  

e f fec t  is relevant to the explanation of the l ine  p ro f i l e  var iable B stars. 

A paper which has provoked considerable discussion since i t s  publ icat ion is 

t ha t  of  Papaloizou and Pr ing le  (1978). They addressed the e f f e c t s  of r o t a t i o n  on 

nonradial modes, and spec i f i ca l l y  considered the low frequency g-modes through the 

use of  a method of successive approx imat ions.  Rota t ion in t roduces a new set of 

modes, known as the toroidal  modes, which have frequencies approximately equal to the 

r o t a t i o n  f requency (the f requency is  zero in  the nonro ta t i ng  case). In f a c t ,  to 

f i r s t  order, the eigenvalues of these modes are 

2m a = -mR+ ~ - - ~  

In this approximation, one assumption is that { : p' : 0 (i.e., the radial component 

of displacement and the Eulerian pressure var iat ion are zero). The next order of 

approximation yields 

2m~ a : -m~+ ~ +  0(~ 3) 

Thus, ' the actual structure of the star does not af fect  the eigenvalues un t i l  terms of 

order ~3 are included in the calculat ions.  For slow rotat ion,  the frequencies of the 

toro idal  modes are essent ia l l y  independent of the structure of the model. 

I t  is in teres t ing  to note a comment made by Ledoux (1958). In analyzing the 

resul ts  of the compressible model, he stated that for  the a x i a l l y  symmetic mode there 

i s  an add i t i ona l  s o l u t i o n  which is  d i r e c t l y  p ropo r t i ona l  to the angular  r o t a t i o n  

frequency. He discarded t h i s  s o l u t i o n  as spur ious and re fe r red  to an e a r l i e r  

ana l ys i s  (Ledoux 1949). The spur ious s o l u t i o n  i s ,  in  f a c t ,  the t o r o i d a l  s o l u t i o n  

obtained by Papaloizou and Pringle. The resu l t  Ledoux obtained in 1949 is consistent 

wi th that of Papaloizou and Pringle because the solut ion is independent of s t ructure 

through terms including ~2. 

I t  is not clear what role the toroidal modes play in the pulsation of early 

type stars, but Papaloizou and Pringle believed that they may be widely applicable. 

For example, they suggested that these modes may be the ones observed in the ZZ Ceti 

stars. 

Papaloizou and Pringle also carried out a similar analysis of the effects of 
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ro ta t ion on the asymptotic g-modes. Here the only assumption made in the zero order 

approximation was that p' = O. The calcu lat ion yielded ( in the ro ta t ing frame), for  

high ~, w i t h  ~ >> o 0 

o : -m~l ± 2 ~-~-~0 

where ~0 is the eigenfrequency of the nonrotating star. I f  the rotat ion frequency 

was such that ~ << gO' the usual resu l t  was obtained: 

~ -  go ± m~ 

In both the t o r o i d a l  and the g-modes, the Eu le r ian  pressure,  dens i t y  and 

temperature var ia t ions are zero to order ~. To th is  order, there would be no l i g h t  

var ia t ions seen in the star. Higher order approximations have p' # O. However, the 

problem must be analyzed in more deta i l .  I t  is s t i l l  too ear ly to attempt to make an 

i d e n t i f i c a t i o n  of modes or even periods based on th is  analysis. 

In considering the B Cephei phenomenon, Papaloizou and Pringle suggested that 

an i n s t a b i l i t y  in these stars could be dr iven by a p a r t i c u l a r  type of  Ke l v i n -  

Helmholtz i n s t a b i l i t y .  This i n s t a b i l i t y  arises in the region in which the angular 

ve loc i ty  of the ro ta t ing material changes rap id ly  over a short radial  distance. The 

authors argued that such a shear in the angular momentum p ro f i l e  could be maintained 

by evolut ionary effects and/or t ida l  in teract ions,  making possible the dr iv ing of the 

observed osc i l l a t i ons  by th is  i n s t a b i l i t y .  They did not expand on th is  hypothesis, 

so i t  is  d i f f i c u l t  to see i f  t h i s  e f f e c t  could a c t u a l l y  occur. Sreenivasan and 

Wilson (1978c) used t h i s  idea to suggest tha t  the B Cephei s tars  have l o s t  a 

s ign i f i can t  amount of ro ta t ion in t he i r  outer surface layers, have been subject to 

the Papaloizou and P r ing le  Ke l v in -He lmho l t z  i n s t a b i l i t y ,  and have subsequent ly  

e jected a she l l  or l o s t  enough mass to form a she l l .  They suggested tha t  the B 

Cephei stars are precursors of the Be shell  stars. 

F i n a l l y ,  we tu rn  to a theory ,  proposed by Osaki (1974), tha t  at tempts to 

exp la in  the B Cephei s tars  in qu i te  a d i f f e r e n t  way. This theory  makes use of  the 

fact  that ,  i f  a convective region is in ro ta t ion,  the nonradial modes associated with 

th i s  region (known as g minus modes) are complex. In the absence of ro ta t ion,  these 

modes hve an exponent ia l  growth rate.  I f  the r o t a t i n g  s ta r  has a normal mode of  

o s c i l l a t i o n  whose eigenfrequency matches the osc i l l a t o r y  behavior of the convective 

region, the energy of the overstable convective motion may be coupled to the ent i re  

star. Osaki found that a resonance could take place with the nonradial f-mode. The 

per iod of  t h i s  mode was close to tha t  observed in the B Cephei s tars .  Another 

requirement of the theory was that the ro ta t ion period of the convective core be of 

the order of a quarter of a day. Osaki concluded that th i s  mechanism could explain 

some of  the c h a r a c t e r i s t i c s  of the B Cephei s tars .  While the theory  has c e r t a i n  
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attractive features, i ts requirements have to be considered as "ad-hoc" in nature, 

for  th is  reason, th is  theory has never been general ly accepted as a v iable 

explanation of the B Cephei stars. 

6. THE BEAT PHENOMENON 

As we have noted in our in t roduct ion,  approximately ha l f  of the B Cephei 

stars exhibit the beat phenomenon. Chandrasekhar and Lebovitz (1962) suggested that 

this phenomenon might be due to the effects of rotation on the osci l lat ions that were 

the cause of the l ight  and velocity variations. They proposed that i f  the ratio of 

speci f ic  heats in the star had a certain value, then a degeneracy ( i .e.,  resonance) 

could occur between the fundamental radial mode of o s c i l l a t i o n  and the nonradial 

quadrupole osci l lat ion modes. I f  rotation were taken into account, one would have 

two nonradial modes characterized by s l i g h t l y  d i f f e ren t  frequencies. These two 

frequencies would be the ones observed in the beat B Cephei stars. 

In a series of papers, Clement (1965a, 1965b, 1966, 1967) examined th i s  

suggestion and found that i f  one assumed uniform ro ta t ion,  the mechanism gave a 

frequency much too small to match the observations. This mechanism required angular 

velocities that were three to four times larger than the observed velocities. But i f  

a reasonable d i f f e r e n t i a l  ro tat ion law, such as that givenby Stoeckly (1965), was 

used, ~he existence of the two frequencies could indeed be explained by this rotation 

effect. Clement found that surface velocit ies of the order of 40 kms/sec would match 

the observations. He concluded that while the particular rotation law chosen had no 

special va l id i ty ,  the hypothesis of di f ferent ia l  rotation was not inconsistent with 

the observations. 

Osaki (1971) also suggested a var ia t ion  of the basic Chandraskhar-Lebovitz 

mechanism. The beat phenomenon was interpreted as being due to the interaction of a 

= 2, m = 2 nonradial mode and a radial mode. Deupree (1974a) analyzed models of 8 

M e , 10 M e , and 12 M o and found that one could expect a degeneracy to ex is t  between 

the radial fundamental and at least one higher nonradial overtone. In comparing the 

results with observations, he found that the stars which gave no indication of being 

binaries seemed to match the Chandrasekhar-Lebovitz hypothesis quite well. However, 

those stars that were binaries could not be explained on th is  basis (~ Sco and 16 

Lac). 

We also note that Deupree (1974b) carr ied out an analysis that examined 

nonlinear nonradial adiabatic pulsations of a 10 Mo star. Of interest to us here are 

his results for two modes with nearly equal periods. Deupree examined a model which 

had solid body rotation with a surface equatorial velocity of 5 km/sec. The i n i t i a l  

velocity distr ibut ion was taken to resemble either the radial fundamental mode or the 

nonradial ~ = 2 f-mode. His numerical analysis showed that the two modes maintained 

approximately equal amplitudes, which was interpreted as being ind ica t i ve  of the 
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existence of an energy interchange between the two modes. 

Fitch (1967, 1969) suggested that the beat phenomenon is due to a modulation 

of the radial pulsation by a tidal deformation. 

An interesting explanation of the double per iodic i ty  was proposed by Kato 

(1974). Since most of the stars that exhibit double periodicity are spectroscopic 

binaries, he wondered i f  the binary nature of these stars has something to do with 

the presence of a double period. We should note that i t  is not true that all of the 

double period var iables are binary systems (B Canis Majoris is a good 

counterexample). Kato considered a situation where the difference of the frequencies 

of the normal modes is close to the frequency of the t idal  wave induced by the 

secondary. In such a case, a resonance interaction and excitation of oscillations 

could be expected. Speci f ical ly,  Kato considered quadrupole osci l la t ions (~ = 2) 

which have s l i gh t l y  d i f ferent  frequencies associated with m = 2, O, or -2. The 

Choice of these particular values of m was governed by the tidal deformation effects. 

The resonance condition was that the difference between the m = +2 and m = 0 

frequencies must equal twice the frequency of the tidal wave. I t  must be remembered 

that i f  this type of resonance is being considered, and i f  both of the nonradial 

osci l la t ions are stable, then energy cannot be supplied to the system by the t idal  

effects of the secondary. However, i f  one of the two oscillations is excited by some 

mechanism, then the other can be amplified by the tidal resonance. 

Another type of resonance occurs when two completely unrelated modes of 

oscillation happen to have frequencies very close to one another. An example of such 

a situation would be the fundamental radial mode and gravity modes having ~ = 2. The 

theory also requires that the difference in the azimuthal "quantum number" between 

the modes be two, this being a consequence of the fact that the tidal wave induced by 

the secondary has two components. We know that this coincidence of frequencies takes 

place in the late core hydrogen burning phases. Under these circumstances i t  is 

possible for the pulsation modes and the tidal wave to interact. Kato (1974) derived 

the above conditions under which energy can be supplied to the pulsation modes from 

the tidal wave. 

The latter mechanism depends expl ic i t ly  on the requirement that the B Cephei 

stars which exhibi t  the beat phenomenon be members of binary systems. This is 

clearly not the case. Kato recognized this problem but argued that this mechanism 

would work even i f  the mass of the secondary was small, opening up the possibil i ty 

that i t  simply had not been detected. But, as the author noted in his review of this 

theory (Kato, 1975), a remaining weakness is that there is no explanation of why the 

mechanism works preferentially at any particular evolutionary stage of the star. 

In conclusion, i t  appears that the beat phenomenon seen in many B Cephei 

stars remains unexplained. 
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7. INSTABILITIES IN THE OUTER ATMOSPHERE 

In the preceding sections we have discussed mechanisms that are associated 

with the in te r io r  of the star. As has been previously shown, these are not the 

instabi l i ty mechanisms responsible for the variabi l i ty of the classical Cepheids and 

RR Lyrae stars. 

The mechanism which drives these stars is the envelope ionization mechanism. 

This mechanism has i ts  origin in the fol lowing physical concept: I f ,  at some 

instant, the luminosity in the interior of the star is decreasing outward, then more 

heat is flowing into the bottom of a shell than is flowing out of the top. This 

means that the shell is gaining heat. I f  the phasing of these heat gains is phased 

properly, a Carnot heat engine results which can drive an osc i l la t ion.  I t  can be 

shown that regions in the s te l la r  envelope containing hydrogen and helium in 

different stages of ionization can have the proper phasing for driving pulsations. 

The theory is completely discussed by Cox (1974). The results, however, are readily 

summarized: Oscil lations are pr imari ly driven by the Hell ionizat ion zone in the 

envelope, with some contribution from hydrogen ionization. 

When we turn to the B Cephei stars, we find that this mechanism simply does 

not work, probably because the temperatures of the B Cephei stars are too high. The 

Hell ionization zone lies too close to the surface to be very effective. Underhill 

(1966) suggested that the ionization zones of heavier elements such as carbon, 

nitrogen and oxygen might play a role, but the abundances required for this to work 

make i t  appear unlikely. 

One would th~nk that the envelope ionization mechanism had been thoroughly 

examined and that l i t t l e  more would have to be said about i t  with regard to the B 

Cephei stars. This is not the case. There have been a number of recent studies 

concerning the outer envelope and the possibil ity that i t  could be the region which 

harbors the basic destabilization mechanism. In a rather general fashion, Aizenman 

and Weigert (1977) noted that the treatment of the Hell ionizat ion region and the 

envelope opacities had a strong effect on the results they obtained for the i r  

nonradial analysis. In their paper they made the following comment: " I t  is evident, 

therefore, that a careful treatment of the outer envelope is required. In fact, a 

nonadiabatic treatment is absolutely necessary. We have found that changes in the 

manner in which the outer convective zone (He I I  ionization) is treated, shallow 

though i t  may be, have a decisive effect on the stabi l i ty results." They found that 

this region could make some of the lower g-modes unstable. S tab i l i t y  was also 

strongly affected by the the opacity and its thermodynamic derivatives. Essentially, 

the point was that the accuracy of quantities such as opacity and i ts thermodynamic 

derivatives, while quite adequate for computing the equilibrium configuration, was 

not sufficient for pulsational studies. 

A similar effect had already been noted by Stothers (1976b), who calculated 
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the stabi l i ty of both radial and nonradial modes for stars of 10.9 Mg and 15 M~ He 

used the Carson opacities in his calculations because these opacities exhibi t  a 

"bump" due to the ultimate ionization of the CNO elements at moderate temperatures 

and densitieS. In an ear l ier  paper, Stothers (!976a) found that this bump excited 

radial pulsations in high mass main sequence stars. Since th i s  bump was more 

prominent at lower densities, he thought that lower mass Stars might also lose 

stabi l i ty as they evolved away from the main sequence. To test this hypothesis, he 

calculated new equilibrium models using the Carson opacities and found that, i f  these 

opacities were correct, the B Cephei stars would have to be in the core hydrogen 

burning phase. Also, his stabi l i ty results differed very l i t t l e  from results found 

by many others using usual opacities. I f  the observed pulsations were assumed to be 

radial oscillations, se of either the Carson or the Cox-Stewart opacities indicated 

that the B Cephei stars were f i rs t  overtone oscillators. 

Stothers found that none of the radial or nonradial modes were unstable. He 

did find a tendency for a beat phenomenon to exist in the sense that the two lowest 

nonradial p-modes fo, ~ = 2 had rather close periods. His conclusion was that semi- 

convection did not seem to play a role in destabilizing modes i f  the Carson opacities 

were used. However, Stothers pointed out that future improvements in stellar opacity 

calculations might lead to larger CNO bumps in the intermediate mass range, and this 

would enhance the K (opacity) mechanism in some of the models. 

Stel l ingwerf (1978) recently put forth an interesting proposal concerning 

helium ionization driving in B Cephei stars. Essentially, Stellingwerf suggested 

that the actual driving mechanism for the B Cephei stars may be the presence of a 

slight "bump" in the opacity which occurs at 1.5 x 105 °K. He argued that this bump 

represents the coincidence of the frequency maximum of the radiation f lux and the 

opacity edge due to Hell ionization. Since the radiation f ield at this temperature 

is optimum for Hell ionization, an opacity bump can occur even though Hell is nearly 

ionized. The driving is caused by the var iat ion of the opacity temperature 

derivative. In the models which Stellingwerf computed, there was a clear tendency 

for dr iving, but he found no destabi l izat ion of the stars. An examination of this 

mechanism throughout this region of the HR diagram, indicated that the instabi l i ty  

increased at lower luminosities, with maximum driving occurring at lower effective 

temperatures for lower luminosities. The locus of maximum driving was shown to run 

paral lel to the observed B Cephei variables, but about 0.1 in log Tef f to the red. 

Stel l ingwerf believed that improved models could easily remove a sh i f t  of this 

magnitude. 

Periods given by Stellingwerf's models were too long for a radial fundamental 

mode. He noted that his mechanism would not work on overtone pulsations, but argued 

that the results of Jones and Shobbrook (1974) could reconcile the observations with 

his theory. However, the work of Jones and Shobbrook does not explain th is 



93 

discrepancy. I t  almost cer ta in ly  contains a systematic error  since i t  is  based on an 

astrometric distance to the Scorpio Centaurus association which has been c r i t i c i z e d  

on s t a t i s t i c a l  grounds. S t e l l i n g w e r f  a lso o f fe red  the work of Watson (1972) as a 

possible substant iat ion of his theory. This can be questioned, however, on the basis 

of Watson's Q va lues,  which are much h igher  than those found by any more recent  

authors. They may have resulted from the manner in which Watson treated the hydrogen 

l i ne  pro f i les  used to drive his abnormally high values of log g. In any case, at the 

present t ime the observat ions are not cons i s ten t  w i t h  a rad ia l  fundamental 

osc i l l a t i on  driven by the proposed Ste l l ingwer f  mechanism. 

Recent work by Cox and S t e l l i n g w e r f  (1979) about the ro le  of r a d i a t i o n  

pressure in  de te rmin ing  the p o s i t i o n  of  d r i v i n g  regions in the HR diagram is  of  

i n t e r e s t  here. The study was mot ivated by Hel l  i o n i z a t i o n  e f f ec t s  on the opac i t y  

der ivat ives described above. The authors concluded that ,  i f  the B Cephei stars are 

indeed destabi l ized by an envelope mechanism, there would be an i n s t a b i l i t y  s t r i p  for  

these stars which would be more v e r t i c a l  than the Cepheid s t r i p  due to  r a d i a t i o n  

pressure. In f a c t ,  the slope of such a s t r i p  could even have the same sign as tha t  

of the main sequence. The authors also showed tha t  a p e r i o d - l u m i n o s i t y  r e l a t i o n  

would ex is t  in which the increase in the luminos i ty  wi th increasing period would be 

enhanced by radiat ion pressure. 

The impor tant  po in t  to note here is tha t  the presence of  an envelope 

i o n i z a t i o n  mechanism would indeed g ive a slope tha t  would be p a r a l l e l  to the main 

sequence. However, o ther  mechanisms could also account f o r  t h i s  phenomenon. Any 

destab i l i z ing  mechanisms that were a funct ion of the evolut ionary stage of the star 

(such as the presence of a she l l  source) would also r e s u l t  in an i n s t a b i l i t y  s t r i p  

that would be paral le l  to the main sequence. The fact  that  the envelope ion iza t ion  

mechanism and radiat ion ef fects predict a s t r i p  wi th possible slope does not argue in 

favor of preferr ing th i s  mechanism to any other. 

We conclude th i s  section by mentioning the "~-mechanism" proposed by Stothers 

and Simon. According to th i s  theory, the B Cephei stars are members of close binary 

systems in which the o r i g i na l ,  more massive star,  having evolved and expanded during 

core hydrogen burn ing,  has reached i t s  Roche lobe. I t  then begins to lose mass to 

the secondary star. The secondary f i r s t  accretes the envelope material and then the 

h e l i u m - r i c h  mater ia l  from the core. I f  s u f f i c i e n t  he l ium is  a v a i l a b l e  and i f  the 

mass of the secondary exceeds 6 M e , t h i s  l aye r  of hel ium ra ises the e f f e c t i v e  

temperature. Radial pulsations can, in fact ,  be energized by the hydrogen reactions 

taking place in the core. The i n s t a b i l i t y  resul ts from the fact  that  the addi t ion of 

heavier material on the outside of the star leads to a lower mass concentration. The 

central pulsat ion amplitude is then increased and the nuclear driven pulsat ions at 

the center of the star become su f f i c i en t  to destab i l ize the star. The mechanism, i f  

applied to a l l  B Cephei stars, requires that a l l  of them be binaries. 
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This particular theory has been the subject of considerable crit icism. 

Plavec (1971) found that many of the binaries suggested as possible B Cephei 

candidates on the basis of this theory would not be satisfactory. The star 

Virginis, which is a B Cephei star, does not satisfy the cr i te r ia  required by this 

theory (Smak 1970). Also, the abundances of the B Cephei stars seem completely 

normal (Watson 1971). The conclusion is that there is no evidence to indicate that 

the Stothers and Simon mechanism actually takes place in the B Cephei stars. 

8. SUMMARY 

We have presented a short summary of the observed properties of the B Cephei 

stars and discussed recent analytical work dealing with them. In spite of the 

intensive efforts by a number of independent groups, the origin and cause of the B 

Cephei phenomenon remain unknown. 
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MULTIPERIODICITY AND NONRAJ)IAL OSCILLATIONS OF 

filE B CEPHEI STAR 12 LACERTAE 

M. Jerzykiewicz 
Wroclaw University Observatory 
Poland 

1. INTRODUCTION 

Over a quarter of a century ago Ledoux (1951) made an attempt to explain the 

complex rad ia l - ve loc i t y  and l i n e - p r o f i l e  var ia t ions of B Canis Majoris, a c lassical  

"beat" B Cephei s ta r ,  in terms of the f i r s t  order r o t a t i o n a l  s p l i t t i n g  of  an ~ = 2 

nonradial osc i l l a t i on  mode. He iden t i f i ed  the longer of the two periods observed in 

th i s  star wi th the m = 2 retrograde t rave l ing  wave and the shorter one with the m = 0 

stat ionary osc i l l a t i on .  However, th is  model was not en t i r e l y  successful. Although 

i t  accounted fo r  the close f requency beat ing and the l i n e  p r o f i l e  v a r i a t i o n s ,  the 

phase re la t ion  was wrong in that the computed l ines turned out to be broadest on the 

ascending branch of  the corresponding v e l o c i t y  curve, and not on the descending 

branch as observed (the m = -2 prograde wave yielded the correct phase re la t ion ,  but 

associated the broadening with the shorter period, contrary to what is observed.) 

In sp i te  of  t h i s  d i f f i c u l t y ,  Osaki (1971) f u r t h e r  i n v e s t i g a t e d  the  

p o s s i b i l i t y  tha t  the "beat" phenomenon and the l i n e  p r o f i l e  v a r i a t i o n s  in the 

m u l t i p e r i o d i c  B Cephei s tars  might  be due to ~ : 2 o s c i l l a t i o n s  in  the presence of  

s low r o t a t i o n .  He conf i rmed Ledoux's r e s u l t  t ha t  a superpos i t i on  of  a s t a t i o n a r y  

o s c i l l a t i o n  upon a t rave l ing  wave produced modulation of the ve loc i t y  amplitude in 

the "beat" per iod,  w i t h  the l i n e  p r o f i l e  v a r i a t i o n  caused main ly  by the t r a v e l i n g  

wave. Osaki computed rotat ional  ve loc i t i es  for  several B Cephei var iables from the 

observed "beat" per iods under the assumption tha t  the ~ = 2, m = -2 and m : 0 

osc i l l a t i ons  were both excited. He found them to be consistent wi th the measured v 

s in  i va lues,  provided tha t  the s tars  were seen near ly  equator-on. However, there 

was an except ion:  f o r  B Canis Ma jo r i s ,  the computed v was 9 km/sec, w h i l e  the 

observed v s in i has been found to be 28 km/sec (McNamara and Hansen 1961), a 

di f ference which is d i f f i c u l t  to explain. 

Thus, the evidence that mul t iper iod ic  B Cephei stars are undergoing nonradial 

osc i l l a t i ons  has been somewhat c i rcumstant ia l .  A proof that one of these var iables,  

12 Lacertae, is indeed a nonradial o s c i l l a t o r  was recent ly provided by Jerzykiewicz 

(1978) through a f requency ana lys is  of  the s ta r ' s  l i g h t  and rad ia l  v e l o c i t y  

v a r i a t i o n s .  The present paper summarizes work which has led to two add i t i ona l  
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conclusions: a demonstration that at least two modes of d i f ferent  ~ are 

simultaneously excited in 12 Lacertae, and the ident i f i ca t ion  of one of them as a 

rotationally spl i t  ~ = 3 oscillation. 

2. FREQUENCY ANALYSIS OF THE LIGHT VARIATION 

12 Lacertae shows cyclic variations in brightness, radial velocity and line 

profiles. The average cycle-length is equal to about ~19309. The amplitude varies 

smoothly from one cycle to another. In each cycle the l ight maximum occurs near the 

middle of the descending branch of the veloci ty curve. At the same phase, the 

spectral lines are most diffuse, while on the ascending branch they are sharpest. 

The f i rs t  modern frequency analysis of the l ight variation of 12 Lacertae was 

carried out by Barning (1963). He used blue magnitude observations secured by a 

number of workers in the course of the international campaign organized in 1956 by de 

Jager (1963). Barning was able to represent the l ight variation of the star as a sum 

of four sine-wave components with periods of ~193089, ~197358, ~182127, and 2~85 

(the f i r s t  two of these were already known). The re lat ive amplitudes amounted to 

1.000, 0.337, 0.315, and 0.319, respectively. The f i r s t  three components accounted 

for the cycle-to-cycle amplitude variation, while the last one arose from long-term 

changes in the mean brightness of the star. However, the standard deviation computed 

after the data were whitened with the four components was approximately ~02, a value 

considerably larger than the mean error of a single observation, estimated by de 

Jager to be between ~005 and ~010. From this, Barning postulated the presence of 

other per iodic i t ies or, in addition to the regular pattern, errat ic changes in the 

brightness of 12 Lacertae. 

In order to determine which of these two possibilit ies is correct, the 1956 

international campaign observations have been re-analyzed in the present work. 

Several data of poor quality were eliminated from the 1956 observations, and yellow 

rather than blue magnitudes were used for this analysis as they are less subject to 

the effects of systematic errors. In a l l ,  909 observations taken on 25 nights over 

an interval of 75 d were selected. The data were reduced to a common zero point by 

adding careful ly  determined night ly corrections. From an inspection of th is 

material, the mean error of a single measurement was estimated to be between ~005 

and O~.010. 

The results of the analysis, schematically shown in Figure 1, can be 

summarized as follows. At least six sine-wave components are present in the l ight 

variation of 12 Lacertae, so that the star's frequency spectrum is in fact much more 

complex than has been hitherto realized. Frequencies of the three strongest 

components are very nearly identical to those found by Barning (1963), but the 

remaining three frequencies represent new findings. Simple relationships were also 

found to exist between some of the frequencies. For example, the primary, the 
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fourth, and the te r t ia ry  frequencies (ml, m4, and m3, respectively) form an 

equidistant t r ip let .  Moreover, the f i f th  component frequency, m5' turns out to be 

equal to ml + m4" No obvious relations were found between m2 or m6 and the 

corresponding remaining frequencies. 

A comparison of the six-term synthetic light-curve with observations showed a 

satisfactory agreement for all nights. The sample displayed in Figure 2 includes the 

f i r s t  night, JD 2435683, and also the last one, JD 2435758. On JD 2435708 one can 

see a skew l ight curve, with a steeper descending branch adequately represented by 

the solution. The largest amplitude of the l ight variation occurred on JD 2435710, 

while on JD 2435757 the amplitude was the smallest observed in 1956. The nights JD 

2435722 and JD 2435752 are shown as examples of a poor f i t  and of a rather large 

scatter, respectively. 

The standard deviation of the six-term solution is equal to ~0088, fal l ing 

within the range of the mean error of a single observation as estimated above. Thus, 

short-period components fainter than about ~0030, which might s t i l l  be present in 

the data, would be very d i f f i cu l t  to separate from the periodogram noise. I t  should 

also be noted that the present analysis could not yield any periods longer than about 

~5 due to the nightly data corrections mentioned above. 

3. THE RADIAL VELOCITY VARIATION 

The most extensive spectrographic investigation of 12 Lacertae was carried 

out by Struve (1951). On twenty nights during the interval from July 16 to September 

24, 1950 he secured 258 spectrograms of the star. Nearly one-half of these were 

obtained with the coud~ spectrograph of the lO0-inch Mount Wilson ref lector at a 

dispersion of 10 A/mm, and over sixty with the Mills three-prism spectrograph of the 

Lick Observatory at about the same dispersion but with lower resolving power. The 

remaining spectrograms were taken at a dispersion of about 50 A/mm with Cassegrain 

instruments of the Mount Wilson and McDonald Observatories. All spectrograms were 

measured by Struve and radial velocities were derived. 

In order to determine whether the sine-wave components found in the l i gh t  

variation of 12 Lacertae have their counterparts in  the star's radial velocities, a 

six-term trigonometric polynomial, with the same frequencies as obtained in the 

preceding paragraphs, was f i t ted to the above-mentioned data by the method of least 

squares. The velocity amplitudes resulting from the solution are shown as a function 

of frequency in Figure i (bottom) for ease of comparison. 

The five strongest components present in the l ight variation can be seen to 

occur in the radial velocities with amplitudes considerably greater than their mean 

errors. However, the faintest component has an amplitude of only twice the mean 

error, making i ts  presence in the data questionable. As with the l i gh t  variat ion, 

the primary component is about three times stronger than the secondary one. However, 
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Figure 1. The frequency spectra of 12 Lacertae determined from the 1956 
international campaign yellow magnitude photometry (top), and from the 1950 radial 
velocity observations of Struve (1951) (bottom). The frequencies are numbered in 
order of decreasing light amplitude. 
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the second component in the ve loc i ty  var ia t ion  is somewhat stronger than the fourth 

w i t h  the f ou r t h  somewhat s t ronger  than the t e r t i a r y .  This is  un l i ke  the 

re lat ionships exhibi ted in the l i gh t  var ia t ion ,  wherein the secondary and t e r t i a r y  

components were roughly equal, wi th the fourth being much fa in te r .  These di f ferences 

indicate that the ve loc i ty  to l i gh t  amplitude rat ios are, perhaps, not the same for  

a l l  components. However, the dif ferences may have been caused by a small change of 

the frequency spectrum of 12 Lacertae between 1950 and 1956. They might also be due 

to the fac t  t ha t  the observed rad ia l  v e l o c i t i e s  are not p roper l y  averaged over the 

s t e l l a r  d isc because of the d i f f i c u l t i e s  of measuring the wavelength s h i f t s  from 

spect ra l  l i n e s  w i th  asymmetr ic and v a r i a b l e  l i n e  p r o f i l e s .  Also,  the observed 

d i f f e rences  between the v e l o c i t y  and l i g h t  cycles may have resu l ted  from a 

combination of the above effects. 

The standard deviat ion of the six-term radial ve loc i ty  solut ion equaled 5.1 

km/sec. This value resu l ted  from observa t iona l  e r ro r s ,  i n c l u d i n g  the unknown 

systematic ef fects caused by Struve's (1951) use of four d i f f e ren t  spectrographs, and 

from any rad ia l  v e l o c i t y  changes not taken i n t o  account in  the s o l u t i o n ,  e.g., 

possible long-term ve loc i ty  var iat ions.  Unfortunately, i t  does not seem possible to 

determine the re la t i ve  importance of these factors. However, the amplitude of any 

unevaluated ve loc i ty  var ia t ion  is probably not greater than 2 km/sec. 

4. IDENTIFICATION OF THE FREQUENCIES: THE TRIPLET 

A natura l  exp lana t ion  fo r  the ml, m4, m3 e q u i d i s t a n t  t r i p l e t  is  t ha t  i t  

corresponds to f i r s t  order rotat ional  s p l i t t i n g  of an ~ ~ 3 mode wi th three values of 

m forming an a r i t h m e t i c  progression.  As Dziembowski (1977) has shown, the ~ > 3 

osc i l l a t i ons  produce l i t t l e  l i g h t  and radial ve loc i t y  var ia t ion  because of averaging 

over the s t e l l a r  d isc ,  and the re fo re  can be excluded. Even so, f o r  ~ 3 four teen 

possible rat ionales ex is t  for  the ~1, m4, ~3 t r i p l e t .  Fortunately, the l i ne  p ro f i l e  

observations of 12 Lacertae can be used to l i m i t  the number of poss i b i l i t i e s .  Osaki 

(1971) found tha t  a phase r e l a t i o n  between the rad ia l  v e l o c i t y  and l i n e  w id th  

v a r i a t i o n s  cons is ten t  w i t h  the observat ions (cf .  § 1) could be obta ined i f  the 

dominant o s c i l l a t i o n  in  12 Lacertae was prograde. Osaki favored an ~ = 2, m : -2 

in te rp re ta t ion ,  but offered no proof of the uniqueness of th is  solut ion.  

I t  can be demons t ra ted  t h a t ,  out  o f  the  f o u r t e e n  above -men t i oned  

p o s s i b i l i t i e s ,  the strongest component in the l i g h t  and radial ve loc i ty  var ia t ions of 

12 Lacertae corresponds to a prograde wave on ly  in the case of  the ~ : 3 mode f o r  

which a l l  m < 0 o s c i l l a t i o n s  are exc i ted  and a l l  mt 0 ones are qu iescent .  In the 

remaining th i r teen cases, pa r t i cu l a r l y  those wi th ~ = 2, there is e i ther  no p ro f i l e  

var ia t ion  associated with t hem l  component ( i f  t h i s  component is i den t i f i ed  with the 

stat ionary osc i l l a t i on ,  m : 0), or the phase re la t ion  between the radial ve loc i t y  and 

l i n e  p r o f i l e  v a r i a t i o n s  is  wrong (a r e t r o g ~ d e  wave, m > 0). Consequent ly,  the 
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f requenc ies  ml, m4, and ~3 should be i d e n t i f i e d  w i th  ~ : 3, m : -1, -2,  and -3,  

respect ively.  

This i d e n t i f i c a t i o n  of  them1,  m4, m3 f requenc ies  rests  on the assumption 

that the ml component, the strongest one in both l i g h t  and radial ve loc i ty  frequency 

spectra (cf. §§ 2 and 3), also dominates the l i ne  p ro f i l e  var ia t ion.  This assumption 

is s t r ong l y  supported by the observat ions.  In f a c t ,  should the l i n e  p r o f i l e s  vary 

main ly  w i t h  one of  the other  f requenc ies ,  i n c l u d i n g  m2, t h e i r  much smal le r  rad ia l  

ve loc i t y  amplitudes (cf. Figure I)  would cause the phases of, for  example, the most 

d i f f u s e  l i n e s  to s l i d e  a l l  over the v e l o c i t y  curve. This is  not borne out by the 

observat ions ,  which c o n s i s t e n t l y  show these phases to be near the middle of the 

descending branch. 

Given the above i d e n t i f i c a t i o n  of  the t r i p l e t  f requenc ies ,  the angular  

ve loc i t y  of ro ta t ion (~) of 12 Lacertae can be obtained from the observed values of 

the frequencies using Ledoux's (1951) f i r s t  order rotat ional  s p l i t t i n g  formula. I t  

tu rns  out to be ~ = 1.085 rad/d,  i f  the s p l i t t i n g  c o e f f i c i e n t  C is  assumed to be 

equal to 0.i. Some j u s t i f i c a t i o n  for  th is  choice is furnished by the work of Hansen, 

Cox and Van Horn (1977), who computed C f o r  massive zero age main sequence models. 

In the case of a I0 M 9 model and ~ : 2, they obta ined C : 0.104 f o r  the Pl mode and C 

: 0.067 for  the P2 mode. For the evolved models, which are more nearly appl icable to 

the B Cephei v a r i a b l e s ,  and f o r  ~ ~ 2, these c o e f f i c i e n t s  can be expected to be 

somewhat d i f f e ren t ,  making the above-mentioned value of  ~ uncer ta in .  Despite the 

u n c e r t a i n t i e s ,  however, and using the radius of  8.8 R e der ived from the s ta r ' s  

p o s i t i o n  in the H-R diagram (Sterken and Jerzykiewicz 1980), one gets v = 77 km/sec 

f o r  the equa to r ia l  v e l o c i t y  of  r o t a t i o n  of  12 Lacertae. Then, from v s in  i = 29 

km/sec, as observed by McNamara and Hansen (1961), i t  fo l lows that the aspect angle i 

: 22 ° . However, since McNamara and Hansen obtained v sin i from measurements taken 

at the sharp- l ine phases, i = 22 ° is probably a lower l i m i t .  In any case, i t  can be 

concluded that 12 Lacertae is seen more nearly pole-on than equator-on. F ina l l y ,  i t  

should be pointed out t h a t ,  w i t h  ~ = 1.085 rad/d,  the r a t i o  of  the o s c i l l a t i o n  

f requency to the angular  v e l o c i t y  of  r o t a t i o n  is approx imate ly  30. Thus, the 

ro ta t ion is indeed slow, j u s t i f y i n g  the assumption of f i r s t  order s p l i t t i n g .  

5. THE REMAINING FREQUENCIES 

The position of the m2 frequency in the frequency spectra described in ~§ 2 

and 3 indicates that i t  must correspond to a different harmonic mode than the ~1, m4" 

m3 t r i p l e t .  I t  can therefore be due to e i ther  a radial mode (~ = 0), or to a 

nonradial mode with ~<- 2, and any value of m, i .e., r ml ~ 1 for  ~ = 1, or Iml ~ 2 

for  ~ = 2. 

One poss ib i l i t y ,  viz.,  ~ = 1, m = -1, might bring some order into an 

otherwise rather confused picture. I f  th is i den t i f i ca t i on  was true, a l l  waves 
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t r a v e l i n g  in the d i r e c t i o n  of  the s ta r ' s  r o t a t i o n  and corresponding to odd ~ ( 3  

would be exc i ted .  Why ~ = 2, m < 0 o s c i l l a t i o n s ,  among o thers ,  should remain 

quiescent  is  not at a l l  c l ea r ,  however. Perhaps the ~ = 2, m < 0 t r a v e l i n g  waves 

are, in f a c t ,  exc i ted  in  12 Lacertae, but the small value of  the aspect angle (cf .  § 

4) reduces the corresponding component ampl i tudes,  render ing t h e i r  de tec t i on  

d i f f i c u l t .  

The i den t i f i ca t i on  of the two fa in tes t  components is also somewhat uncertain. 

The fac t  t ha t  the combinat ion f requency ~5 = ml + ~4 was found in the l i g h t  and 

radial  ve loc i ty  var ia t ions of 12 Lacertae, rather than the usual 2ml, ml + m2, etc., 

may be due to a geometr ic e f f e c t  of the aspect angle or to an acc iden ta l  resonance 

between ml + m4 and an eigenfrequency. I f  the former e f fect  is responsible for  the 

r e l a t i o n s h i p ,  a de te rm ina t ion  of the aspect angle could be attempted. However, 

non l i nea r  c a l c u l a t i o n s  to at l eas t  the second order in the d isplacement would be 

necessary to evaluate the l a t t e r  poss ib i l i t y .  

The f a i n t e s t  component f requency,  m6, probably corresponds to an overtone 

o s c i l l a t i o n .  Un fo r t una te l y ,  t h i s  i d e n t i f i c a t i o n  cannot be e n t i r e l y  conc lus i ve  

because, at th is  t ime, the only extensive calculat ions of nonradial eigenfrequencies 

for  evolved massive models (Baker and Dziembowski 1969) do not include ~ : 3 modes. 

6. SUMMARY 

12 Lacertae undergoes nonradia l  o s c i l l a t i o n s  in the presence of slow 

rotat ion.  Moreover, osc i l l a t i ons  of two d i f fe ren t  harmonic degrees, ~, are seen to 

be simultaneously excited in th is  star. These conclusions were derived so le ly  from 

the f requency spectra of the l i g h t  and rad ia l  v e l o c i t y  v a r i a t i o n s .  A d e f i n i t e  

i d e n t i f i c a t i o n  of the ml, ~4, and ~3 frequencies in terms of spherical harmonics has 

been made by making use of  the l i n e  p r o f i l e  observat ions.  These f requenc ies  

correspond to ~ = 3, m : -1, -2, and -3 o s c i l l a t i o n s ,  r e s p e c t i v e l y .  Therefore,  by 

i d e n t i f y i n g  the m2 frequency w i t h  an ~ = i ,  m = -1 harmonic mode, which is  one of  

several p o s s i b i l i t i e s ,  a l l  prograde o s c i l l a t i o n s  w i th  odd ~ ~ 3 are found to be 

excited in 12 Lacertae. 

Furthermore,  from the value of  the r o t a t i o n a l  s p l i t t i n g  in  the ml, m4, m3 

t r i p l e t ,  and the observed pro jected v e l o c i t y  of r o t a t iQn ,  the aspect angle i s  

estimated to be 22 ° . Although th is  resu l t  is somewhat uncertain, p r imar i l y  because 

accurate values of the s p l i t t i n g  c o e f f i c i e n t  C f o r  massive evolved s ta rs  are not 

avai lable,  i t  indicates that 12 Lacertae is seen more nearly pole-on than equator-on. 

In v iew of these r e s u l t s ,  a s imple s o l u t i o n  to the d isc repanc ies  t ha t  have 

been encountered in the case of B Canis Majoris (cf. ~ I )  can be suggested: the two 

shor t  per iods (PI and P2 in  the no ta t i on  of  Struve 1950) correspond to o s c i l l a t i o n  

modes of d i f f e r e n t  ~. Since i t  is  the per iod of the l i n e  p r o f i l e  v a r i a t i o n s ,  and 

because of the observed phase re la t ion  wi th the corresponding radial  ve loc i t y  curve, 
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P2 should be ident i f ied  with a prograde wave. However, the ~ = 2, m = -2 mode, as 

suggested by Osaki (1971), is only one of several poss ib i l i t i es .  In a recent study 

of the l i gh t  and radial ve loc i ty  var iat ions of B Canis Majoris, Shobbrook (1973) 

found a fa in t  short period component in addition to P1 and P2; th is  component, i f  

confirmed, may help to l im i t  the number of these possibi l i t ies. 

The lack of detailed calculations for nonradial osc i l la t ions  of evolved 

massive stars has hampered the explicitness of much of the above discussion. I t  is 

also because of th is circumstance that no attempt was made here to determine the 

classification of the vertical properties of the modes which may correspond to the 

frequencies observed in 12 Lacertae. 

The author gratefully acknowledges financial support from the University of 

Arizona during his stay in Tucson. 
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NEW B CEPHEI STARS AND THE B CEPHEI INSTABILITY STRIP 
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M. aerzykiewicz 
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Poland 

1. INTRODUCTION 

As a result of a photoelectric search program carried out among bright early 

B stars (Jerzykiewicz and Sterken 1977), and a subsequent detailed photometric and 

spectrographic investigation (Jerzykiewicz and Sterken 1978), four new 6 Cephei 

variables have been found. A l i s t  of B Cephei stars has also been compiled 

(Jerzykiewicz and Sterken 1978), including variables discovered recently by Balona 

(1977); Haug (1977); and Jakate (1978a). Using the published uvby and B photometry, 

the positions of these stars in the c o - B and the log P - B planes, i t  was 

demonstrated that the B Cephei variables fa l l  within a well defined instabi l i ty strip 

and that they do not obey a unique period-luminosity relation. 

In ~ 2 and 3 of the present paper the main results of Jerzykiewicz and 

Sterken (1978) are briefly reviewed. The B Cephei instabi l i ty strip in the log T e - 

Mbo I diagram is defined in § 4. A comparison with the theoretical evolutionary 

tracks is made in § 5. Final ly, in § 6 the ear l ier  conclusion of Jerzykiewicz and 

Sterken (1978) concerning the period-luminosity relation is confirmed. 

2. THE NEW B CEPHEI VARIABLES 

A summary of observational results on the four new 6 Cephei variables is 

given in Table 1. The stars are arranged in order of increasing primary photometric 

period. The MK classification in column four is from Hiltner, Garrison and Schild 

(1969). 

The results listed in columns five and six are based on the photometric 

observations obtained on 15 nights during the interval from 27 November to 15 

December 1977 at the European Southern Observatory, Cerro La Silla, Chile. The 

instrumentation used was the simultaneous four-channel uvby spectrograph-photometer, 

attached to the Danish national 50 cm reflecting telescope. The spectrographic 

observations, the results of which are summarized in the last two columns of Table 1, 
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Table 1. Observed Properties of the New B Cephei Stars 

Primary 2K 
HD HR m v MK Period u Range Lines km/s 

68324 3213 5~4 B1 IVn 0~108 ± 0~0005 0~005 - 0~018 very 20 
broad 

64722 3088 5.7 BI .5 IV 0.1154 ± 0.0001 0.014 - 0.035 very ? 
broad 

63949 3058 5.8 BI.5 IV 0.1182 ± 0.0001 0.008 - 0.015 ? ? 

64365 3078 6.0 B2 IV 0,1927 ± 0.0001 0.010 - 0.040 sharp 9.5 
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were taken on two nights, 27/28 and 28/29 November 1977, at the coud6 focus of the 

ESO 152 cm telescope. The dispersion was 12.3 A/mm. Baked Kodak IIaO plates were 

used. The spectrograms were measured with the Grant spectrocomparator of the Max 

Planck Insti tut fur Astrophysik in Heidelberg. 

The u observations of HD 68324 are shown in Figure 1 as a function of 

heliocentric Julian day. The l ight amplitude is variable from night to night. The 

primary period can be estimated as ~108 ± ~0005. The change of the mean 

brightness, seen on JD 2443482, may be due to l i g h t - v a r i a b i l i t y  of the comparison 

star, HD 68243. 

The spectrum of HD 68324 is characterized by very broad H and Hel l ines. 

Campbell and Moore (1928) noted the broadness of the l ines and the probable 

v a r i a b i l i t y  in velocity. In Figure 2 the radial veloci t ies of HD 68324 on JD 

2443476, determined from the hydrogen l ines Hy to HIO, are plotted against 

heliocentric Julian day. Although the scatter is rather large, variation on a time 

scale close to the primary photometric period can be seen clearly. The 2K range can 

be estimated at 20 km/s and the y-velocity equals 38 km/s. The Call K l ine yields a 

mean veloci ty of 12.9 ± 1.0 km/s. 

The b observations of HD 64722, the second variable in Table 1, are displayed 

as a function of hel iocentr ic Julian day in Figure 3. The least-squares frequency 

analysis of these data gave O~1154 ±~0001 (estimated mean error) for the primary 

period of the l i gh t  variation. A unique figure could not be obtained for the 

secondary period, however. Two values, which are separated from each other by one 

cycle per sidereal day, f i t  the data equally wel l :  ~1168 ± ~OOQ2 and ~1323 ± 

~0002. More observations are needed to decide which of these periods is 

the correct one. I t  should also be kept in mind that more than two sine-wave 

components may be present in the variation of HD 64722. 

Figure 4 gives the radial veloci t ies of the star on JD 2443475, determined 
from the mean of the hydrogen lines HIO, H 9, H~, Hy and H B. The uncertainty of these 

values is rather high, approximately 4 km/s, because the broadness of the l ines 

renders them d i f f i cu l t  to measure. Even so, the data shown in Figure 4 indicate that 

the radial velocity of HD 64722 varies on a short time scale. Unfortunately, these 

observations were taken on the night when the star's l ight variation was at a minimum 

(cf., Figure 3) and therefore i t  should not be surprising that no well-defined radial 

velocity curve can be seen. 

The th i rd  star in Table 1, HD 63949, was found by Jerzykiewicz and Sterken 

(1978) to be constant in b l i gh t  to wi th in 0~.010, and was therefore used as one of 

the comparison stars for HD 64365. As i t  turned out, however, the star is certainly 

variable on a time scale of about three hours, with the maximum u range equal to 

~015. The u observations of HD 63949 are shown in Figure 5, plotted against 
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heliocentric Julian day. The variation can be seen clearly on all nights. The range 

is not Constant; i t  seems to reach a minimum of ~008 on JD 2443490. 

From al l  u observations we determined the primary period of the l i g h t  

var ia t ion  of HD 63949 to be~1182 ±~0001. No attempt has been made, however, to 

derive the secondary period, since the data are probably not extensive enough for  

this purpose. 

The last star in Table 1, HD 64365, shows a spectacular amplitude modulation. 

This can be seen from Figure 6, where the u observations of the star are displayed as 

a function of heliocentric Julian day. The least-squares frequency analysis of these 

data yielded ~1927 ± ~0001 as the best value of the primary period. The secondary 

period is equal to e i ther  ~1680 ± 0~.0003 or ~2019 ± ~0003. Clearly, more 

observations are needed before any extensive frequency analysis of the star's l igh t  

variation can be undertaken. 

The spectrum of HD 64365 shows a large number of wel l -def ined sharp l ines.  

The radial velocit ies of the star obtained from spectrograms taken on JD 2443476 are 

displayed in Figure 7 as a funct ion of phase of the primary photometric period. 

Phase zero was arb i t ra r i l y  set at JD 2443476.0. All velocit ies shown are mean values 

from about 30 lines of Hel, NIl, CII, S i I I I ,  Oil and H, except one value (open circle 

in Figure 7), which was determined from a broken plate on which not all of the lines 

could be measured. 

As can be seen from Figure 7, the velocity curve of HD 64365 on JD 2443476 is 

very nearly sinusoidal in shape. The 2K range is 9.5 km/s, and the y -ve loc i t y  is 

equal to about 31 km/s. The Call K l ine yields the mean velocity of 21.1 ± 0.7 km/s. 

Since no photometry of HD 64365 was obtained on JD 2443476, l i t t l e  can be 

said about phase re la t ion  between the l i g h t  and radial ve loc i ty  var iat ions of the 

star. The vertical arrow in Figure 7 indicates the phase of maximum l ight ,  computed 

according to the following elements: 

Max. ~ l ight  : JD e 2443480.713 + 0~1927 E, (I)  

which best f i t  the observed u l igh t  maxima. The horizontal bar shows an estimated 

uncertainty of this computed phase. 

Thus, all these new B Cephei stars display variable l ight  ranges. Three of 

them exhibit primary periods which are considerably shorter than any of the hitherto 

known objects of th is  type. However, they are "normal" as far  as the i r  MKtype is 

concerned. The two of them for which we have high dispersion spectra show very broad 

l ines, while HD 64365 is alsharp-line star. 

3. THE c o - B AND log P B DIAGRAMS 

Jerzykiewicz and Sterken (1978) presented a l i s t  of B Cephei stars, compiled 
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according to the fol lowing c r i te r ia :  (1) convincing evidence of l ight var iabi l i ty  

wi th in a period shorter than nine hours, and (2) spectral type B3 or ear l ier ,  with 

supergiants and emission line objects excluded. The l i s t  is reproduced here in Table 

2. One variable, HD 61068, which was discovered recently by Lesh and Wesselius 

(1978) from sa te l l i t e  UV observations, has been added. The stars are arranged in 

order of increasing right ascension. The MK classification in column five is from 

Lesh (1968); or Hiltner, Garrison and Schild (1969) for the Catalogue of Bright Stars 

objects; from Feast (1958) for NGC 3293 variables; from Schild (1970) for NGC 4755-F; 

and from Garrison, Hiltner and Schild (1977) for HD 80383. The sixth column of Table 

2 provides the primary photometric period P according to the most recent work, which 

is referenced in the last column. 

The B Cephei stars are plotted in Figure8 in the c o -  B plane; the four NGC 

3293 variables are excluded, as uvby photometry is not available. In addition, 25 

ear ly- type stars found to be non-variable by Lynds (1959), Jerzykiewicz 

(unpublished), and Jerzykiewicz and Sterken (1977, 1978) are shown. The c o indices 

were computed by means of the iterative procedure of Crawford (Crawford and Barnes 

1974). All published uvby data were taken into account; i f  two or more sets of uvby 

colors were available for the same star, a straight mean of the corresponding c o 

indices was computed. Likewise, all available B values were used in forming a mean 

for each star. In a number of cases the data used by Jerzykiewicz and Sterken (1978) 

were supplemented by B values of Deutschman, Davis and Schild (1976). No corrections 

for duplicity were applied to either c o or B, except for B Crucis (see below). 

As can be seen from Figure 8, the B Cephei stars occupy a well-defined str ip 

in the c o - B plane, approximately parallel to the zero age main sequence. The ridge 

l ine of the s t r ip  runs about 01~.025 in B above the zero age relat ion of Crawford 

(1978). Except for V986 Ophiuchi, the B Cephei stars fa l l  within the interval -~07 

< c o < +0~.13. The low luminosity end of the s t r ip  seems to be well-defined. 

However, the position of the high luminosity end depends on whether V986 Ophiuchi is 

considered to be the same type of object as the remaining ones. 

The boundaries of the B Cephei s t r ip  in the interval -0~07< c o < +0~13 are 

shown in Figure 8 by broken lines. The upper boundary is defined, in order of 

decreasing luminosity, by 19 Monocerotis and a Lupi, and the lower one by HD 63949 = 

HR 3058, HD 80383, and 16 Lacertae. The overall width of the s t r ip ,  measured in B 

from the lower to the upper boundary, is ~025. 

Perhaps the most str ik ing feature of Figure 8 is that only seven constant 

stars are contained within the B Cephei s t r ip ,  as compared to the 33 B Cephei 

variables. Moreover, in the interva! -0~.07 < c o < +0~13, where most of these 

variables are located, the constant stars which l i e  inside the s t r ip  f a l l  close to 

the str ip 's boundaries. The only exception is HD 74273 = HR 3453. However, the 

range of published B values for this star (Lindemann and Hauck 1973; Deutschman, 
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Davis and Schild 1976; and Shobbrook 1978a) is nearly ~030, making the mean rather 

uncertain. The conclusion, as previouslY stated by Jerzykiewicz and Sterken (1978), 

is that ,  in the interval-0~.07 < c o < +0~.13, the constant stars are probably 

separated from the B Cephei variables. In other words, the B Cephei str ip may well 

represent an i n s t a b i l i t y  region in the sense that a l l  stars which f a l l  w i th in  i t  

become B Cephei variables. 

The fact that a number of stars plotted in Figure 8 are double does not 

change the above conclusions. In the c o -  B plane, a d u p l i c i t y  correct ion moves a 

point along a l ine very nearly parallel to the ridge l ine of the B Cephei str ip (cf., 

the arrow in Figure 8). Moreover, of a l l  variables located close to e i ther  end of 

the -~07 < c o < +~13 interval,  only B Crucis is double. A dupl ic i ty correction was 

applied to this star, using the value computed by Shobbrook (1978a). 

The B indices of the B Cephei stars are plotted in Figure 9 against log P, 

where P is the primary photometric period. The f i l l ed  circle farthest to the r ight 

corresponds to B Centauri and the open circle indicates where this star would fa l l  i f  

the radial ve loc i ty  period determined by Lomb (1975) was used instead of Balona's 

(1977) photometric period. Stars which were discovered to be B Cephei'variables by 

Jerzykiewicz and Sterken (1978) (cf. Table I) are represented by f i l l ed  triangles. 

The diagram shows a considerable amount of scatter. As can be easily seen, a 

number of points would deviate by more than 0~.010 from any s t ra ight  l i ne  f i t .  

Moreover, the di f ference in B between stars occupying the extremes of the period 

range is probably insignif icant,  especially i f  V986 Ophiuchi is disregarded. From 

these facts Jerzykiewicz and Sterken (1978) concluded that the concept of a unique 

period-luminosity relation appears to be inapplicable to the B Cephei variables, and 

that i t  should be abandoned. 

4. THE B CEPHEI STARS IN THE THEORETICAL H-R DIAGRAM 

In order to get the effective temperature scale for the c o colors, a l inear 

re la t ion  was derived between c o and o e = 5040/T e from stars fo r  which Code et al. 

(1976) have determined empirical e f fec t ive  temperatures. Stars with T e > 12200 K 

were used, but supergiants were omitted. The c o indices were computed from the uvby 

colors taken out of the Lindemann and Hauck (1973) catalogue. Duplicity corrections 

as determined by Davis and Shobbrook (1976) were applied to the c o values of B 

Crucis, ~ Virginis, and a Scorpii. Assuming that the c o indices are error-free and 

assigning weights to 0 e according to the mean errors given by Code et al. (1976), the 

following equation was obtained by means of the least-squares method: 

B e : 0.282 c o + 0.203, (2) 

±0.014 ±0.004 

where the numbers underneath the coefficients indicate their  mean errors. Equation 
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(2) agrees well with the mean relation between c o and e e derived by Davis and 

Shobbrook (1976). 

From Equation (2) and the mean c o indices effective temperatures of the B 

Cephei and constant stars were computed; however, for B Canis Majoris, B Crucis, 

Virginis and c Centauri, T e values were taken directly from Code et al. (1976). 

The visual absolute magnitudes M v were derived from the mean B indices using 

the calibration of Crawford (1978). Finally, the bolometric absolute magnitudes were 

computed as Mbo I = M v + BC, with the bolometric corrections obtained from the above- 

mentioned effective temperatures and the empirical calibration, BC versus Te, of Code 

et al. (1976). 

The B Cephei variables ( f i l led circles) and constant stars (open circles) are 

plotted in the theoretical H-R diagram in Figure 10. Also shown are Crawford's 

(1978) zero age main sequence, the ridge l ine of the B Cephei i ns tab i l i t y  str ip 

(rightmost solid l ine),  and i ts  boundaries (broken l ines), al l  transformed from 

Figure 8. V986 Ophiuchi (Tog T e = 4.506 and Mbo I = -~25) is not shown. 

As can be seen from Figure 10, the B Cephei i ns tab i l i t y  st r ip in the 

theoretical H-R diagram extends over Mbo I from -~0 to -~5. Only V986 Ophiuchi has 

luminosity considerably exceeding the latter l imi t .  The ridge line of the strip runs 

approximately ~25 above Crawford's zero age main sequence. The width of the strip in 

log T e is approximately 0.055. 

Thus, the extent and location of the B Cephei phenomenon in the temperature- 

luminosity plane seems to be quite well defined. This is not a new conclusion, of 

course. However, this definition may be more precise, as i t  is based on more numerous 

samples of B Cephei stars and on more recent temperature and luminosity calibrations 

than those of Percy (1970); Watson (1972); Lesh and Aizenman (1973a); and Balona and 

Feast (1975). 

5. THE EVOLUTIONARY STATUS OF THE B CEPHEI STARS 

Watson (1972) and Lesh and Aizenman (1973a), using evolutionary tracks 

computed with Cox-Steward opacities, found that the B Cephei variables occupy a 

region in the H-R diagram traversed three times by a 10 to 15 M e star in i ts  early 

evolution: once in the core hydrogen-burning phase, once in the secondary 

contraction phase, and once in the shell hydrogen-burning phase. Although, Lesh and 

Aizenman concluded that the B Cephei stars are in one of the two later  stages of 

evolution, Watson maintained that most B Cephei stars are core hydrogen-burning 

objects. This difference of opinion has been caused by the fact that Lesh and 

Aizenman found many non-variable B stars in the i r  B Cephei region, whereas Watson 

believed that B Cephei variables and constant stars separate in the H-R diagram. 

Watson's work was criticized by Lesh and Aizenman (1973b) on the grounds that, of his 

28 non-variable stars, only four fal l  in the same spectral-type range as the B Cephei 
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var iables.  However, the conclusion of Lesh and Aizenman (1973a) is also 

questionable, because the i r  non-variable stars were objects which have never been 

checked for l ight variabi l i ty. The result that constant stars do avoid the B Cephei 

strip in the H-R diagram (cf., Jerzykiewicz and Sterken 1978 and also § 3 and Figure 

10 of the present paper) appears to be the f i r s t  one of th is kind based on an 

extensive sample of stars that have been carefully investigated photometrically for 

variabi l i ty. A similar conclusion has been reached recently by Jakate (1978b), who 

investigated the position of a number of B Cephei and constant stars in the [u - b] - 

B plane. However, Jakate's results with respect to the extent and position of the 

instabi l i ty  strip (cf. Jakate and Sterken 1979) differ from those of Jerzykiewicz and 

Sterken (1978). 

The determination of the evolutionary status of the B Cephei stars is further 

complicated by the circumstance that the position of the B Cephei strip in relation 

to the theoretical evolutionary tracks depends on the opacities used, as has been 

pointed out by Lesh and Aizenman (1973a), Stothers (1976), and others. Figure 10 

i l l us t ra tes  the evolutionary tracks of 10, 12, 14 and 16 M B models with an i n i t i a l  

chemical composition of X = 0.70 and Z = 0.03, computed by de Loore et al. (1978). A 

modification of Paczynski's (1970) s te l la r  evolution program, using Cox-Steward 

opacity tables, was employed. The leftmost open triangle and open square represent 

the zero age models of Stothers (1976) for M equal to 10.9 and 15 Me, respectively. 

In these models Carson's radiative opacities were used and the composition was X = 

0.73 and Z = 0.02. The rightmost open symbols indicate the evolution of the 

corresponding models to a point near the end of the core hydrogen-burning phase (X c = 

0.064). 

As can be seen from Figure 10, i t  is not possible to infer which of the three 

above-mentioned evolutionary phases most B Cephei stars are currently in, assuming 

the adequate representation of early B star evolution by the tracks of de Loore et 

al. (1978). I f ,  on the other hand, Stother's (1976) evolutionary tracks are more 

nearly appropriate, a number of B Cephei variables would be found in the core 

hydrogen-burning phase. In both these cases, however, the zero age models f a l l  

considerably below the observed zero age main sequence of Crawford (1978). I t  is 

thus clear that, unt i l  th is discrepancy is removed, any conclusion concerning the 

evolutionary status of the B Cephei stars w i l l  be somewhat questionable. One 

consequence of this problem is the uncertainty by at least 2M o of masses for B Cephei 

stars obtained from a comparison with the presently available theoretical models. 

I t  should be mentioned that Lesh and Aizenman (1973a) used Z = 0.06 in their 

model calculations in order to increase the opacity. This removed the discrepancy 

between the theoretical and observed zero age main sequences. By following the same 

procedure, most B Cephei stars are found to be in the core hydrogen-burning phase. 

Attempts to determine the evolutionary status of the B Cephei variables have 
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been often made in the hope of unearthing clues to the unknown excitation mechanism 

presumably operating inside them. We would l ike to point out that,  in view of the 

observed separation of their locations in the H-R diagram, the evolutionary history 

of the B Cephei variables may be relevant in this context only insofar as i t  results 

in carrying their progenitors into the instabi l i ty strip. In other words, we believe 

that the search for a possible excitat ion mechanism should be concentrated in the 

envelopes of the B Cephei stars, and not in their cores. 

An investigation of the evolutionary status of the B Cephei variables has 

been recently carried out by Shobbrook (1978a,b). Shobbrook (1978a) maintains that 

in the c o - B plane the width of the B Cephei strip does not exceed ~003 in B, i.e., 

(~.15 in luminosity, a value very much smaller than 1~25 we found. The main reason 

for this discrepancy comes probably from the fact that Shobbrook could not take into 

account most of the variables which we used for determining the boundaries of the B 

Cephei s t r ip ,  because they were discovered after his analysis had been completed. 

Moreover, Shobbrook believes that there are constant stars within the B Cephei strip. 

This conclusion is also contradicted by our results. Therefore, Shobbrook's (1978b) 

statement that al l  these variables must be very near the end of the core hydrogen 

burning phase appears to be unfounded. 

6. 

plotted as a function of log P, where P is the primary photometric period. 

straight l ine, f i t ted  to the data by the method of least-squares, is also shown. 

has the following equation: 

-3.9 log P - 9.0 = Mbol, (3) 

±1.3 ±1.0 ±0.8 

THE PERIOD-LUMINOSITY RELATION 

In Figure 11 the absolute bolometric magnitudes of the B Cephei stars are 

A 

I t  

where the numbers underneath the coefficients indicate their mean errors, while the 

one beneath the righthand side is the standard deviation of the solution. After 

adding a log T e term we obtained the following equation: 

-0.05 log P - 0.042 log T e + 4.08 = Mbo I (4) 

±0.03 ±0.003 ±0.04 ±0.14 

These results c lear ly confirm our ear l ier  conclusion (cf. Jerzykiewicz and 

Sterken 1978 and § 3 of the present paper) that the B Cephei stars do not obey a 

period-luminosity relat ion. Indeed, in the case of equation (3) the standard 

deviation is much greater than any reasonable estimate of the mean error of the Mbo l 

values. Adding a log T e term results in decreasing the standard deviation 

considerably; however, the coeff ic ient of log P then turns out to be of the same 
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order of magnitude as i ts  mean error, so that equation (4) actually represents the 

ridge line of the B Cephei s t r ip ,  and not a log P - log T e- Mbo I relation. As we 
have already pointed out (Jerzykiewicz and Sterken 1978), the lack of a period- 

luminosity relation lends support to the idea that the primary photometric periods of 

B Cephei variables may correspond to a variety of nonradial oscillation modes. 
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16 LACERTAE: AN ECLIPSING SYSTEM WITH A B 

CEPHEI PRIMARY 

M. Oerzykiewicz 
Wroclaw University Observatory 
Poland 

ABSTRACT 

A model is presented of the 16 Lacertae system which is shown to be an 

eclipsing variable with a B Cephei primary. 

1. INTRODUCTION 

The 1~097 single-l ine spectroscopic binary 16 Lacertae, the primary 

component of which is a well-known B Cephei star, was recently found by Jerzykiewicz 

et al. (1978) to be an eclipsing variable. In the present paper a model of the 

system of 16 Lacertae is derived from observations. Moreover, i t  is shown that 

f a i r l y  accurate values of the primary component's radius and mass can be obtained 

from precise photometry of the eclipse. 

2. OBSERVATIONS 

The discovery that 16 Lacertae is an eclipsing system was a by-product of 

frequency analyses of two extensive series of photoelectric observations of the star. 

The f i r s t  series consisted of over one thousand B magnitudes obtained by the author 

on 31 nights in the summer and autumn of 1965 at the Lowell Observatory. The second 

series included about f ive hundred blue-color observations secured by Jarzebowski, 

Jerzykiewicz, Le Contel and Musielok in the autumn of 1977 at the San Pedro Martir 

Observatory of the National University of Mexico, the Mt. Chiran station of the Haute 

ProVence Observatory, and the Bialkow station of the Wroclaw University Observatory. 

Both these data series can be represented by synthetic ligh(-curves, having the form 

of a sum of three sine-wave components with frequencies of 5.9112, 5.8551 and 5.5032 

cycles/day. However, in 1965 the component amplitudes were equal to ~020, ~010 and 

• 011, respectively, whereas in 1977 they amounted to only ~008, ~005, and ~007. 

I t  is unclear whether this result indicates that the oscillations of 16 Lacertae are 

dying out, or that in 1977 we observed a minimum in a long-term variation of the 

oscillation amplitudes. This question can only be answered by future observations. 

The eclipse of 16 Lacertae can be seen clearly after the in t r ins ic  l i gh t -  

variations are removed. This is shown in Figure 1, where the deviations from the 

above-mentioned 1965 and 1977 synthetic light-curves are plotted as a function of the 

orbital phase, computed according to the following elements: 
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Minimum l igh t  JD e 2439054.575 + 12~09684 E 

±.005 ±.00003 

(1) 

Al l  observations with orb i ta l  phase w i th in  the in terval  0.95 to 0.05 are shown. 

Points represent the 1965 data obtained on seven nights, whi le open c i rc les  

correspond to observations taken on one night in 1977 at Mt. Chiran and San Pedro 

Martir ( le f t  and right of the mid-eclipse phase, respectively). The improved value 

of the orb i ta l  period in equation (1) was derived by forcing the 1965 and 1977 data 

to agree along the ascending branch of the light-curve. 

I t  can be estimated from Figure I that the total duration of the eclipse is 

somewhere between ~34 and ~40, and that the depth of the eclipse amounts to ~037 ± 

0~003. 

According to the spectroscopic orbital elements of Fitch (1969), the orbit of 

16 Lacertae is very nearly c i r cu la r  (e = 0.035 ± 0.03), with K 1 = 23.0 ± 0.6 km/sec, 

a ls in  i = 3.82 x 106 kin, and the mass-function f(M) = 0.0152 M o. From th is  value of 

the mass-function one gets the mass ra t io  M2/M 1 < 0.2, i f  i > 550 and M 1 > 6 M e • 

Thus, for any value of M 1 even remotely consistent with the primary's MK type of B2 

IV, i t  follows that the mass of the secondary is approximately 1 Me, and that a I + a 2 

amounts to at least 3.0 x 107 km. Consequently, unless the radii of the components 

are very much greater than their  main-sequence values, i t  can be concluded that the 

system is a detached one with the secondary contributing a negligible fraction of the 

total l i gh t .  

3. A MODEL OF THE SYSTEM OF 16 LACERTAE 

In view of the preceding conclusions regarding the secondary component's mass 

and the dimensions of the system, a solution based on a simple spherical model was 

attempted. The contribution of the secondary to the total l ight  of the system was 

neglected. The mean radius of the primary was taken to be R 1 = 5.8 Re, which is 

consistent with log T e = 4.354 and Mbo I = -5~00. These values were obtained for  16 

Lacertae by Sterken and Jerzykiewicz (1979) from the photometric indices c o and B 

using recent empirical calibrations of the temperature, bolometric correction, and 

absolute magnitude scales for the early-type stars. The mass of the primary, M 1 = 10 

Me, also used in the solut ion was derived (Sterken and Jerzykiewicz 1979) by 

comparing the star's posi t ion in the H-R diagram with Population I evolut ionary 

tracks. This comparison showed that the primary is s t i l l  in the core hydrogen- 

burning phase. Finally, a cosine law of limb darkening was assumed, with the limb 

darkening coefficient equal to 0.4. 

From these data i t  is possible to get a unique solut ion for  a given R 2 and 

At, i .e., the secondary component's radius and the duration of the ecl ipse, 
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respectively, provided the spectroscopic orbital elements are considered. The 

procedure is as follows. A rough i n i t i a l  value of i ,  the incl inat ion angle of the 

orbit, is assumed. This allows computation of approximate mass ratio and dimensions 

of the orbit, a I and a2, from the spectroscopic elements and M 1. A better value of i 

is then Obtained from the equation: 

R 2 (At)2~ 2 
c°s2i p2 ' (2) 

where R = R 1 + R2, a = a I + a 2, and P is the orbital period. Equation (2) holds for 

spherical components in a circular orbit ,  so that i t  is appropriate in the present 

context. With this better value of i the calculations are repeated. I t  was found 

that the solution converges very rapidly for almost any in i t ia l  value of i. 

A number of solutions were obtained in this way for different R 2 and At. The 

results are summarized in Figure 2, where computed depth of the eclipse (at the mid- 

eclipse phase) is shown plotted against the ratio of the radii, k = R2/R1, for three 

values of At: ~35, ~37 and ~40. As expected, for a given k the depth of the 

eclipse increases with At. Moreover, for each of the three At, the depth of the 

eclipse increases rapidly, until k equal to about 0.25 is reached; at this point the 

eclipse depth becomes insensitive to k. For At = ~35 none of the solutions is deep 

enough to represent sat is factor i ly  the observed O~.037 eclipse. On the other hand, 

the computed(~.037 eclipse for At = ~40 turned out to have a f l a t  bottom, contrary 

to what is observed. The solution for At = ~37 and k = 0.22 ( f i l l e d  c i rc le  in 

Figure 2) f i t s  the observations quite well. This can be seen from Figure 1, in which 

the solution is shown with a solid line. 

A model of the system of 16 Lacertae corresponding to this solution is 

i l lus t ra ted in Figures 3 and 4. In Figure 3 the position of the inner Lagrangian 

point is also indicated. Clearly, the system is a detached one. The eclipse is a 

partial t ransi t .  At the mid-eclipse phase (cf. Figure 4), about 80 percent of the 

disc of the secondary is projected onto the primary. The secondary, having a mass of 

1.25 M e and radius of 1.28 R e , is probably a normal late F or early G dwarf. 

Unfortunately, there is l i t t l e  hope that i ts spectrum wil l  ever be seen. 

As far as the author is aware, the system of 16 Lacertae has by far the 

smallest mass ratio among all presently known unevolved binaries. 

4. DISCUSSION 

The accuracy of the model derived in the preceding paragraph is d i f f i cu l t  to 

ascertain. Much depends on the precision of the photometry, but errors in the 

spectroscopic elements are also a factor. The situation is further complicated by 

the circumstance that the photometric and spectrographic observations had to be freed 
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Figure 3. The system of 16 Lacertae in projection on the tangent plane of the sky. 
The secondary is shown at the greatest elongation ( lef t )  and in the conjunction with 
the prima~cy at the mid-eclipse ~hase (right). The dimensions of the system are a] = 
3.84 x 10 u km and a 2 = 30.7 x 10 u km. The inner Lagrangian point is indicated with a 
cross,  

~@X, 2 = 1 .25 R 2 = 1 .28  

F igure  4. The system of 16 Lacertae at the mid-eclipse phase. The components' 
masses and rad i i  are in solar uni ts ,  and i is the i nc l i na t i on  of the orb i t  to the 
tangent plane of the sky. 
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from the intr insic variations, due to the oscil lations of the primary, before they 

could be used to investigate the eclipse and the orbital radial-velocity variation. 

In addit ion to these observational errors, the radius and mass of the 

primary, used as data in the solution, are also subject to a number of uncertainties. 

Most important of these are probably the systematic effects in the empirical 

ca l ibrat ions of the temperature, bolometric correct ion, and absolute magnitude 

scales. The mass of the primary also depends on the r e l i ab i l i t y  of the theoretical 

evolutionary tracks used to derive i t .  Unfortunately, there is no straightforward 

way to quantify a l l  these uncertaint ies. What can easi ly  be done, however, is to 

examine how the solution would change i f  the values of radius and mass of the primary 

were a r b i t r a r i l y  taken to be somewhat d i f fe ren t  than those used in the preceding 

paragraph. 

Figure 5 shows how the computed depth of the eclipse depends on R 1. The 

calculat ions were performed with At = ~37 and M I = 10 M e • The limb darkening 

coef f i c ien t  was assumed to be 0.4. As can easi ly  be seen, the solutions are rather 

sensitive to R 1. In fact, i f  the eclipse photometry was the main source of errors, 

the radius of the primary could be determined to within _+0.2 R e . 

The sens i t i v i t y  of the computed depth of the eclipse to M I is less 

pronounced. This is shown in Figure 6, which is based on computations with At = 

~37, R 1 = 5.8 R e , anda limb darkening coef f i c ien t  of 0.4. However, the mass of 10 

M e for the primary is probably correct to within ± I M e , i f  al l  the other parameters 

of the system are not very much in error. 

Thus, i f  R 1 or M 1 were changed by more than about ±4 and ±10 percent, 

respectively, the solution would no longer f i t  the observations. Since the radius 

and mass of the primary, estimated from its position in the H-R diagram, are probably 

much less certain than this, the problem can be reversed: values of R 1 and M 1 should 

be assumed that make i t  possible to derive a sat is factory model of the system. 

However, R 1 and M 1 are not independent parameters of the model, e.g., i f  the mass of 

the primary was increased by as much as 2 Me, a satisfactory solution could s t i l l  be 

obtained, provided that R 1 was also increased. Therefore, the above-mentioned values 

of ±0.2 R e and ±IM e are lower l i m i t s  of the actual uncertaint ies with which the 

radius and mass of the primary can be determined by comparing the observed eclipse 

with the computed solution. Hopefully, future observations, especially photometric, 

w i l l  bring these uncertainties close to their lower l imits. 

Once this is accomplished, accurate photometry of the eclipse of 16 Lacertae 

could be used to invest igate the var iat ions of the star's radius due to i t s  

oscillations. In conjunction with simultaneous radial velocity measurements, such 
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observations may yield data to study the temporal changes of the surface geometry of 

the star, making possible the determination of its oscillation mode. 
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LINEAR, NONAJ)IABATIC PULSMION CALCULATIONS FOR MODELS OF 

UPPER MAIN SEQUENCE AND 6 CEPHEI STARS 

H. Saio, J.P. Cox, C.J. Hansen and B.W. Carroll 
Joint Institute for Laboratory Astrophysics 
National Bureau of Standards and University of Colorado 

ABSTRACT 

Equations for linear nonadiabatic pulsation and the method of their solution 

are discussed in some detail. The numerical results presented concern mainly 7 M e 

stellar models in early evolutionary phase. A driving zone at a temperature of 1.5 x 

10 5 K was found to be present for both radial and nonradial modes, but no net 

pulsational instability was observed. Effects of rotation on pulsation frequencies 

and on stabil ity are also discussed. 

1. INTRODUCTION 

We have considered the general problem of small nonradial, nonadiabatic 

oscillations of spherical stars. Such oscil lat ions must obey the mass, momentum, 

energy, and flux equations and the two equations, which, together, comprise Poisson's 

equation. For spherical stars, i t  is both customary and adequate to assume a 

separation of the pulsation variables into spherical harmonics, as follows: 

f ' ( r , e , , , t )  I f ' ( r )  
= Y~(e,o)e 1°t (I) 

I~ f ( r ,e ,¢, t ) )  ~ f ( r )  

where f represents any physical variable; a prime denotes the Eulerian variation; af 

denotes the Lagrangian variation; r, e and @ are the usual spherical polar 

coordinates; Y~ denotes a spherical harmonic; and ~ denotes the (complex) pulsation 

angular frequency. The real component o, ~ ,  gives the pulsation period for the mode 

considered: 

~T 

~R 

The imaginary component 
-o t 

(laf I = e I ): 

(2) 

of o, Ol, gives the "damping time" r e for the perturbation 
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i (3) 
re = ~I 

Three vectors are involved in the analysis: ~r (Lagrangian displacement); 

v~' (negative of the Eulerian variation of the force per unit mass, with ~' being 

equal to the Eulerian variation of the gravitational potential ¢), and F' (Eulerian 

variation of the net energy flux). Assuming the separation of variables described in 

equation (1), the two transverse components of each of these vectors involve only 

algebraic relations. Therefore, each vector differential equation (momentum, flux, 

and force per unit mass) becomes a scalar d i f ferent ia l  equation. The resulting 

system of differential equations is of the sixth spatial order in, for example, the 

dependent variables P' (Eulerian variation of total pressure), p' (Eulerian variation 

of density p), ~r (radial component of a r ) ,~ ' ,  d~'/dr (spatial derivative o f~ ' ) ,  

and as (Lagrangian variation of specific entropy s). However, in nonadiabatic 

oscillations, each dependent variable is complex, resulting in a system of the sixth 

order in complex variables. 

In treating radiative transfer, a type of Eddington approximation (Unno and 

Spiegel 1966) has been used which yields 

÷'Frad =-(3-~-p vJ)' (4) 

where 

7' ÷' +' (5) 
= Fra d + Fconv , 

K is the opacity, and J is the mean in tens i ty ,  given by 

ac T 4 1 ds 
J = ~ + 4~m dt (6) 

Here T is the local temperature, a and c are the radiat ion constant and ve loc i ty  of 

l i gh t ,  respectively, and t is the time. The fo l lowing assumption was made regarding 

F~onv, the Eulerian var ia t ion  of the convective f lux :  

a(V • Fconv ) : 0 (7) 

The variables actually used in the calculations were the Dziembowski-like 

variables 
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, r  ) 
Yl r ' Y2 + ¢' 

g_~ 1 d~' 
Y3 : ¢' ' Y4 : g dr ' 

Y5 ~pp , Y6 = LL ( r ) ] r ad  

(8) 

where g is  the local  g r a v i t a t i o n a l  acce le ra t ion ,  Cp is  the s p e c i f i c  heat per un i t  

mass at constant pressure, and ~L(r) is  the Lagrangian v a r i a t i o n  of the r a d i a t i v e  

i n te r i o r  luminosity L(r). The d i f f e ren t ia l  equations are then 

dYi f i  ( r ;  Yl . ,y6) ,  i = 1 ,6 (9) - -  : , , .  , . . °  , 

dr 

where f i  are complicated functions which w i l l  not be reproduced here. In place of 

the actual angular osc i l l a t ion  frequency, ~, a dimensionless frequency, m, was used. 

The relat ionship of these two quant i t ies is given by: 

2 _ o2R 3 
GM (10) 

There are s ix  boundary cond i t ions ,  three at the center  and three at the 

surface. Phys i ca l l y ,  the three cent ra l  boundary condi t ions are tha t  the three 

divergences invo lved,  v .  a~,  v .  v~' ,  and v -  ~',  a l l  remain f i n i t e .  A s i m i l a r  

s i tuat ion is found with respect to the f i r s t  two divergences when considering l inear ,  

nonrad ia l ,  ad iabat ic  o s c i l l a t i o n s .  The three surface boundary conditions are that 

aP/P be f i n i t e ;  tha t  ¢'  a n d r e ' ,  the g r a v i t a t i o n a l  force per un i t  mass and i t s  

g rad ian t ,  be continuous across the (perturbed) surfaces;  and tha t  there be no 

inc ident  f l u x  on the top of the atmosphere, as discussed by Ando and Osaki (1975). 

Again, the f i r s t  two of these are the same as fo r  l i n e a r ,  nonrad ia l ,  ad iaba t i c  

osc i l la t ions .  

The normalization adopted is 

Yl : 1 (11) 

at the surface. 

The above equations and boundary cond i t ions ,  together  wi th  the above 

normal iza t ion  cond i t ion ,  cons t i t u t e  an eigenvalue problem fo r  the (complex) 

eigenvalue ~(or ~). 

As a check on the accuracy of the numerical calculations that were performed, 

the work integral was also evaluated. Agreement with oI  to 0.5% was obtained. 

The surface phase lags were also computed for the various modes investigated. 

I t  was found for  a l l  the modes that maximum l i g h t  coincided very c losely wi th the 

instant of minimum ste l lar  radius, as is actually observed in the B Cephei stars. 
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The results of the calculations have been expressed in terms of a "normalized 

growth rate~' n'. This quantity, introduced by Stel l ingwerf (1978), is defined as 

follows: 

, _ M/~PdVdm W+-W_ 

where W+ and W_ (both > O) are, respectively, the areas under the positive and 

negative portions of the work curve. Thus, i f  dr iv ing alone was occurring with no 

damping, n' = +1.00; conversely, in a situation of damping only, with no driving, n' 

= - 1 . 0 0 .  

The above techniques have been applied to several kinds of stars, as 

discussed below. 

2. UPPER ZERO AGE MAIN SEQUENCE MODELS 

Several models of the upper zero age main sequence have been examined for 

linear, nonradial, nonadiabatic pulsations using the techniques described in § 1. (A 

previous investigation by Aizenman, Hansen and Ross (1975) was made using an 

adiabatic analysis and a simple opacity; th is analysis yielded quasi-adiabatic 

s t a b i l i t y  results.) The models examined here had masses of 7 M e , 12 M e , and 20 M e . 

The modes investigated were: P2, Pl, f ,  gl +, and g ;  for ~ = 2; Pl and gl + for ~ = 
+ 

I ;  and Pl, f and gl for ~ = 3. 

The opacity was obtained through the use of Stellingwerf's (1975) formula for 

T <106 K, and Iben's (1975) formula for T> 107 K; for 106 K ~ T ~ 107 K, the 

two formulae were smoothly joined together. The nuclear reaction rates were those of 

Fowler, Caughlan and Zimmerman (1975). The Schwarzschild cr i te r ion was used in 

semiconvective regions. 

The periods were found to be the same as those computed adiabatically when 

calculations were taken to f ive s igni f icant  figures. Also, throughout almost the 

entire model, the elgenfunctions were pract ica l ly  the same as those computed 

adiabatically. 

As we had expected, the models were found to be stable in all cases. 

3. MODELS FOR B CEPHEI STARS 

In 1979, Stellingwerf discovered a new driving mechanism that is operative 

for radial pulsations and possibly other modes. Called the "bump mechanism," i t  is 

based on a local change in slope or "wiggle" of the opacity as a function of 

temperature at a given density. This wiggle occurs approximately at a temperature 

where the peak of the Planck function is observed to coincide with the ionizat ion 

potential of He + (54.4 ev). This coincidence occurs at about 1.5 x 105 K; this is 
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near the temperature required for an ionization zone to produce pulsational 

instabil i ty in the B Cephei stars (Cox 1967). Stellingwerf (1979) showed that this 

bump mechanism would be more effective for stars with small mass concentrations than 

for highly centrally concentrated stars. 

Using models of B Cephei stars, Stellingwerf (1978) calculated their  

stabi l i ty against radial pulsations using the bump mechanism as the destabil izing 

mechanism. Although he found that driving occurred in the vicini ty ~of 1.5 x 105 K. 

The bumb mechanism did not quite destabilize the models when currently estimated 

opacities were used. However, by ar t i f i ca l ly  enhancing the opacities in the relevant 

region (to a degree well within the presently estimated uncertainties), he was able 

to produce pulsational instabil i ty in his models. 

One of Stellingwerf's (1978) most interesting results was his finding that 

the locus of maximum ins tab i l i t y  on the Hertzsprung-Russell (H-R) diagram had a 

"backward" slope (opposite in sign to the slope of the Cepheid i ns tab i l i t y  str ip) 

almost exactly parallel to the mean line defined by the observed B Cephei variables. 

Stellingwerf (1978) suggested that this "backward" slope was a result of radiation 

pressure, a conjecture which proved to be correct (see below). However, his locus of 

maximum instabil i ty is lower by ~ 0.1 in log T e than that observed for the B Cephei 

variables (T e = effective temperature); this is illustrated in Figure I, on which are 

also plotted some evolutionary tracks and the positions for some observed B Cephei 

stars. 

In a subsequent investigation i t  was shown by Cox and Stell ingwerf (1979) 

that the "backward" slope was actually a result of radiation pressure. Since the 

bump mechanism is an "envelope ionization mechanism" (Cox 1974), al l  the usual 

principles relating to this kind of process should apply. I t  is part icular ly  

important that the internal energy lying above the driving region be of the same 

order as the energy radiated by the star in a pulsation period: 

<c v T> Am 
~L ~ i ,  (13) 

where c v is the specific heat per unit mass at constant volume, T denotes the 

temperature in the driving region, Am is the mass lying above the driving region, 

is the pulsation period of the star, and L is the equilibrium luminosity of the star. 

Radiation has a marked e f fec t  upon Cv, as is shown by the relation (Cox and 

Giul~ 1968): 

8 - 7B 
CV = Cv,g B (14) 

where Cv,g is the contr ibut ion to c v due only to gas, and B = Pg/(Pg + Pr ) is the 

rat io  of gas to total  (gas plus radiat ion) pressure. Thus, a radiat ion pressure of 
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Figure 1. The locus of maximum instab i l i ty  of observed 6 Cephei variables along with 
evolutionary tracks for several models. 
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only 10 percent (B ~ 0.90) can almost double c v. Adopting equation (13) as the 

i n s t a b i l i t y  condit ion, and making a few other s impl i fy ing assumptions, Cox and 

Ste l l ingwerf  (1979) derived the fo l lowing re la t ion for the slope of the locus of 

maximum instabi l i ty  on the H-R diagram: 

where 

a~nL _ 2~(4 - {) (15) 
a~nT e (p - 1)(~ + y) + ~ + 1 - n - p(2 - ~/2) 

-7B 2 + 16B - 8 
~6 + y = y 6(8 - 76) (16) 

The quant i t ies ~, ~, n and y are defined by the fo l lowing p ropor t iona l i t i es  and 

relations: 

R ~ 
M n ' 

L =  M p , 

1 

(17) 

I t  is apparent that, for values of B only s l ight ly less than unity, the quantity ~a + 

Y becomes small or negative which can render a ~ n L  posi t ive,  in agreement with 
a~nT e 

Stel l ingwerf (1978). 

Physically, radiat ion pressure puts more internal energy above any given 

level in the envelope. This consequently permits the condit ion for  i n s t a b i l i t y ,  

equation (13), to be satisfied at a smaller radius and higher effective temperature 

than i f  radiation were not taken into account. 

Cox and Ste l l ingwerf  (1979) also discussed the per iod- luminosi ty (x-L) 

re lat ionship which should apply to the B Cephei stars i f  these pulsations are 

"driven" by an envelope ionization mechanism. Because observations have shown that 

several periods may occasionally be present in any one B Cephei s tar ,  Cox and 

Ste l l ingwer f  (1979) suggested that the bump mechanism might also drive certain 

nonradial oscil lations in this class of stars. The primary intent of this portion of 

our investigation was to test this conjecture. 

The vibrational s tab i l i ty  of some of the evolutionary models against small, 

nonradial oscil lations was tested by the methods described in § 1. In particular, 
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the 7 M e and 12 M e models were examined in evolut ionary stages O, 1 and 2 as shown in 

Figure I .  An at tempt was made to t es t  a 12 M e model in  stage 5 or 6; however, in  

these stages, the models had become so cen t ra l l y  concentrated that those calculat ions 

which had y ie lded  r esu l t s  f o r  the less c e n t r a l l y  concentrated models f a i l e d  to 

converge in t h i s  case. This may be due to the fac t  tha t  the s t r u c t u r e  of  the 

eigenfunctions becomes very complicated in such highly cen t ra l l y  concentrated models 

(Osaki 1977), p a r t i c u l a r l y  in  the i n n e r  r eg i on  where many nodes appear.  

Consequently, we have no resul ts  from our models in the in terest ing region occupied 

by 12 M e models in stage 5 or 6. 

Of the successful  c a l c u l a t i o n s ,  the 7 M e model in stage 2 comes c loses t  to 

the Ste l l ingwer f  maximum i n s t a b i l i t y  locus shown in Figure 1. Accordingly, we have 

presented some resu l t s  f o r  t h i s  model (stages O, I and 2, f o r  the Pl ,  f ,  and gl + 

modes) in Table I. Values of the normalized growth rate n' are given and est imated 

corresponding values for  purely radial osc i l l a t i ons  are provided for  comparison. 

On the basis of these r e s u l t s ,  nonradia l  modes appear to be d r i ven  by the 

bump mechanism about as st rongly (or as weakly, depending on one's viewpoint) as the 

purely radial modes. However, un t i l  fu r ther  resul ts  are avai lable,  pa r t i cu la r l y  for  

stage 5 and 6 of the 12 M e model, t h i s  must be an extremely ten ta t ive  conclusion. At 

least the 7 M e models in stages O, I and 2 showed de f in i t e  d r i v ing  in the v i c i n i t y  of 

1.5 x 105 °K, where the bump mechanism is located (see Figure 2). 

One po in t  seems r e l a t i v e l y  c lea r :  the 12 M e model in stages O, I and 2 

showed very l i t t l e  dr iv ing of nonradial osc i l l a t i ons  due to the bump mechanism. We 

may the re fo re  conclude tha t  any d r i v i n g  of nonradia l  o s c i l l a t i o n s  due to the bump 

mechanism is  l i k e l y  to be bound c l ose l y  to the dashed l i n e  in Figure I app ly ing  to 

radial  osc i l l a t ions .  Thus, the widespread e x c i t a t i o n  of  nonradia l  o s c i l l a t i o n s  in  

the general regions of the B Cephei stars found by Smith and McCall (1978) probably 

cannot be accounted f o r  by t h i s  mechanism. [M. Smith (e.g., Buta and Smith 1979 or 

Smith 1980 paper presented at th is  conference) has referred to these stars as the "53 

Persei va r iab les . " ]  

4. EFFECTS OF SLOW ROTATION ON NONADIABATIC, NONRADIAL FREQUENCIES 

I t  is  we l l  known tha t  slow r o t a t i o n  w i l l  cause those f requenc ies  of non- 

ax isymmetr ic  modes which are charac te r i zed  by a given " l a t i t u d i n a l "  spher ica l  

harmonic to be s p l i t  in to  2~ + I "sublevels." I f  the angular ro ta t ion ve loc i t y  ~ is  

constant throughout the star,  t h i s  s p l i t t i n g  is usual ly expressed as fo l lows:  

: ~o + ~' (18) 

m' : -m~ (1 - C ) ,  (19 )  

where subscript o denotes the nonrotating f rac t ion  and the magnitude of the quant i ty  
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Table 1. B Cephei Par t i a l  Results (Nonradial)  

7 M e , ~ = 2 

Stage Mbo I Mode Per. (h r . )  n' n' ( r a d i a l )  

Pl 1.613 -0.58 

0 -3.4 f 2.110 -0.59 ~ -0.3 

+ 3.499 -0.79 gl  

Pl 2.441 -0.56 

1 -3.7 f 3.103 -0.51 - -0.4 

g~ 4.506 -0.58 

Pl 3.668 -0.61 

2 -3.96 f 4.515 -0.46 ~ -0.4 

g~ 5.826 -0.41 
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STAGE 2 
) . = 2  

r~' : -0 .46  

dw 
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Figure 2. Calculation showing driving in the v ic in i t y  of the location of the bump 
mechanism for a 7 M e model. 
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C depends upon the structure of the star. The value of C also depends on the 

eigenfunction appropriate for the part icular mode of osci l la t ion;  this eigenfunction 

may be derived e n t i r e l y  on the basis of adiabat ic theory ( i .e. ,  no nonadiabatic 

ef fects  need be taken into account). In addi t ion,  i t  can be shown that C can be 

calculated by use of the eigenfunctions appropriate to the nonrotatin 9 state of the 

star. This fact derives ult imately from the existence of a variational principle for 

l i nea r ,  adiabat ic ,  nonradial osc i l l a t i ons .  In other words, an error  of order ~ in 

the eigenfunctions w i l l  only produce an error of order ~2 in the eigenvalue. 

The above s p l i t t i n g  arises so le ly  from the Cor io l i s  forces, and would be 

present even in a star that is rotating so slowly that departures from sphericity are 

negligible. 

The question then arises as to the r e l a t i v e  s t a b i l i t y  of these various 

sublevels, a question which does involve nonadiabatic effects. An attempt to answer 

th i s  question was made by Hansen, Cox and Carrol l  (1978), who calculated the 

appropriate s tab i l i t y  coefficients by use of quasi-adiabatic approximation involving 

only the adiabat ic eigenfunctions. I n te res t i ng l y  enough, they found that the 

sublevels corresponding to prograde (m <0) azimuthal running waves were s l i g h t l y  

less stable than retrograde (m > O) waves. 

In an attempt to improve upon this situation, we have t r ied to compute this 

sp l i t t ing  and the associated s tab i l i t y  of the sublevels on the basis of nonadiabatic, 

nonradial o s c i l l a t i o n  theory. However, attempts to derive an integral expression 

analogous to C in equation (19), but invo lv ing only the nonadiabatic, nonrotating 

eigenfunctions have been r e l a t i v e l y  unsuccessful. We suspect that  the reason for  

this fa i lure is that a variational principle for nonadiabatic, nonradial osci l lat ions 

does not ex is t .  Therefore, we fear that  the nonadiabatic eigenfunctions for  the 

(slowly) rotating configuration must f i r s t  be computed in order to obtain the desired 

s tab i l i t y  information. Nevertheless, an integral expression, such as that referred 

to above, should serve as a valuable check on the f i na l  resu l ts .  Work is now in 

progress on this project. 
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ABSTRACT 

Beta Cephei stars which are located in clusters and associations can be used 

to gather information on their evolutionary phase when they are placed on the color- 

magnitude diagram. A tentative study is presented which attempts to use this idea to 

answer several important questions concerning B Cephei stars. 

I. INTRODUCTION 

Beta Cephei stars in clusters and associations are of Special interest 

because the position in the color-magnitude diagram of these variables may provide 

information about their phase of evolution. 

Jakate (1978) demonstrated that the position of the small "gap" in luminosity 

vs. temperature graphs, which corresponds to the core hydrogen exhaustion phase in 

the post main-sequence evolution of an open cluster, could be used to determine the 

evolutionary state of the B Cephei stars belonging to the cluster. He applied this 

technique to NGC 4755 and NGC 3293 and found that the B Cephei stars belonging to 

these clusters l ie  below the gap observed by Feast (1958). From this, he concluded 

that these B Cephei stars are in the core-hydrogen burning phase of their evolution. 

Although there are only two such open clusters known which contain B Cephei 

stars, eight of these variables are found within approximately five associations and 

subgroups. Jakate's technique could not be applied to these associations, because of 

the d i f f i c u l t y  of determining the position of the gap in their  th in ly  populated 

color-magnitude diagrams. Therefore, i t  was decided to determine the luminosity 

level of the gap theoret ical ly from published evolutionary tracks. This allows a 

comparison of the positions of the B Cephei stars belonging to the associations. 

Several attempts have been made in the past to find observational parameters 

that can be used to separate B Cephei stars from non-variables in various planes 

(e.g., Lesh and Aizenman 1973; Watson 1972; Jones and Shobbrook 1974; Shobbrook 

1978). In a recent review paper, Lesh and Aizenman (1978) concluded that there is no 

obvious observational parameter that uniquely separates the variables. Part of the 

reason for this failure could be that the "other B stars" used for this purpose were 
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never checked for constancy. For example, several of the "other B stars" of 

Shobbrook's (1978) sample have been identified as "slow" variables in recent surveys 

(Balona 1977, Jerzykiewicz and Sterken 1977). 

Jerzykiewicz and Sterken (1978) and Jakate (1979) plotted the positions of 

known B Cephei stars and of several stars verified to be constant in the Co-6 and [u- 

b]-B planes respectively. I t  is evident from these plots that the 6 Cephei 

instabi l i ty strip has a f in i te  width and that constant stars, in general, seem to l ie  

outside this strip. These diagrams are analyzed further in Section 4 and are used to 

l i s t  some associations and clusters which should be searched for new B Cephei stars. 

2. ISOCHRONES AND NGC 4735 

Evolutionary tracks of stars between 5 and 20 M e (X,Z = 0.70, 0.03), as 

calculated by de Loore et al. (1979), were used to obtain three sets of isochrones of 

ages 5, 7, and 9 x 106 years. These isochrones were then used to establish the 

luminosity level of the beginning of the "gap" or, in other words, the end of the 

core hydrogen burning phase. This level was assumed to be the point at which the 

f i rs t  increase in temperature takes place during the post main-sequence evolution of 

a star. Isochrones obtained on the log Te-Mbo I plane were converted to the Co-B 

plane using a linear relation between c o and e e = 5040/Te; this relation was given by 

stars for which Code et al. (1976); Schild, Peterson and Oke (1971); and Underhil l, 

Divan, and Prevot-Burnichon (1979) determined effective temperatures. A l inear 

relation between o e and the bolometric correction was determined with the data of 

Code et al. (1976), and the B-M v relat ion given by Crawford (1978) was used. These 

isochrones extend only to the beginning of the gap. 

Figure 1 shows the comparison of NGC 4755 and the isochrones on the Co-B 

plane. The position of the gap, as given by Feast (1958), is also indicated. The 

uvby6 photometry data for the cluster is from Perry et al. (1976), who estimated i ts 

age (from three data/information sources) to be 7 ± I x 106 years. The observational 

zero age main sequence (ZAMS) (Crawford 1978) l ies considerably above the theoretical 

main sequence, a discrepancy which has been discussed by Lesh and Aizenman (1973); 

Shobbrook (1978) and others. 

I t  is clear from Figure I that the two B Cephei stars, F and IV-18, are below 

the observational and theoretical gap. This finding confirms the results Of Jakate 

(1978), who concluded that the B Cephei stars in NGC 4755 are going through the i r  

core hydrogen burning phase. 

3. 6 CEPHEI STARS IN ASSOCIATIONS 

Table 1 l is ts  associations and clusters known to contain 6 Cephei stars. NGC 

3293 (Balona 1977) was omitted because no uvbyB photometry is available. With the 

exception of NGC 4755, the stars in Table I were derived from the l i s t  of confirmed B 
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Cephei variables given by Shaw (1975); NGC 4755 was taken from Jakate (1978). The 

quantity AB a is the difference in B between the brightest and fa intest  B Cephei 

members of an individual association or cluster; ACoa is defined in a similar manner. 

Masses, determined by comparing the evolutionary tracks with the location of the B 

Cephei stars, are given in the next column. The last column gives the masses for 

some of these B Cephei stars as determined by Lesh and Aizenman (1978). 

The sources of uvbyB photometry and membership c r i t e r i a  in Table I are: 

Glaspey (1971) for Upper Sco, Lower Cen and Upper Cen; Perry et al. (1976) for NGC 

4755; and Crawford and Warren (1976) for the Lacerta OBI associations. The 

associations, subgroups and clusters l is ted in Table 1 are given in order of 

increasing age, as determined by comparison of their Co-B diagrams; generally, this 

order is in agreement with comments found in the three sources mentioned above. 

However, the overall age spread of these associations is small; in particular, Upper 

Sco, Lower Cen and NGC 4755 seem to be of about the same age. 

Figures 2 and 3 show Co-B diagrams for the individual associations; a 

comparison with the set of isochrones is also provided. The positions of the B 

Cephei stars are indicated for each case. All of the fa inter  B Cephei members of 

these associations are clearly below the gap including some of the brighter members. 

In these diagrams, the brighter B Cephei member of an association is expected to 

occupy an ambiguous position very close to the gap; this is because i t  is the star 

which could be at the end of the core hydrogen burning phase (e.g., ~ Lup and B Cru). 

The quantity A8 a seems to be constant (AB a = .015 ± .003); this is probably a 

ref lect ion of the mass range, at a given cluster age, of stars going through the 

Cephei phase. I f ,  in fact, these B Cephei stars are in the i r  core hydrogen burning 

phase of evolution, i t  can be assumed that there are two definite points (arbitrar i ly 

designated a and b) on the evolutionary track of a massive star between which i t  goes 

through the B Cephei phase; the later point is probably close to the end of the core 

hydrogen burning phase. I t  must be noted that th is conclusion is based upon a 

relatively small number of associations and clusters, but the fact that this quantity 

(ABa) seems consistent with the width of the observational i n s t a b i l i t y  s t r ip  is 

striking. 

Accepting this hypothesis, an estimation of the duration of the B Cephei 

phase as suggested by this data on clusters and associations may be attempted. Let 

us assume the mean age of the cluster to be 7 x 106 years and the mean mass of i t s  

faintest B Cephei member to be 13 Me" I f  we further assume that this faintest member 

is at position "a" in i ts B Cephei phase, then i t  has 2.5 x 106 years before reaching 

position "b" or the end of i ts  core hydrogen burning phase. I t  is interesting to 

note that, with reference to i ts  mean mass of 13 Me, this is about 25% of i t s  total 

l ifetime off the main sequence. This estimate is in agreement with the frequency of 

occurrence of B Cephei stars determined for a complete mass range of 8 to 20 M e 



151 

Table I .  

Beta * Mass From 
Cephei AB a aco Mass Lesh and 
Members Aizenman 

(1978) 

Sco 16 14 
Upper Sco .017 .127 

e Oph 12 12 

B Cru 17 > 15 
Lower Cen .016 .083 

Cen 13 

F 16 
NGC 4755 .01 .080 

IV-18 13 

Lacerta OB Ib 12 Lac 14 13 

Lacerta OB la 16 Lac 12 14 

Lup 14 14 
Upper Cen .012 .011 

Lup 12 

* From the l i s t  of confirmed Beta Cephei stars, Shaw (1975) except 
for NGC 4755 (Jakate 1978). 
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(e.g., Percy 1974 and Shaw 1975). 

The above discussion should be considered to be preliminary because of 

l imited data available. However, i t  should be suff ic ient to further stress the 

importance of studying B Cephei stars in open clusters and associations. 

i 

4. OBSERVATIONAL INSTABILITY STRIP 

Two aspects of the observational i ns tab i l i t y  str ip for B Cephei stars are 

discussed in the l i terature:  the width of the str ip and the presence of non- 

variables within i t .  Due to the existence of different kinds of variables in this 

part of the H-R diagram (Smith 1977), i t  is rather important that the non-variables 

used to define the str ip are constant stars and not just "other B stars" or "non-B 

Cephei" variables. 

The [u-b]-B and Co-B diagrams (Jakate 1979; Jerzykiewicz and Sterken 1978; 

Sterken and Jerzykiewicz 1980) have demonstrated the f i n i t e  width of the 

observational instabi l i ty strip and the visual location of the constant stars outside 

of this region. I t  was thought that the separation obtained between the B Cephei 

stars and the constant stars was not related to the indices employed in these cases, 

but was instead due to the fact that "constant stars" were used rather than "other B 

stars." This procedure was justif ied mainly because both c o and [u-b] are reddening- 

free indices and are related to the effective temperature of B stars. However, the 

i ns tab i l i t y  str ip,  in the case of the Co-B diagram, is s igni f icant ly  wider (AS = 
.025) than the strip on the [u-b]-~ plane (AS = .015). This prompted us to check for 

the eventual "discrimination" property of the Co-S, Q-B and [u-b]-B planes. 

This test was attempted for two clusters: NGC 4755 and h and~ Persei. 

Figure 4 shows plots of Co-S, Q-B and [u-b]-B for NGC 4755. The photometry data are 

from Perry et al. (1976) and the information on constant stars and on B Cephei and 

other variables is from Jakate (1978). The number of B Cephei stars expected on the 

basis of Co-B and Q-B diagrams is significantly larger than that expected from the 

[u-b]-B diagram. I t  is again evident that the instabil i ty strip in the Co-B and Q-B 

diagrams is more densely populated and includes approximately three times more 

constant stars than the [u-b]-B str ip. The information on the va r i ab i l i t y  of the 

stars in NGC 4755 is based on only two nights of observations (Jakate 1978). 

Similar diagrams are presented for stars in h and × Persei (Figure 5). The 

photometry information is from Crawford (1970) and that on the nature of the 

variabi l i ty is from Percy (1972). However, the errors on the indices used are large 

(see error bars in the figure). 

We could not find an explanation of the apparently greater efficiency of the 

[u-b]-B diagram, part icular ly when the errors in c o , Q and [u-b] do not d i f fe r  

s i g n i f i c a n t l y  and both are good indicators of effective temperature. The 

verification of [u-b] as a more selective parameter for characterizing B Cephei stars 

could have large implications for the study of these stars. For example, the 
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traditional technique for determining B Cephei evolutionary phases by comparing the 

theoretical evolutionary tracks with the location of the instabi l i ty strip (Lesh and 

Aizenman 1973) depends not only upon the chemical composition and the opacities used 

(Stothers 1976), but also upon the form of the H-R diagram used to represent the 

strip, 

The purpose of this paper was to stress the importance of studying B Cephei 

stars in clusters and associations for various reasons. We believe that a systematic 

study of stellar variabi l i ty in open clusters and associations wil l  provide insight 

into the following questions: 

Are all the B Cephei stars in the core hydrogen burning phase of evolution? 

Where does the B Cephei phase begin and end? 

Does the [u-b] index real ly  discriminate better than other formerly used 

indices? 

The results presented in this paper should be considered as tentative due to 

insufficient data. Figures 6, 7, 8, and 9 give [u-b]-B diagrams for some interesting 

clusters and associations in which we plan to search for B Cephei stars. 

This investigation was supported by the National Foundation of Collective 

Fundamental Research of Belgium (F.K.F.O.) under no. 2.9009.79 (SMJ) and no. 

2.0028.79 (CS). 
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ABSTRACT 

A discussion of the long period R Coronae Borealis stars is presented. The 

constraints on theoretical models imposed by their age, kinematics and distribution 

led to dif f icult ies in formulating an evolutionary sequence to the formation of this 

type of star. Several types of models are investigated and the results given. 

1. INTRODUCTION 

The R Coronae Borealis stars and other hydrogen-deficient carbon stars (Hd C 

stars) are usually assumed to have masses less than or approximately equal to one 

solar mass in order to be consistentwith their extreme old disk/bulge kinematics and 

distribution. The common presumption is that mass loss which bares the helium core 

has been important in the evolut ion of these stars; binary mass transfer is the 

suspected mechanism, despite the lack of any evidence for duplicity in these stars. 

Paczynski (1971) argued that RCrB stars cannot result from ordinary evolution 

and mass loss (whatever the mechanism). His s t ructura l  studies gave two 

requirements: the total mass, carbon core plus helium envelope, must be in the range 
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0.8 M e to 2 M e (M e = solar mass). To provide a core at any stage of ordinary 

evolution which has the requisite total mass and which has a su f f i c ien t l y  massive 

helium envelope (or the potential for  i t )  requires an i n i t i a l  total  mass ~ 5 M e . 

Such a mass is in severe contradiction with the kinematics. Paczynski (1978) 

suspects a process involving a hot bottom envelope (Scalo, Despain and Ulrich 1975) 

wherein the hydrogen-rich red giant envelope is convected downward to the v ic in i ty  of 

the hydrogen-burning shell and converted entirely to helium. When occurring quickly 

at an advanced stage of evolution, such a process would not affect the net l ifetime 

of the star appreciably and would accommodate a low mass consistent with the 

kinematics. 

An important question thus arises as to whether the masses of RCrB stars are 

1M e or significantly above that l imi t .  In the latter case, the evolution is even 

more anomalous than suggested by Paczynski. The RCrB stars must actually have lived 

longer than indicated by their kinematics. Wheeler (1978, 1979) has suggested that 

excess helium and an increased l i fe t ime may be related phenomena and that these 

shared properties may be traced from blue stragglers through helium stars to Type I 

supernovae. 

One of the most effective ways to establish the mass of the RCrB stars; and 

hence the existence of an anomalously long lifetime, is through an examination of the 

observed pulsational properties. Preliminary studies of the linear and nonlinear 

pulsations of helium stars have been undertaken by Trimble (1972) and by Wood (1976). 

We are systematically restudying this problem, using more recent and higher estimates 

of the effective temperature (RY Sgr) and of the high carbon abundance. The 

requirements that the stars have the proper pulsation period ~ 40 days) while being 

both pulsationally unstable and dynamically stable (see § 3 for meaning of this term) 

may give t ight  theoretical constraints on the mass, luminosity and effect ive 

temperature of these stars. Of the approximately th i r ty  known RCrB stars, at least 

three of them are observed to have Cepheid-like pulsations superimposed on the i r  

longer period brightness variations. These are RY Sgr, UW Cen and RCrB. 

2. LINEAR MODELS 

Envelope models of stars with masses between 0.8 M e and 3 M e and with 

luminosities in the range from 3 x 103 L e to 2 x 104 L e (L e = solar luminosity) have 

been investigated. Linear nonadiabatic calculations with the techniques described by 

Castor (1971) have been used to identify a number of these models with periods close 

to the observed values. The fu l l  hydrodynamic equations with radiation flow treated 

in the di f fusion approximation were used. Opacity and equation of state data are 

taken from the Huebner et al. (1977) opacity l ibrary for a mixture of 0.90 helium and 

0.10 carbon by mass (referred to as HE9C1). Since these l ib rary  opacities are 

available only for temperatures of 12,000 K or greater, the Stel l ingwerf (1975) 
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opacity formula has been used for lower temperatures. Because of the small amount of 

mass contained in these low temperature layers, the use of this formula should have 

l i t t l e  effect on periods and stabi l i ty,  but could have some effect on the l imit ing 

amplitude of l ight and velocity variations. 1 

Figure I is a plot of log ~o (~o = fundamental period) as a function of log 

Tef f (Tef f = effective temperature). The approximate locations of two of the variable 

stars, RY Sgr and RCrB, are indicated. We note that i t  is only for the higher 

luminosit ies that we are able to attain the observed periods near the effect ive 

temperatures for these stars. The Tef f value for RY Sgr (7100 K ± 500 K) was 

recently determined by Schonberner (1975). Even at the higher luminosities, we would 

predict a somewhat lower effective temperature than those observed. 

Figure 2 summarizes the linear fundamental blue edge data. For comparison, 

the fundamental blue edge for normal composition Cepheids (X = 0.70, Z = 0.02) with 

evolutionary masses is approximately 700 K cooler than the edge indicated for the 2 

M e and 3 M e models. The important thing to note is that, for large L/M (as in the 1 

M e case), the blue edge is considerably bluer than for the higher masses. This leads 

to a rather extensive range in Tef f for which pulsational i n s t a b i l i t y  might be 

expected. As we wi l l  see, however, i t  may well be that at these large L/M values the 

models may, in fact,  be unstable in the sense that they tend to throw off  the outer 

envelope. This w i l l  be discussed in § 3. For the models that are pulsat ional ly 

unstable, the growth rates tend to be quite large, with kinet ic energy e-folding 

times that are typically one period or even less. 

3. NONLINEAR MODELS 

A sequence of models at L/L e = 1.13 x 104 (Mbo I = -5.38) was studied, using 

the nonlinear theory. The masses investigated were 1.2 M B, 1.4 M e , 1.6 M e and 2.0 

M e . The Tel f was fixed at 6300 K. This value, although somewhat lower than that 

observed for RY Sgr, was chosen in order to assure that the models were to the red of 

the blue edge of the i n s t a b i l i t y  str ip.  In al l  cases, a veloci ty d is t r ibu t ion  was 

imposed on the equilibrium model which had the same radial distribution as the linear 

model adjusted to give 10 km/s at the photosphere. Table 1 l i s t s  the models along 

with their periods and l imit ing amplitude behavior. 

The 1.2 M o and 1.4 M e models were dynamically unstable in the sense that the 

pulsations grew rapidly and appeared to lead to ejection of some of the mass. 

Unfortunately, i t  was not possible to fol low th is  process since the large 

compressions in the outer layers caused a reduction of the integration timestep to 

1Subsequent calculations have shown that the opacity and equation of state in 
these outer regions can have a fa i r ly  important effect on periods. 
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Table 1. Nonlinear Models at L/L e = 1.13 x 104 and Tef f = 6300 K 

Mass ~(days) aMbo I AR/R AVradial (km/s) 

1.2 M e 44 - - - 

1.4 43 - 

1.6 39 2~0 0.17 27 

2.0 36 2~2 0.23 40 
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such an extent that the calculation could not proceed. Figure 3 shows the growth of 

the photospheric radius variation for the 1.4 M e model. The radial velocity of the 

photosphere reached a maximum value of about 50 km/s. The escape velocity for this 

mass and radius is about 80 km/s. Figure 4 shows the radial velocity behavior of the 

1.6 M e model. For this model and the 2 Mm case a stable l imi t  cycle is attained. We 

note that the variation~ are not as smooth as those of the more massive Cepheids (for 

example, see King et al. 1973). The magnitude of the radius and velocity variations 

are in reasonable agreement with observations; however, the l ight  variation is 

considerably larger than observed and quite ragged in appearance, as noted by Trimble 

(1972). This may be due to an incorrect treatment of radiation in the outer layers, 

or may suggest the existence of running waves which, i f  taken into account, could 

lead to a decrease in the l ight  variation. These questions remain for future 

investigation. 

4. CONCLUSIONS 

There are several interesting results to be found in these preliminary 

calculations: (1) there is qualitative agreement between these results using newer 

opacities and the ear l ier  ones of Trimble (1972) and Wood (1976); (2) models with 

suf f ic ient ly  large L/M have a very hot blue edge for their  i ns tab i l i t y  s t r ip ;  (3) 

very large L/M values lead to dynamically unstable models which appear to eject mass 

and therefore may not be realistic descriptions for the pulsating RCrB stars; and (4) 

for the sequence studied, i t  appears that a reasonable mass could be~ 1.5 M e . The 

fact that this is above the Chandresekhar l imi t  strengthens the suggestion made by 

Wheeler (1978) that these hydrogen-deficient carbon stars may indeed by among the 

precursors of Type I Supernovae. 
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SOME COMMENTS ABOUT B CEPHEI STARS 
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The excitation mechanism of B Cephei stars has been an enigma for a long 

time. We wil l  discuss here a few conjectures in connection with this problem. 

Some B Cephei stars are plotted in a period luminosity plane (Figure 1) where 

periods, effective temperatures and absolute magnitudes were obtained from Lesh and 

Aizenman (1978), and bolometric corrections were obtained from the table by Code et 

al. (1976). The periods belonging to a multiperiod B Cephei star are connected with 

a horizontal l ine. Theoretical relations for some modes of Oscil lation in the 

instabil i ty strip awe also described (lines of constant Q, where Q is the "constant" 

in the period-mean density relation). This figure shows that several modes of 

oscillation are probably excited in many cases and that many of those have Q values 

less than that of the fundamental radial oscillation. 

Recently, Stell ingwerf (1978) suggested that a possible driving mechanism 

might be found in the opacity bump near the He ionization zone. Although driving by 

this opacity bump is not great enough to excite radial osci l lat ions (Stell ingwerf 

1978) or nonradial oscillations (Saio et al. 1980) in the massive stars, the locus of 

maximum instabil i ty of this mechanism in the H-R diagram is almost parallel to the B 

Cephei i ns tab i l i t y  str ip. The effective temperatures in this locus for the 

fundamental radial mode are, however, lower than the effective temperatures in the 

instabi l i ty strip of B Cephei stars by about 0.1 in the logarithm. 

Cox and Stellingwerf (1979) discussed some consequences of the condition of 

maximum ins tab i l i t y  by this driving mechanism in the envelope. After some 

manipulation of equation (1) in their  paper, we have for a given equilibrium 

luminosity: 

QTe5 ~ constant, (1) 

for maximum instability. Equation (I) suggests that, in the H-R diagram the locus of 

maximum instabil i ty for the bump mechanism has a higher effective temperature for the 

modes with smaller Q values. The smallest Q value in Figure 1 is less than that of 

the fundamental radial pulsation by a factor of approximately 2. Therefore, the 

locus of maximum ins tab i l i t y  for the modes with the smaller Q values has a higher 

effective temperature than that for the fundamental radial mode by 0.06 in the 
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Figure 1. Several B Cephei stars placed in the period luminosity plane. The range 
of periods for multiperiodic B Cephei stars are indicated by the short horizontal 
lines. 
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logarithm. This may imply that B Cephei stars prefer modes with smaller Q values 

than the Q value for the fundamental radial oscillation. 

I f  the oscillations of 6 Cephei stars are excited only by the bump mechanism 

in the envelope of the star, the width of the instabil i ty strip might be as large as 

alog T e 3 0.06 as discussed above; this is contrary to the observed narrowness of the 

ins tab i l i t y  str ip for B Cephei stars (e.g., Lesh and Aizenman 1978; Sterken and 

Jerzykiewicz 1980). Moreover, the observed instabil i ty strip shows the existence of 

a lower l imi t  to the luminosity of B Cephei stars which cannot readily be explained 

by an envelope driving mechanism. 

Comparison of the i ns tab i l i t y  str ip with evolutionary models in the H-R 

diagram suggests that the instabil i ty strip almost coincides with the location of the 

hydrogen exhaustion phase ("S-bend" phase), and that the lower l i m i t  to the 

luminosity of B Cephei stars corresponds to the evolutionary track of ~ 10 M e models. 

In the hydrogen exhaustion phase of stars with 10 M e to ~ 20 M e , semiconvective and 

ful ly convective zones appear and grow rapidly in the region with a gradient of mean 

molecular weight (e.g., Simpson 1971, Sreenivasan and Wilson 1978). As pointed out 

by Sreenivasan and Wilson (1978), the appearance of these zones modifies the chemical 

composition in this region and hence causes a rapid change of structure. The 

interesting coincidence between the observed instabi l i ty strip of B Cephei stars and 

the rapid appearance of semiconvective and f u l l y  convective zones in the hydrogen 

exhaustion phase tempts us to conjecture that the oscillations of 6 Cephei stars may 

be excited by a combination of the bump mechanism in the envelope and the rapid 

change of structure caused by the appearance of a convection zone in the hydrogen 

exhaustion phase. With this conjecture we can explain the narrowness and lower 

luminosity cutoff of the ins tab i l i t y  st r ip because of the requirement of the 

evolutionary phase and the associated lowest mass. 

Also, this conjecture may suggest the existence of an upper l i m i t  to the 

luminosity of 6 Cephei stars; the extent of this l imi t  is presently uncertain. The 

evolutionary models with 30 M e by Simpson (1971) and with 20 M e by Chiosi and Summar 

(1970) show that, for stars with such high masses, a semiconvection zone appears in 

the early phase of core hydrogen burning and exists continuously also in the hydrogen 

exhaustion phase. Since in these stars the rapid appearance of convective and 

semiconvective zones does not occur, we can expect that oscillation is not excited in 

these stars. I t  is interesting to note that the luminosity of ~1CMa (the most 

luminous B Cephei variable in the 1978 H-R diagram by Lesh and Aizenman) is nearly 

equal to the luminosity at the "S-bend" phase of the models with ~ 20 M e . 

In summary, we are suggesting that the instabi l i ty of the B Cephei stars may 

be due to a combination of envelope driving (perhaps via the "bump" mechanism) and 

driving (in some manner, such as that suggested by Vandakurov 1977) in the deep 

interior due to a rearrangement of the internal structure. 
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OBSERVATIONAL EVIDENCE FOR GLOBAL OSCILLATIONS OF THE SUN: A REVIEW 

H.A. H i l l  
Department of Physics 
Univers i ty  of Arizona 
Tucson, Arizona 

ABSTRACT 

The resul ts of many observations have been interpreted as evidence for  global 

osc i l l a t i ons  of the sun. The periods found in these analyses range from minutes to 

hundreds of years. The shorter period osc i l l a t i ons  are usual ly interpreted as the 

normal modes proper whereas the longer  period fea tures  may be man i fes ta t i ons  of  

superpos i t ions  and/or  non l i nea r  coup l ing  of these normal modes. The work done to 

date in th is  broad area is reviewed. 

1. INTRODUCTION 

The general consensus is that phenomena ex is t  on the sun which are to varing 

degrees pe r iod i c  in t ime.  There have been i n v e s t i g a t i o n s  where the per iods 

considered range from minutes (Deubner 1976) to hundreds of years (Wolff 1976) and 

inc lude  the wel l  known eleven year so la r  cycle.  Over the var ious subsets of t h i s  

period range, evidence has been put fo r th ,  at d i f f e r i ng  confidence leve ls ,  in support 

of conjectures that global osc i l l a t i ons  are manifested in the various observations. 

In each case, the sought a f ter  signature in the observations is the exceedingly long 

term s t a b i l i t y  expected for  such global osc i l l a t ions .  

The demonstrat ion of the ex is tence of global  o s c i l l a t i o n s  has been qu i te  

d i f f i c u l t  fo r  several reasons. In the case of  very shor t  per iod and the we l l  

observed f i v e  minute mode, i t  has not been poss ib le  to observe the phase of these 

o s c i l l a t i o n s  over long enough t imes to c l e a r l y  e s t a b l i s h  a global charac ter  (c f .  

Gough 1980a). At the other  end of the spectrum, a long per iod phenomenon observed 

in,  say sunspot number, may be understood as the resu l t  of beats between ind iv idual  

g lobal  o s c i l l a t i o n s .  This leads to the u n s e t t l i n g  s i t u a t i o n  where the postu la ted 

global osc i l l a t i ons  producing the beats are not d i r ec t l y  observed and furthermore, 

f o r  these types of phenomena i t  is  c u r r e n t l y  not understood how such o s c i l l a t i o n s  

af fect  the primary observable. In the intermediate range where one presumably has a 

be t t e r  chance of d i r e c t l y  de tec t ing  an o s c i l l a t i o n  d i r e c t l y  over long per iods of 

t ime,  the observat ions are ex t remely  d i f f i c u l t .  This i s  because any global  

osc i l l a t i ons  present in th is  period range must have small amplitudes. 
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A discussion of the observational evidence for global osci l lat ions can be 

conveniently broken into two parts: 1) a discussion of the long term stabi l i ty of a 

periodic phenomenon and, 2) the solar origin of the phenomenon. The latter problem 

has arisen because of the apparent small signals associated with global oscillations 

in the intermediate period range. In some cases, i t  is quite apparent that the 

phenomenon is solar but i t  is d i f f icu l t  to identify the global character. In others, 

i t  has been easier to establish the long term s tab i l i t y  of a periodic featurebut 

quite d i f f i c u l t  to establish the origin as solar. During the la t te r  part of the 

seventies, both of these general problems have received considerable attention and 

many interesting developments have been reported. I t  is these developments that are 

addressed in the following sections. 

2. REPEATED PHENOMENA 

The number of reported periodic features with apparent long term stabi l i ty in 

the period range from f ive minutes to ~ 100 years is quite large. Should a 

significant fraction of these be real, then the oscillation spectrum is very rich and 

bodes well for the seismic sounding of the sun. The period range has been extended 

to several hundred years because such an observed period could possibly be the direct 

manifestation of a global mode or possibly beats between two or more shorter period 

global modes. 

3. FIVE MINUTE OSCILLATIONS 

Those solar oscillations having a period of around five minutes are the best 

documented. The i n i t i a l  evidence for their  existence was f i r s t  reported at the 

I.~U. Symposium no. 12 in 1960 (Leighton 1960). They may be observed by monitoring 

brightness changes of the Continuum radiation (i.e., the radiation not associated 

with spectral l ines), by observing intensity changes in the spectral lines (which 

could be due to temperature changes in the atmosphere produced by the oscillations), 

or by studying surface velocities using the Doppler shifts of spectral lines. 

These solar oscillations typically manifest themselves as a small scale (less 

than 5000 km) velocity f ie ld  in the solar photosphere and low chromosphere. The 

motions are predominantly radial with a period of about 300 sec. The l ifetime of a 

given osci l la t ion,  as measured by the decay of the velocity-t ime autocorrelation 

function, is only about two periods of oscillation. 

The f ive minute osci l lat ions have often been analyzed theoret ical ly as a 

purely atmospheric phenomenon (Noyes and Leighton 1963; Souffrin 1966; Stein 1967; 

Kahn 1961; Whitaker 1963; Uchida 1967; Thomas, Clark and Clark 1971). These analyses 

have treated the photosphere as a r ig id boundary or as a layer with an imposed 

turbulent boundary condition. Within the atmosphere both acoustic waves and gravity 

waves have comparable frequencies although the spatial characteristics are distinct; 
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because most observational work has dealt p r imar i l y  wi th frequency character is t ics  of 

the f i ve  minute osc i l l a t i on ,  some controversy over the actual nature of the waves has 

resu l ted .  I n t e r p r e t a t i o n  of these p a r t i c u l a r  o s c i l l a t i o n s  as acoust ic  modes is 

presented in the f i r s t  four of those papers mentioned above whi le the last  three have 

treated the osc i l l a t i ons  as grav i ty  modes. Frazier (1968) f i r s t  offered persuasive 

evidence that at least a major port ion of the osc i l l a t i ng  power of the f i ve  minute 

osc i l l a t i ons  is in the form of acoustic modes. 

A d i f fe ren t  class of models based upon trapping of acoustic waves below the 

photosphere has been considered in some detai l  by U l r i ch  (1970), Leibacher and Stein 

(1971), and Wol f f  (1972). These models o f f e r  an exp lana t ion  f o r  the ex is tence of 

wave motions in a layer of the quiet solar atmosphere and in a frequency band where 

waves are essent ia l l y  nonprogressive. S imi lar  resul ts have been obtained by Ando and 

Osaki (1975), who treated these osc i l l a t i ons  as global nonradial modes. 

The "modal" charac ter  of  these overs tab le  subphotospher ic o s c i l l a t i o n s  is  

t h e o r e t i c a l l y  charac te r i zed  as a concen t ra t ion  of power along r idges in  a f i g u r e  

where the axes are k and ~ ( re fe r red  to as the k -mdiagram) ,  k represent ing  the 

horizontal wavenumber and m the eigenfrequency. Despite extensive work, th i s  "modal" 

character has only recent ly become evident in observations, p r imar i lY  because of the 

large accumulation of data necessary for the computation of k-~ spectra wi th adequate 

s t a t i s t i c a l  s t a b i l i t y .  

The f i r s t  clear resolut ion of the observed power into ridges on the k-m plane 

is found in the work by Deubner (1975). On the basis of fu r ther  work of th is  nature, 

Rhodes, U l r i ch  and Simon (1977) have concluded tha t  the f i v e  minute o s c i l l a t i o n s  

c lea r l y  represent nonradial p mode osc i l l a t i ons  in the solar envelope. 

Are these f i ve  minute osc i l l a t i ons  global modes? Deubner, Ulr ich and Rhodes 

(1979) and Claver ie  et a l .  (1980) have examined o b s e r v a t i o n a l l y  the long term 

s t a b i l i t y  of these modes and found coherence times at least as long as the length of 

the observat ion ( i .e . ,  9 hours). However, as discussed by Gough (1980a) t h i s  is  not 

s u f f i c i e n t l y  long to demonstrate the global  character  of  these modes. More 

observational work is required before th is  question can be answered. 

4. OSCILLATIONS WITH PERIODS BETWEEN FIVE MINUTES AND ONE HOUR 

The proof of the existence of solar osc i l l a t i ons  with periods between f i ve  

minutes and approx imate ly  one hour would be s i g n i f i c a n t  s ince these o s c i l l a t i o n s  

might  represent  low order  p and g modes. With the i n t r o d u c t i o n  of  a new 

observa t iona l  technique used at SCLERA I ,  the f i r s t  evidence was obtained which 

indicated that large scale osc i l l a t i ons  in th i s  period range could be detected (H i l l  

ISCLERA is  an acronym fo r  the Santa Cata l ina  Laboratory  f o r  Experimental  
Re la t i v i t y  by Astrometry j o i n t l y  operated by the Univers i ty  of Arizona and Wesleyan 
Univers i ty .  
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and Stebbins 1975). Observations at SCLERA using these techniques (basica l ly  t ime 

sequences of solar diameter measurements) have continued to indicate the existence of 

osc i l la t ions  of th is  character (H i l l ,  Stebbins and Brown 1976; Brown, Stebbins and 

Hi l l  1978; H i l l  and Caudell 1979; Caudell et al. 1980). 

These periodic phenomena have proven d i f f i c u l t  to study. The osc i l la t ions  in 

the observables are re l a t i ve l y  small making i t  quite d i f f i c u l t  to confirm the SCLERA 

r e s u l t s  by a l t e r n a t e  o b s e r v a t i o n a l  techniques and also qu i te  d i f f i c u l t  to 

discr iminate against various sources of noise (for review, see H i l l  1978). The long 

term s t a b i l i t y  or more exac t l y ,  phase coherence, has been f a i r l y  wel l  es tab l ished 

observational ly (Hi l l  and Caudell 1979; Caudell and Hi l l  1980; Caudell et al. 1980) 

and discussed by Gough (1980a). This resul t  has been interpreted as strong evidence 

for the solar or ig in and global character of the osc i l la t ions .  

Conf i rmat ion of the resu l t s  from SCLERA have been sought by several 

invest igat ions (cf. H i l l  1978 for review). I t  now appears that the work of Claverie 

et al. (1980) does represent a confirmation at the shorter end of th is  period range. 

The mean spacing of the periods from 6 to 9 minutes reported by H i l l ,  Brown and 

Stebbins (!976), (published in Table 2.1 of H i l l  1978) agrees wi th in an experimental 

e r ro r  of 3% wi th the mean spacing reported by C laver ie  et a l .  (1980) [ t ak ing  in to  

account the s e n s i t i v i t y  of the SCLERA work to only even ~ in cont rast  to both even 

and odd ~ sens i t i v i t y  of the results of Claverie et al. (1980)]. 

I t  has been possible to demonstrate phase coherency for  a number of the modes 

in t h i s  period range (H i l l  and Caudell 1979; Caudell and H i l l  1980; Caudell et a l .  

1980). To date the phase coherency has been established for  12 modes over a period 

of 23 days. This coherency in phase is the best evidence current ly  avai lable which 

s imul taneous ly  points to the so lar  o r i g i n  of the o s c i l l a t i o n s  and the global 

character. Par t icu lar ly  i t  is quite d i f f i c u l t  for  ef fects in the earth's atmosphere 

to produce such phase coherency. In th is  regard i t  has been possible to make use of 

the phase coherence to measure the cont r ibuton of the ear th 's  atmospheric 

d i f fe ren t ia l  ref ract ion to these observations (Knapp, H i l l  and Caudell 1980) and to 

show that th is  noise is an order of magnitude below the observed osc i l la t ions .  

5. OSCILLATIONS WITH PERIODS NEAR 2h40 m 

O s c i l l a t i o n s  wi th periods near 2h40 m have been detected using v e l o c i t y  

observat ions by Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay 

(1976). The reported amplitude is of the order of Im/sec which is near the l i m i t  of 

observing technology. This has posed considerable d i f f i c u l t y  in c lear ly  establ ishing 

the osc i l l a t ion  as a solar feature. 

The pr imary th rus t  in t h i s  region has been furn ished by the group at the 

Crimean Observatory. They reported in 1978 (Kotov, Severny and Tsap 1978) that the 

o s c i l l a t i o n s  were observed in 1974, 1975, and 1976 and shown to be phase. The 
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in i t ia l  attempts at Stanford (Dittmer 1977) to confirm these results from the Crimea 

were unsuccessful. After the in i t ia l  work, staff from these two observatories have 

worked together in an effort to resolve their divergent results. This collaborative 

ef for t  has been successful to date with the publication in 1979 (Scherrer et al. 

1979) of a cautious announcement of the confirmation of the osci l lat ion at 2h40 m. 

This is indeed a significant result. 

Scherrer et al. (1979) published a rather impressive figure which suggests 

the phase coherence of the osci l lat ions from 1974 through 1978. This is strongly 

suggestive of a solar phenomenon, i.e., not the manifestation of the earth's 

atmosphere, and a global mode or modes of oscillation. 

6. PERIODIC FEATURES WITH PERIODS AT TWELVE DAYS 

Periodic features with periods around 12 days have shown up in the analysis 

of solar oblateness observations (Dicke 1977), of Zurich dai ly sunspot numbers 

(Knight, Schatten and Sturrock 1979) and of spectroscopic differential rotation data 

and sunspot d r i f t  velocity measurements (Kuhn and Worden 1979). In this period 

range, the identification of an oscillation as being global may pose problems more 

d i f f icu l t  than the ones encountered in actually detecting the oscillation. However, 

i t  is quite feasible to expect to see in this period range the manifestations of 

global oscillations particularly in the form of beats (see Gough lg8Ob), and as such, 

these results are considered here. 

Dicke (1977) has reported evidence for oscillations in the solar oblateness 

data obtained during the summer of 1966 (Dicke and Goldenberg 1974). Dicke's view in 

1977 as to the period of this oscillation was 12.64 days (synodic). Knight, Schatten 

and Sturrock (1979) analyzed 44520 daily sunspot numbers and found a peak in the 

spectrum at 12.07 days (synodic). Kuhn and Worden (1979) have found in their  

analysis of spectroscopically derived d i f ferent ia l  rotation coefficients an 

oscillation at 16.7 days. They also note that many frequencies in the sunspot dr i f t  

velocity measurements have periods which are multiples of 4.2 days. 

I t  remains for fu r ther  work to ascertain whether these particular 

osci l lat ions are the same or closely related. However, there does appear to be 

periodic features in this period region which may prove quite interesting in terms of 

solar seismology (Gough 1980b; Knight, Schatten and Sturrock 1979). 

7. THE SOLAR CYCLE AND LONGER PERIOD FEATURES 

Global oscillations of the sun may well be responsible to some extent for the 

very long period structures with time scales ~ 10 years. Wolff (1976) using a model 

with interacting of modes, has put forth an interpretation of the structure found by 

Currie (1973) in the power spectrum of the Zurich relat ive sunspot number. This 

pioneering work in this period domain has produced intriguing results. 
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In the spirit of Wolff's model, the spectrum analyses by Dicke (1979) of the 

daily sunspot number and the deuterium/hydrogen ([D/H]) ratio from two bristle cone 

pines is included here. Dicke has reported a very narrow peak at 22 years in both 

spectrum analyses, suggesting a stable clock inside the sun. This is just the 

property expected from global oscillations. 

These are just the beginnings of developments in this period range. New work 

should increase our insight into the mechanisms responsible for these long term 

periodic structures. 

8. SUMMARY 

Viable interpretations of observations have been put forth as evidence for 

global osci l lat ions of the sun and many fundamentally important results have 

consequently been obtained. It is apparent from this review that much work remains 

to be done to fu l l y  ascertain the practical value of solar seismology. However, 

enough independent work is currently available to indicate that solar seismology 
\ 

programs can be mounted during the 1980's with a reasonable expectation of obtaining 

new information about the solar interior. 

This work was supportd in part by the National Science Foundation and the Air 

Force Office of Scientific Research. 
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THE LATEST RESULTS OF THEVELOCITY SPECTROSCOPY OF THE SUN 1 

A. Claverie, G.R. Isaak, C.P. McLeod and H.B. van der Raay 
Department of Physics 
University of Birmingham, UK 

T. Roca Cortes 
Inst i tuto de Astrofisica de Canaries 

As part of a study designed to obtain an overal l  view of the solar surface 

through examination of low ~ value osci l lat ions, i t  was found that high sensi t iv i ty  

Doppler spectroscopy of integral sunlight in the 769.9 nm l ine of neutral potassium 

reveals several equally spaced lines of high Q centered on the well known period of 

f ive minutes. These lines are interpreted as low 4, high n overtones of the entire 

sun. 

Recent work incorporating high spatial resolution for study of f ive minute 

oscil lat ions in the solar photosphere has indicated a concentration of narrow ridges 

in the k,m diagram. Most of these osci l lat ions are global in nature, and are low n 

and high ~ value acoustic modes. 

Doppler shi f t  measurements of integral solar l ight  indicated several discrete 

lines of amplitude 0.1 to 0.3 ms - I  within the main peak of the power spectrum of the 

f ive minute osci l lat ion. These lines are found to have, on average a uniform spacing 

of 67.8 ~Hz. Line of sight velocity measurements of the whole solar disk were made 

using optical resonance spectroscopy comparing the posi t ion of the Fraunhofer 

absorption l ine  of neutral potassium at 769.9nm with that of the same l i ne  in the 

laboratory. 

The observations were made during 1976, 1977 and 1978 at Izana, Tenerife and 

simultaneously in 1978 at Pic du Midi in the Pyrenees; the two s i tes ,  some 2300 km 

apart, were assumed to be meteorologically and observationally independent. The data 

analysis was based upon 33, 35 and 7 days of observation, respectively, in the three 

years of the study period. 

The daily data consisted of a mean l ine of sight velocity determined every 42 

1This paper is an abstract of a talk presented at this workshop by G. Isaak. 
The deta i ls  of the observations were summarized from a longer paper published in 
Nature (Claverie et al. 1980). The theoretical implications of this work as proposed 
by Christensen-Dalsgaard and Gough at the workshop are presented in the fo l low ing  
paper. 
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seconds (100 seconds on Pic du Midi) for the entire observing day. Residuals 

corresponding to velocity amplitudes of less than 3 m/s appeared after subtraction of 

the observer's velocity re lat ive to the centroid of the sun due to the spin and 

orbital veloci t ies of the earth. Small allowances for residual curvature effects 

were made. 

Analysis, using standard power spectrum techniques, of simultaneous data from 

the two sites substantiated the solar origin of the observed osci l la t ions and 

indicated the existence of a series of well defined peaks. Averaging the power 

spectra for individual days over the 3 year period clearly indicated the presence of 

peaks with an apparent constant spacing. Further analysis of data strings of 

different lengths had no effect on the observed spacing. 

The constancy of the peak spacing was demonstrated f i r s t  by plot t ing the 

order of the peaks against the observed frequencies and second by screening the mean 

power spectra data with a high pass f i l t e r ,  by subtracting a moving mean over three 

points and then subjecting the result ing points to an autocorrelation and power 

spectrum analysis. Mean l ine spacings of 67.6, 67.4 and 67.6; and 67.8, 68.0 and 

68.0 ~Hz were found, respectively, by the two analytical methods for each of the 

three observational years. A cross correlation analysis of the 1976 and 1977 power 

spectra yielded a correlation coeff ic ient of 0.87 with a maximum at zero lag, 

indicating the consistency of the lines over the two year period. 

The 1978 data, obtained by improved experimental technique, were subjected to 

a superimposed epoch analysis. The frequency range was restricted to that covered by 

the power spectrum analysis and the same peak structure was found. Straight l i ne  

f i t s  to these plots yielded mean l ine spacings of 67.4 ± 0.5 and 67.9 ± 0.2 ~Hz, 

respectively. 

A power spectrum analysis of two consecutive days of data was made with zeros 

inserted in the data string at the times when actual data were not available. This 

produced a 32 hour data string whose power spectrum demonstrated the usual peaks in 

the power spectrum. Sine waves of the indicated frequencies were subtracted from the 

original data by using a least squares procedure which optimized the frequency, phase 

and amplitude of the f i t ted wave. The resulting power spectrum clearly demonstrated 

the coherency of the osci l la t ions over the 32 hour data string with a value of Q in 

excess of 40~ 

The authors suggest that these lines correspond to normal modes of vibration 

of the whole sun, but note that the i r  de f in i t i ve  ident i f i ca t ion  w i l l  necessitate 

acquisition of information on the i r  spatial structure. Since integral l i gh t  

spectrometers tend to average out modes of high ~ value with many peaks and troughs 

across the visible disk of the sun, the observations are strongly biased toward low 

value modes. This analysis indicates that these modes are of low ~ value which may 

supply constraints on the solar interior. 
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ABSTRACT 

Isaak's announcement (Claverie et al. 1980) of the discovery by his group of 

d i s t i n c t ,  approx imate ly  evenly spaced peaks in the power spectra of whole-disk 

Doppler measurements immediate ly  raised the issue of what#they imply about the 

structure of the solar in te r io r .  Here we report our immediate reactions, and in fer  

tha t  the observat ions seem to imply a lower sound speed, app rop r ia te l y  averaged 

throughout the in te r io r ,  and probably a lower mean temperature than standard solar 

models predict. 

I. INTRODUCTION 

Taken at face value, the observat ions reported by Isaak and his col leagues 

(C laver ie  et a l .  1980) provide a very important  add i t ion  to the so la r  o s c i l l a t i o n  

data. I t  appears that the peaks in the power spectra are produced by p modes of low 

degree, as Isaak has proposed, because i t  is  to such modes tha t  the measuring 

technique is most sensit ive. Unlike the more common f i ve  minute osc i l la t ions  of high 

degree that have been measured carefu l ly  by Deubner (1975, 1977), Rhodes, Ulrich and 

Simon (1977) and Deubner, Ulrich and Rhodes (1979), these modes penetrate deeply into 

the sun and so provide us with direct  information about the solar in te r io r .  I t  is of 

considerable in terest ,  therefore, to analyze these osc i l la t ions ,  and to ask what they 

imply. 

2. INTERPRETATION OF THE DATA 

Isaak has suggested that  the peaks in his power spectra might ar ise from a 

s ing le  spectrum of modes of l i k e  degree, such as the rad ia l  pu lsat ions.  I f  one 

compares the mean frequency separation between those peaks with the differences in 

neighbouring frequencies of a single spectrum of modes of a typical  standard solar 

model (e.g., Iben and Mahaffy, 1976; Christensen-Dalsgaard, Gough and Morgan 1979) 

one f inds that  the l a t t e r  exceeds the former by a l i t t l e  more than a f ac to r  2. 
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Isaak's interpretation would therefore imply that the internal structure of the sun 

is very different from that of the usual models. 

To see just  how d i f fe ren t  the sun would have to be, le t  us note that for  

periods near f ive minutes the order n of the modes of a standard solar model is about 

20, provided the degree ~ is about unity, and the asymptotic formula valid for n >> 

for the cyc l i c  frequency di f ference A~ between modes n and n + 1 is a good 

approximation (Christensen-Dalsgaard, Gough and Morgan 1979). Thus 

av = , (1) 
o 

(e.g., Vandakurov 1967), where r is a radial distance coordinate, c is the local 

adiabatic sound speed and R is the solar radius. We can see, therefore, that a 

halving of AV implies a halving of an appropriate mean of the sound speed. I f  one 

ignores uncerta int ies in composition, i t  would be necessary for  the sun to have a 

mean temperature only 70 percent of that of the standard models. The problems this 

idea poses are tremendous, i f  one wishes to accept the atomic and nuclear physics 

upon which the theory depends. Moreover, i t  raises the question of why only a single 

spectrum of osci l lat ions is excited. 

A more l i ke ly  explanation, perhaps, is that contributions from modes of al l  

degrees are present in the data. I t  is a property of modes with n >> ~ that the 

frequencies of modes with even ~ almost coincide; so do the modes with odd ~, their  

frequencies ly ing approximately midway between those of t he i r  even counterparts. 

Only when ~ becomes comparable with n do the frequencies fa i l  to coincide, but then 

is so great that the sensi t iv i ty  of the measuring technique is extremely small. To 

counter somewhat the decrease in instrumental sensi t iv i ty,  however, is the fact that 

there are present in the sun a very large number of modes of high degree. Thus one 

might expect to see in the power spectrum of the f ive minute osci l lat ions a continuum 

produced by the majority of the modes, upon which is superposed the discrete spectrum 

arising from all the modes of low degree. To assess whether this idea is plausible, 

we shall discuss in the next section the dependence of the instrumental sensi t iv i ty  

on the degree of the modes. 

3. STRUCTURE OF THE POWER SPECTRUM 

Let Vn~ be the surface ve loc i ty  amplitude of the modes characterized by 

(n,~): we shall assume that the 2~ + 1 modes of degree ~ are on average excited to 

the same amplitude. Then i f  actual and instrumental broadening are ignored, one 

would expect the observed mean power spectrum to be of the form: 
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n~,~ 2 2 (2) P(~) = (2~ + 1)ScVn~a(~ - ~n~) , 

assuming random phases, where ~ is frequency, ~n~ is the frequency of the mode (n,~), 

S~ is the mean instrumental s e n s i t i v i t y  (spatial  f i l t e r  funct ion)  fo r  the modes of 

degree ~, and a is  the Dirac de l ta  f unc t i on .  Note t ha t  because the o s c i l l a t i o n s  

under cons ide ra t ion  are p modes, t h e i r  v e l o c i t i e s  are almost r a d i a l .  Hence S~ 

depends on ly  on the s t r u c t u r e  of  the sur face harmonics of degree ~, and not on the 

order n of the modes. 

Spatial f i l t e r  funct ions for  p modes of low degree have been computed by H i l l  

(1978). F i rs t  the surface harmonics are expressed in terms of the usual polar angles 

(e,@). Because the mean power spectrum presented by C laver ie  et a l .  (1980) is  an 

average of spectra each of which is  computed from only  a s i ng le  day's observ ing,  

rotat ional  s p l i t t i n g  can be ignored and the osc i l l a t i ons  have no preferred d i rect ion.  

Hence i t  is immaterial in which d i rec t ion one chooses the polar axis to be. I t  seems 

most expedient to choose i t  to l i e  along the l i ne  of s ight ,  so that the mean ve loc i ty  

observed, i f  one neglects l imb darkening, is given by 

I~ 12 m (cos e)cos2 e sin e del 2~sin Vn~ P~ jo cos m@ de 

Vn~m l~I~[P~(c°s B~2 sinede joI2~sin2cos 2 m@ d¢}1/2 ~ Sgm Vng 

where P~ is the associated Legendre function. The normalization has been chosen such 
that Vn~ is the root-mean-square velocity over the entire surface of the sun. In this 
coordinate system S~m = 0 i f  m # O, so that the mean spatial f i l t e r  function S~, 
averaged amongst all the modes of degree ~ (with respect to any coordinate system), 
is simply 

1/2 
(3) S~ (24 + I )  -1/2 : = S~o 2r (2 - ~/2) r(5/2 + ~/2) ' 

where r is the gamma funct ion. 

Values of the funct ions S~ and the weights (2~ + I)S~ appearing in equation 

( i )  are presented in Table I f o r  the modes of lowest  degree; S~ = 0 f o r  a l l  even 

greater  than 2. H i l l  (1978) presents in h is Table 4.1 values of f i l t e r  f unc t i ons  

comparable wi th S~m, the only di f ference being that his funct ions are referred to a 

polar axis perpendicular to the l i ne  of sight. I t  should be the case that the root- 

mean-square of a l l  H i l l ' s  values corresponding to a par t i cu la r  ~ should simply be S~, 

but there appears to be some discrepanc~ 

Of course the actual  power spectrum is  not qu i te  of the form (2), because 

broadening merges groups of  d i sc re te  but almost co inc i den t  de l ta  f u n c t i o n s  i n t o  a 
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Table 1. 

S~ (22 + 1)S~ 

0 O. 667 O. 444 

1 O. 500 0.750 

2 O. 267 O. 356 

3 8.33 x 10 -2 4.86 x 10 -2 

5 -1.04 x 10 -2 1.19 x 10 -3 

7 3.13 x 10 -3 1.46 x 10 -4 

9 -1.30 x 10 -3 3.22 x 10 -5 
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sequence of almost evenly spaced peaks. Nevertheless the posit ions of the centers of 

each peak could be estimated by averaging the eigenfrequencies cont r ibut ing to that  

peak with weights (2~ + I)S~V~. This task is not simple because we do not know the 

r e l a t i v e  ampl i tudes Vn~. I t  is  ev ident  from Table I ,  however, t ha t  unless the 

surface amplitudes increase rap id ly  wi th ~, the data are dominated by contr ibut ions 

from only the f i r s t  few spectra of modes. I t  is in teres t ing  to note that the sum of 

those values in the t h i r d  column of Table I corresponding tb the modes of even degree 

is the same as that from the modes of odd degree. Hence i f  a l l  the low degree modes 

were exc i ted  to comparable sur face ampl i tudes,  one would not expect to f i n d  a 

systematic a l ternat ion in the heights of the peaks in the mean power spectra of the 

observations. 

4. IMPLICATIONS CONCERNING THE SOLAR STRUCTURE 

Given a sequence of solar models, with known pulsat ion frequencies, one can 

in pr inc ipal  use the whole-disk f i ve  minute power spectra to choose that model which 

most c l o s e l y  f i t s  the data. The f i r s t  step is to obta in  a rough es t imate  by 

comparing the observed mean spacing of the peaks wi th that of the models. Hopefully 

t h i s  would be s u f f i c i e n t l y  accurate to associate wi th each peak in the spectrum the 

order  of  the mode of  a p a r t i c u l a r  degree whose f requency should correspond to the 

posi t ion of that  peak. Having thus iden t i f i ed  the modes, a f i ne r  adjustment could 

then be made by a l ign ing the actual values of the eigenfrequencies wi th the posi t ions 

of  the peaks. 

Let us compare the mean peak separation in the Birmingham data, about 0.0680 

mHz, wi th the predict ions of a standard solar model. Christensen-Dalsgaard, Gough 

and Morgan (1979), for  example, present mean eigenfrequency separations of several 

spectra of modes of low degree of a solar model wi th uniform heavy element abundance 

Z : 0.02, the mean being taken in the per iod range 280s - 350s. We quote 0.137 mHz, 

0.138 mHz, 0.139 mHz and 0.139 mHz f o r  the  s p e c t r a  w i t h  ~ = O, 2, 3 and 4 

r espec t i ve l y .  Note tha t  a l l  these values exceed tw ice  the observed spacing. 

Consequently, as can be seen from equation ( I ) ,  the observations imply that the mean 

sound speed in the i n t e r i o r  of the standard model is too high. I t  is in teres t ing  to 

note that lowering the sound speed in the i n t e r i o r  general ly impl ies a lowering of 

the neutr ino f lux .  

In add i t i on  to the model w i t h  un i form Z, Chr is tensen-Dalsgaard,  Gough and 

Morgan (1979) examined two models w i t h  low i n i t i a l  Z t ha t  have been contaminated 

during t he i r  main-sequence evolut ion at rates such as to raise t h e i r  surface heavy 

element abundances to Z = 0.02 at the present t ime.  They found, in accord w i t h  

p r e v i o u s l y  computed metal d e f i c i e n t  models w i t h  un i form Z, t ha t  the f requency 

spectrum fo r  modes of  l i k e  degree becomes less densely spaced as the value of  Z in  

the i n t e r i o r  decreases (cf .  Iben and Mahaffy 1976). Such a model might t he re fo re  
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reproduce the Birmingham data. Indeed, i f  we assume that the centers of al ternate 

peaks in the power spectra are given approximately by the average of the frequencies 

of the ~ = 0 and ~ = 2 modes, the model wi th  Z = 0.004 has the same mean spacing as 

the mean power spectrum of the observat ions;  t h i s  model has a neutr ino f l u x  of 2.3 

SNU, which is wi th in two standard deviations of Davis's (1978) mean value. 

I t  would be rash to conclude from th is  exercise that the sun has a low heavy 

element abundance in i t s  in te r io r .  The frequency separation obtained from the whole- 

disk observations provides a complicated average of the internal sound speed, not the 

composition. Although the contaminated solar models reproduce some of the observed 

features of the sun, acceptance of them probably poses more problems than i t  appears 

to solve. In par t icu lar  the model with Z = 0.004 has a convection zone only 120,000 

km deep, too shallow to explain the frequencies of the f i ve  minute osc i l la t ions  of 

high degree (Berthomieu et al. 1980; Lubow, Rhodes and Ulr ich 1980), and not shallow 

enough to provide a natural explanation of the claim of H i l l  and Caudell (1979) that 

g modes of moderate degree have s i g n i f i c a n t  ampl i tudes in the photosphere 

(Christensen-Dalsgaard, Dziembowski and Gough 1980). Other poss ib i l i t i es  ex is t  for  

reducing the sound speed in a so lar  model, such as upset t ing the thermal energy 

balance (e.g., Dilke and Gough 1972). I t  remains to be seen whether such models can 

reproduce the Birmingham data. 

We are g ra te fu l  to A.J. Cooper fo r  po in t ing out an e r ro r  in the o r i g i n a l  

manuscript. 
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OBSERVATIONS OF LONG PERIOD OSCILLATIONS 

IN THE SOLAR LIMB DARKENING FUNCTION 
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1. INTRODUCTION 

The most interesting region of the sun's normal mode spectrum l ies between 

.1 mHz and ~ 2 mHz. Theoretical predictions of the spectrum (Hil l  1978, Figure 2.2) 

show the high frequency extreme of the g modes to l i e  near .4 mHz, the band becoming 

increasingly dense toward lower frequencies. Thefundamental modes overlap the g 

modes s l i g h t l y  and extend upward to.45 mHz. The p modes extend from .25 mHz up to 

higher frequencies with increasing density. The g modes are of interest because they 

probe the deep solar i n te r i o r .  The period of the fundamental radial mode is very 

sensitive to envelope structure. The p modes probe the envelope and may be expected 

to be most readi ly  observable. The rotat ional  sidebands of any mode at any depth 

reflect the internal rotation at that depth. 

In the region of the spectrum where the modes are least dense (.45 - .6 mHz), 

there are 110 modes/mHz; ignoring rotational sidebands the spectral resolution of the 

elusive 12-hour uninterrupted observation is 23 ~Hz, encompassing 2-3 modes in the 

sparsely populated region. Resolution of rotational sidebands would require a 600 

hour uninterrupted observation. By comparison, p modes in the f ive minute band are 

roughly a nanohertz apart. The extreme density and complexity of the sun's acoustic 

spectrum coupled with the signal weakness in the interesting .1 - 2 mHz region make 

observations of this phenomena extremely challenging. 

2. BACKGROUND 

The original measudements of osci l lat ions in the .1 - 2 region stem from the 

oblateness measurements of Hi l l  and Stebbins (1975b). The early serendipitous work 

in this area (Hi l l  and Stebbins 1974, 1975a) culminated in a concerted ef fort  (Brown, 

Stebbins and H i l l  1978) to demonstrate the r e a l i t y  of solar osc i l l a t i ons  in a 

spectral regime where none had been seen previously. The method used, a product of 

the oblateness effort ,  was a novel one: the shape of the limb darkening function was 

loperated by the Association of Universities for Research in Astronomy, Inc. 
under contract AST 78-17292 with the National Science Foundation. 
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analyzed by a f i n i t e  Four ier  t ransform to locate a po in t ,  ca l l ed  the "edge" of the 

sun as defined by the Fin i te Fourier Transform Def in i t ion (FFTD). The FFTD located 

at an edge of the sun which was ext remely  prec ise,  a f fec ted by motion of the so lar  

l imb and certain forms of l imb brightening, and very insensi t ive to seeing changes. 

Osci l la t ions,  reported as motion of the FFTD edge, could have been due to limb motion 

and/or a pulsating limb brightening of the requis i te form. 

This work was met with skepticism (see H i l l  1978 for  summary). The sun was 

presumed not to be a pu lsator .  The FFTD was not w ide ly  understood. Conventional 

methods, such as Doppler technique s and i n t e n s i t y  measurements, did not produce 

cor robora t ing  resu l ts .  Two classes of exp lanat ions f o r  the FFTD pulsat ions were 

advanced: the spectra were basical ly  noise, or some systematic ef fect ,  other than 

global pu lsa t ions ,  gave r i se  to the observed spectra. In the l a t t e r  case, 

explanations ranged from instrumental to atmospheric d i f f e ren t ia l  refract ion to the 

rotat ion of small brightness features (e.g., granules) through the aperture. 

Deubner's work (1975) on the f i ve  minute osc i l l a t i on  now is commonly taken to 

demonstrate that the sun is a pulsator. Intercomparisons between d i f ferent  types of 

observations seem to f a i l  in a var ie ty  of circumstances (Hi l l  1978), including the 

easi ly  observed and robust f i ve  minute osc i l la t ions.  Alternate explanations of the 

long period o s c i l l a t i o n s ,  as detected by the l imb ana lys is  method, are r a r e l y  

accompanied by the appropriate careful observation. Brown, Stebbins and H i l l  (1978) 

have made the most ex tens ive s t a t i s t i c a l  ana lys is  of the FFTD spectra,  which they 

o f f e r  as the fundamental arguments fo r  the r e a l i t y  of the o s c i l l a t i o n s .  Phase 

coherence demonstrated by Brown, Stebbins and Hi l l  (1978), and of late more strongly 

by H i l l  and Caudell (1979), Caudell and H i l l  (1980), and Caudell et a l .  (1980), add 

credence to the so lar  global pu lsat ion i n t e r p r e t a t i o n  and are incons is ten t  wi th  

instrumental, atmospheric, or granule interpretat ions.  In short, the case for the 

existence of long period solar osc i l la t ions  is growing stronger. 

3. GOALS 

To reap the po ten t ia l  rewards of so la r  seismology w i l l  requi re more than 

es tab l i sh ing  the ex is tence of the long period o s c i l l a t i o n s .  Considering the 

faintness of even the FFTD signnal, some improvements in observational techniques are 

ca l led  for .  Although Brown, Stebbins and H i l l  (1978) did not take advantage of i t ,  

the FFTD is  capable of  d i s t i ngu i sh i ng  between l imb motion and l imb br ighten ing.  

Indeed, i t  was employed to just  that end in the oblateness measurements. By a tw i s t  

in the app l i ca t i on  of the FFTD, i t  can be used to tes t  the character  of the 

osc i l l a to ry  signal, thereby dist inguishing between possib le o r i g i ns  of the s igna l .  

Moreover, the observed character, should i t  prove to be that of global osc i l la t ions ,  

should be predictable by pulsation theory. 

Further, the work reported here was conducted on a d i f fe rent  instrument than 
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all  previous FFTD work. Another data base is also highly desirable for a novel 

phenomena such as global pulsations. The goals here, then, are an improved detection 

technique, an elucidation of signal character, further tests of the pulsation 

interpretation, and an expanded data base. 

4. METHOD 

Despite i ts  novelty, the FFTD s t i l l  seems to be the most effective way to 

detect osci l lat ions between .2 and 1.5 mHz. The details of the FFTD and i t s  

properties have been described, studied, and tested extensively (Hil l ,  Stebbins and 

Oleson 1975). Briefly, a weighting function, defined in an interval of predetermined 

width, is mult ipl ied by the observed limb darkening function and the results are 

summed. The interval is translated across the limb darkening function until the sum 

goes to zero, i.e., a balance point is found. That point, the center of the 

interval, is called the edge. The weighting function, a Chebyschev polynomial, is 

chosen so that the edge location is insensitive to seeing changes and sensitive to 

certain forms of change in the limb darkening function. 

The interval width, half of which is called the scan amplitude, is an 

adjustable parameter. Changing the scan amplitude changes the sensitivity to limb 

brightening. Therefore, subtracting the motion of an FFTD edge defined by a small 

interval from another FFTD edge defined by a large interval measures the difference 

in sens i t iv i t ies  to limb brightening. I f  the pulsation manifests i t s e l f  by limb 

motion alone, the subtractionyields zero. I f  the shape of the limb darkening has a 

pulsating component, the subtraction should be non-zero. The results of this 

subtraction wil l  be called the brightness signal. By forming many brightness signals 

with a referenced edge defined by a large interval and many edges defined by 

progressively smaller intervals, one has a characterization of the limb brightening 

signal ,  a signature. That signature can be calculated from an in tens i t y  

eigenfunction through application of the FFTD formalism. This signature can be the 

point of comparison between pulsation theory and observation. 

In the past, the FFTD has been applied directly to a digitized limb profile 

from a scanning photomultiplier. An error signal was used to serve the center point 

of the scan. This transpired simultaneously at two diametrically opposed limbs, and 

the recorded data was the solar diameter, i .e. ,  the separation of the 

photomultipliers. The interval size was established by the mechanical scan amplitude 

(hence the terminology). The innovation in this work was to record the digit ized 

limb prof i le and compute a family of FFTD edges by numerically setting the scan 

amplitude to several values. In this way, many FFTD edges could be followed 

simultaneously. Another difference in the present work is the fact that only one 

limb is used. Although this restriction is imposed by the available equipment, i t  

does eliminate the possibility of atmospheric differential refraction effects and the 
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measurement of  l imb motions. This measurement responds on ly  to br ightness 

osc i l l a t i ons .  

The data were acquired with the Diode Array on the Vacuum Tower Telescope at 

the Sacramento Peak Observatory. The Echelle spectrograph was made to pass a narrow 

band of clean continuum near 6430 A. The diodes were set up to d i g i t i z e  a 96" x 96" 

patch as t radd le  the west l imb at the equator. The sample i n t e r v a l  in the rad ia l  

dimension was 1". The data was averaged in the t angen t i a l  d i r e c t i o n  to reduce the 

ef fects of granules in the aperture. The patch was d ig i t i zed  by sweeping the image 

past the l i ne  of diodes in the tangent ial  d i rect ion.  D ig i t i za t i on  and flyback took 

s l i g h t l y  less than 16 seconds and was repeated every 16 seconds f o r  as long as 

poss ib le  w i t hou t  i n t e r r u p t i o n .  This observing program was pursued as of ten as 

day l ight ,  telescope scheduling, weather, breakdown, and other calamit ies would al low 

from March 1977 to October 1979. Data sets represented here are tabulated in Table 

i .  Of the 53 data sets,  these 16 have been selected fo r  length  (none shor te r  than 

8.0 hours) and paucity of in ter rupt ions.  

The data reduction begins by computing a fami ly  of FFTD edges for  each time 

step. Eighteen edge signals are fol lowed with scan amplitudes ( in terva l  hal fwidth)  

ranging from 6" to 44". The fami ly  of 18 edge time str ings is converted to a fami ly  

of 17 brightness signal time str ings by subtract ing a l l  others from the edge signal 

wi th the largest scan. This subtract ion removes a l l  l imb motions whether osc i l l a to r y  

or telescope point ing errors. The fami ly  of brightness signals is transformed to a 

f a m i l y  of Four ie r  t rans forms by the usual methods. (Mean and quadra t ic  removal,  

windowing, extension with zeros, and transformation fo l low the advice of Brault  and 

White 1971.) F i n a l l y ,  the ampl i tude and phase of  each br igh tness  s ignal  at each 

frequency po in t  are computed. This r e s u l t  can be thought  of  as a two-d imens iona l  

surface.  Frequency and scan s ize are the independent v a r i a b l e s ;  the ampl i tude of 

o s c i l l a t i o n  is  the dependent va r i ab le .  The s igna tu re  is  seen by tak ing  a constant  

frequency cut through th i s  surface. 

This repor t  w i l l  hencefor th  concern i t s e l f  w i th  an examinat ion of the 

signature, the amplitude of o s c i l l a t i o n  versus scan. This funct ion can be influenced 

by several f ac to rs .  F i r s t  is  the l imb b r i gh ten i ng  caused by a p a r t i c u l a r  global 

mode. p and 9 modes exh ib i t  d i f f e ren t  l imb brightenings (Hi l l  and Caudell 1979), and 

in  f requency increments where both are present ,  there w i l l  be superpos i t i on  to 

confuse the observer. Secondly, w i th in  a frequency resolut ion element, the observer 

w i l l  see a superpos i t i on  of a l l  the ac t i ve  modes. The frequency r e s o l u t i o n  is one 

over the  length  of  the data set ;  the beat per iod is  equal to or greater  than the 

length of the data set--which hampers day-to-day comparisons. Th i rd ly ,  an FFTD edge 

def ined by a p a r t i c u l a r  scan w i l l  have a dependence on ~, the p r i n c i p a l  index of a 

mode's spherical harmonic. Consequently, the signature may change i f  the dominant 

mode in the frequency in terva l  changes to one with a d i f fe ren t  ~ value. 



195 

Table I. 

Date Starting Time (UT) Length (Hours) Limb 

29 September 1977 13:46:32 10.08 

30 September 1977 13:36:16 10.08 

6 April 1978 13:46:48 11.16 

7 April 1978 13:49:00 8.06 

11 April 1978 13:51:08 10.78 

12 April 1978 13:23:04 9.22 

29 September 1978 13:57:16 10.17 

1 October 1978 13:51:28 10.35 

2 October 1978 13:56:28 10.22 

3 October 1978 13:57:52 10.49 

13 May 1979 15:54:24 9.38 

7 October 1979 15:50:00 8.27 

8 october 1979 14:20:12 9.39 

10 October 1979 15:03:52 9.21 

11 October 1979 13;47;48 10.34 

12 October 1979 14:40:24 8.96 

West Equator 
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To examine the signature, the analysis is restr icted to .45 - .6 mHz where 

theory predicts a sparsely populated region of only p modes. To determine what the 

signature looks like, and how reproducible i t  is, the signature is averaged over this 

frequency band in al l  16 data sets and the standard deviation of the averages is 

computed. 

5. RESULTS 

The empirical signature is shown in Figure 1. One can see the variation of 

oscillatory amplitude with scan. The standard deviations of the mean are shown at 

each of the scan values used. In computing these, account has been taken of the fact 

that the time strings were extended with zeros to 18.2 hours, and consequently the 

frequency points are not independent measurements. 

There is a s ign i f icant  signature, peaked toward smaller scans. This is 

direct evidence that osci l la t ions detected by FFTD limb analysis are brightness 

changes at least in part. There may or may not be motion of the limb for Doppler 

detection, but there are brightening changes. This is a systematic effect, not the 

result of random noise in 17 d i f ferent  channels. What are the possible sources of 

this systematic signature? 

Changes in atmospheric seeing have a signature peaked toward smaller scans. 

However that signature should have a minimum near a scan 1.8 times the ful l-width-at- 

half-maximum of the atmospheric transfer function. With seeing 5" or less, that 

minimum would be found at a scan of ~ 8", i f  the signal were due to seeing 

f luctuations. There is no minimum to be seen. But this result is consistent with 

the known properties of the FFTD; the most sensitive FFTD edge (6" scan) would move 

about 1 mi l l i  sec for a 20% change in the full-width-at-half-maximum. Considering 

that seeing fluctuations have a broadband character, one would not expect to see an 

atmospheric signature here--and one does not. 

Instrumental sources and atmospheric differential refraction are ruled out by 

the nature of the measurement. The d i f fe ren t ia l  aspect of the brightness signal 

removes telescope problems. Esoteric diode misbehavior (selected oscillating gains 

carefully arranged about the limb to look l ike the limb darkening changes) would be 

averaged out by telescope pointing errors. 

The casual rotation of surface brightness features through the aperture can 

be ruled out by two tests: s imi lar  data taken at the pole has the same signature, 

and the brightness signals all have very similar phases. Since different granules 

are passing into the different FFTD intervals, the FFTD signals should not enjoy any 

phase relation. 

Global pulsations, on the other hand, may indeed have this signature. This 

signature suggests limb brightening sharply peaked toward the in tens i ty  onset. 

Conventional l i nea r  pulsat ion theory does not predict  such an i n t e n s i t y  



197 

20,00 

~J 

U') 

~J 

L~ 

. J  
T'- 

W 
Z 
I-- 

18.30 

16.60 

lq.go 

13.20 

11.50 

9.80 

8.10 

$.qo 

qoTO 

3,00 
5°00 

I 
J 

| I i | | i i i i 

8 . ~  1 2 . ~  1 5 . ~  1 9 . ~  ~ . ~  ~ . ~  ~ . ~  ~ , ~  ~ . ~  ~ . ~  

SCBN AMPLITUDE (RRC SEC) 
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been averaged from .45 to .6 mHz and over a l l  data sets. The reference edge has a 
scan amplitude of 44 arc sec. The brightness amplitude is the Fourier amplitude of 
the brightness signal, the separation between the FFTD edge with the associated scan 
size and the reference edge. The error bars are the standard deviation of the 
average. 
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eigenfunction, but then, as the paper in these proceedings by Stebbins et al. (1980) 

shows, conventional l inear pulsation theory is inconsistent with the observed 

behavior at five minutes. There is evidence of nonlinearity there, suggesting the 

sort of mechanism necessary to produce the required temperature structure. Knapp, 

Hill and Caudell (1980) show evidence for a limb brightening sharply peaked toward 

the intensity onset. Considering that the average spans two years of observations, 

this signature would appear to be an enduring characteristic of the sun. 

6. CONCLUSIONS 

The evidence presented here demonstrates the real i ty  of long period 

brightness oscillations in the solar limb darkening function. This extension of the 

FFTD, the simultaneous application of multiple edge definitions, provides another 

test for establishing the real i ty  of long period solar osci l lat ions. Additional 

information, namely the signature, characterizes the signal measured, and can be used 

to enhance detection of these faint and complex signals. In essence, brightness 

oscillations can be detected without relying on the broadband statistics of spectra. 

This is essential for study of small bands in highly resolved spectra. The signature 

information also affords a vehicle for comparison to pulsation theory, another step 

toward seismology. 

The observing staff of the Tower telescope, Horst Mauter, Dick Mann and Gary 

Phill is, deserve special mention for the perseverance demanded by the exacting setups 

and the long tedious observing runs; they made i t  possible. Timothy Brown and Henry 

Hill contributed useful comments throughout. I am especially indebted to Henry for 

pointing out a flaw unwittingly introduced into the analysis after i t  was originally 

avoided. The forbearance of the editors and the typist ,  Ms. Christy Ott, in tardy 

preparation of the report are also acknowledged. 
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SOLAR CONTINUUM BRIGHTNESS OSCILLATIONS: 

A PROGRESS REPORT 

~M. Brown 
High Altitude Observatory 
Boulder, Colorado 

R.L. Harrison 
Department of Physics and Astronomy 
University of New Mexico 
Albuquerque, New Mexico 

During the last few years a controversy has grown up surrounding the proper 

treatment of boundary conditions for osci l lat ions in the solar atmosphere. H i l l ,  

Caudell and Rosenwald (1977) have pointed out that by observing two osci l lat ing 

dynamic variables simultaneously, i t  is in principle possible to determine the 

re lat ive contribution of two independent solutions to the wave equation. These 

solutions are conventionally denoted ~_ and 6+, corresponding respectively to waves 

that are of roughly constant amplitude at all heights in the solar atmosphere, and to 

those that grow exponentially with height, on a scale comparable to the pressure 

scale height. These arguments are plausible, but they lead to a surprising result: 

using available measures of velocity and intensity amplitudes in several frequency 

regimes, together with a detailed nonadiabatic model to generate the required 

eigenfunctions, Hi l l ,  Rosenwald and Caudell (1978) concluded that the amplitudes of 

the ~_ and ~+ solutions are approximately equal in the upper photosphere. This 

conclusion has stirred much criticism, since there is no ~ priori reason to expect 

the ~+ solution to be in any way signif icant. A more direct objection is that at 

each frequency there are exactly as many parameters to be f i t ted  (the two wave 

amplitudes) es there are observations available (a velocity and intensity amplitude). 

There is thus no meaningful way to cross-check the theory's predictions with other 

observations. This situation has led us to seek other sets of observations which are 

more informative than those currently available, so that the notion of a large 

contribution from the ~+ solution can be checked for self-consistency. Although we 

have not yet succeeded in this aim, some progress has been made, and we can now judge 

where the effort wil l  lead and begin to draw some tentative conclusions. 

Our approach has been similar to that of the SCLERA group in that we intend 

to combine observations of velocity and intensity amplitude at the various 

frequencies of interest. I t  differs, however, in that we wish to use observations 

with high resolution in both the spatial and temporal frequency domains (henceforth 
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termed "wavenumber" and " f requency") .  There are two pr inc ipal  advantages to using 

observat ions of  t h i s  sor t .  F i r s t ,  w i t h  adequate r e s o l u t i o n  i t  is  poss ib le  to  

d is t ingu ish between p and g modes of osc i l l a t i on ,  or, in the case of the f i ve  minute 

osc i l l a t i ons ,  between d i f fe ren t  radial  modes. I t  thus becomes possible to compare 

modes with the same radial mode number but d i f fe ren t  frequencies, or wi th d i f f e ren t  

mode numbers and the same frequency. As long as the ef fects of varying wavenumber 

are not l a rge ,  such comparisons can be made in a s t r a i g h t f o r w a r d  way. The second 

advantage found in the use of h igh-resolut ion data is that the importance of any t ime 

delay between the ve loc i t y  and i n tens i t y  observations is reduced. Since almost a l l  

of the incoherence in ear ly observations of the f i ve  minute osc i l l a t i ons  comes from 

beating between the various modes, resolving the modes leads to a much more stable 

power spectrum. Thus, i t  seems l i k e l y  that the use of th i s  technique w i l l  produce 

good ve l oc i t y - i n t ens i t y  ra t ios  regardless of the amount of t ime which elapses between 

the two sets of observations. 

The problem of obtaining k-m diagrams of ve loc i ty ,  though s t i l l  ca l l i ng  fo r  

care fu l  work, now seems to be we l l  in  hand (Deubner 1975, 1977; Rhodes, U l r i c h  and 

Simon 1977). For th is  reason we addressed the development of methods fo r  obtaining 

data of the same q u a l i t y  on i n t e n s i t y  o s c i l l a t i o n s .  This proved to be a more 

d i f f i c u l t  problem for  a var ie ty  of reasons. The most serious impediments were the 

small amplitude expected for  the in tens i t y  f luc tua t ions  ( in the en t i re  5-minute band, 

rms ~ I / I  of about 2 x 10-3), coupled with the large background power to be expected 

from non-osc i l la tory  sources l i ke  granulat ion. Further, the i n tens i t y  osc i l l a t i ons  

represented a small perturbat ion w i th in  a large constant background, meaning that any 

change in detector s e n s i t i v i t y  or atmospheric transmission would appear st rongly in 

the f luc tua t ing  i n tens i t y  signal. Al l  of th is  suggested that large amounts of data 

and soph i s t i ca ted  reduc t ion  techniques would be needed to  a t t a i n  the des i red 

accuracy, and tha t  the op t i ca l  setup used f o r  the observat ions  should be as s imple 

and s tab le  as poss ib le .  For these reasons we chose to  observe the b r igh tness  

o s c i l l a t i o n s  in the cont inuum, a dec is ion  tha t  was re in fo rced  by the comparat ive 

s imp l i c i t y  of rad iat ion t ransfer  in the continuum. 

To date we have observat ions of  two d i s t i n c t  so r t s ,  one dea l ing  w i th  

osc i l l a t i ons  at the extreme solar ]imb and the other wi th those at disk center. The 

former consist of photoelectr ic observations taken wi th the vacuum tower telescope 

and echelle spectrograph at Sacramento Peak Observatory. The data were processed in 

such a way tha t  the e f f e c t s  of atmospheric seeing and t ransparency changes were 

negl ig ib le  but, unfor tunately,  the frequency and wavenumber resolut ion were at best 

marginal ly adequate for  the purposes out l ined above. For a f u l l  discussion of these 

observations, see Brown (1979). The disk center observations were photographic, also 

obtained at the Sacramento Peak tower telescope, but using the Universal B i re f r ingent  

F i l t e r  (UBF). These observations cover a much larger f i e l d  of view than do the l imb 
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observations, resu l t ing  in considerable improvement in the wavenumber resolution 

obtainable. In addi t ion,  the large number of p ixels per frame s i g n i f i c a n t l y  

increased the s igna l - to-no ise ra t io .  The reg is t ra t ion  problems inherent in disk- 

center observations were solved by superimposing images of a small sunspot that were 

brought in by periscope from another part of the solar disk. We analyzed these 

frames by d i g i t i z i n g  the ent i re  t ime ser ies,  converting photographic density to 

intensity,  and correcting for sky transparency and s imi lar  effects in such a way that 

the integrated sunl ight in each frame appeared constant. We then integrated each 

frame along one spatial dimension to produce a two-dimensional data array, with space 

and t ime const i tu t ing the coordinate axes. F ina l l y ,  using conventional fas t  

transform techniques, we produced two-dimensional power spectra from these data. The 

analysis of these data is not yet complete, and our attempts at interpretation have 

barely begun. Nevertheless, i t  is possible to make a few statements based on a 

comparison between the two data sets, as well as on the more complete analysis of the 

limb observations. 

The k-m diagram derived from the l imb observations is shown in Figure i .  

Especially at the higher contour levels, the power is located in two well-separated 

frequency regions, corresponding to periods of f ive minutes and periods of f i f teen 

minutes and longer. Some of the low-frequency power undoubtedly Comes from the 

granulation intensity f ie ld ,  but by far the largest part of the observed power l ies 

at wavenumbers of less than 0.5 Mm - I ,  corresponding to features of roughly 

supergranule size or larger. Exactly what physical process is responsible for these 

large-scale intensity perturbations is not clear. Several in te res t ing  conclusions 

may be reached by studying the way in which the k-m diagram varies with ~ in the 

neighborhood of the extreme limb. In pa r t i cu la r ,  the analysis of low-wavenumber 

fluctuations below frequencies of .004 s - I  (Brown 1979) indicates three things: 

( I)  The amount and radial  d i s t r i bu t i on  of power in th is  band is su f f i c i en t  to 
cause the apparent diameter f luc tuat ions reported by Brown, Stebbins and 
Hi l l  (1978). This ver i f ies that the diameter variations are indeed caused 
by changes in the detailed shape of the limb darkening function. 

(2) The amplitudes of the fluctuations tend to increase with increasing distance 
from the limb, unlike the relationship predicted by Brown, Stebbins and Hi l l  
(1978). This implies that most of the fluctuations originate comparatively 
deep in the photosphere, and not in a high, opt ica l ly  thin shell. 

(3) There is no sign of a narrow spike in osci l lat ing intensity at the extreme 
l imb. This spike was a prominent charac te r i s t i c  of the models of H i l l ,  
Rosenwald and Caudell (1978) and, although the limb observations were not 
well suited to detect such a feature,  i t  should have appeared in some 
measure. 

Figure 2 shows a k-m power plot derived from the disk-center observations. 

The di f ferences between th is  p lot  and that given in Figure i are immediately 

apparent. Most notably, the region of low-frequency power has grown unti l  there is 

no clear d i s t i nc t i on  between i t  and the f i ve  minute o s c i l l a t i o n s ,  at least  at low 
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wavenumbers. On the other hand, the resolution has improved so that, at higher 

wavenumbers (above 0.8 Mm -1 at .02 s- l ) ,  the ridge structure of the f ive minute 

osci l lat ions can be clearly distinguished. The ridges corresponding to radial 

numbers of 0 and 1 are part icular ly well shown, and those corresponding to 2 and 3 

are discernible. The apparent noise level in this region of the k-m diagram is 

extremely low, corresponding to a value for (a l / I )  2 of less than 5 x 10. -14 per 

frequency-wavenumber bin. Evidently photographic techniques are very effective in 

this area of the diagram. Unfortunately, their performance along the axes k = 0 and 

= 0 is less inspiring. Stationary imperfections in the image (dirt on the optics, 

internal reflections) cause spurious power at m = O. Similarly, variations over time 

in the development process tend to cause Iow-wavenumber fluctuations at al l  

frequencies. I t  w i l l  thus be d i f f i c u l t  to use this technique to learn much about 

osci l lat ion modes with periods comparable to the length of a t imestring, or with 

wavelengths comparable to the size of the photographic frame. Further, the 

di f f icul ty of obtaining accurate photometric calibration at any period or wavenumber 
/ 

may cause some uncertainties in the derived velocity/intensity ratios. In spite of 

these dif f icult ies we can tentatively conclude that the intensity amplitudes of the 

f ive minute osci l lat ions are larger at the limb than at disk center, while for 

fluctuations at low frequencies and wavenumbers this trend is reversed. These facts 

suggest that the intensity fluctuations responsible for the observed power arise high 

in the photosphere for the five minute oscillations, and much lower for oscillations 

of lower frequency and wavenumber. 

Work is continuing on the analysis of these observations with two chief aims. 

The f i r s t  of these is to determine, for a number of regions within the range occupied 

by the f ive minute osci l lat ions, the ratio of rms amplitudes for velocity and 

intensity. For this purpose the velocity measurements wil l  not be simultaneous with 

the intensity measurements, since the former must be taken from the literature. Our 

second goal is improvement in observing and averaging techniques so that k-m diagrams 

of intensity may be obtained more conveniently and with improved noise levels and 

resolution. Once such methods are available, i t  should be possible to refine the 

estimates of velocity/intensity ratios, extend these estimates to larger areas in the 

k-m plane, and perhaps obtain these ratios using simultaneous observations of 

velocity and intensity. 
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RECENT OBSERVATIONS OF SOLAR OSCILLATIONS AT SCLERA 
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Tucson, Arizona 

ABSTRACT 

This work deals with the subject of global solar osci l lat ions. These 

oscillations are observed as fluctuations in the diameter of the sun. A diameter is 

determined by a mathematical solar edge definition at the SCLERA I instrument. The 

osci l lat ions have periods ranging from a few minutes to several hours and have 

amplitudes measured in mil l ionths of a solar radius. These small amplitudes are 

observable only due to the unique properties of the edge definition. The properties 

of the observed solar oscillations are determined from the data; their statistical 

significance and repeatability are then tested. 

1. INTRODUCTION 

The reported discovery of global long period solar oscillations has raised 

many questions among the sc ient i f ic  community, some expressing doubt as to their  

existence, others expressing uncertainty as to their origin. The previous works of 

Hi l l  and Stebbins (1976); Brown, Hi l l  and Stebbins (1978); Hi l l  and Caudell (1978) 

have categorically addressed the problems of defining the edge of the sun, sources of 

noise in diameter measurements and alternate interpretations of the results as well 

as the s ta t is t ica l  significance of the global oscillation interpretation. In this 

paper we discuss the current set of solar diameter measurements, their analysis and 

their  significance. 

The observations discussed within this work were gathered at the SCLERA 

fac i l i t y ,  a telescope located in the Santa Catalina Mountains northeast of Tucson. 

This instrument has been described in much detail elsewhere (Stebbins 1975) and 

therefore wil l not be readdressed here. A new set of solar oscillation measurements 

which were obtained in the spring of 1978 are presented. Comparison with previous 

1SCLERA is an acronym for Santa Catalina Laboratory for Experimental 

Relativity by Astrometry, joint ly operated bythe University of Arizona and Wesleyan 

University. 
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data is made and the repeatability of the phenomena demonstrated. The temporal phase 

coherency of the newly observed osci l lat ions is examined and the s ta t i s t i ca l  

significance determined. 

2. OBSERVATIONS 

The raw osci l lat ion data consists of time strings of re lat ive solar 

diameters; relat ive in the sense that no absolute diameter is measured. A 

mathematical def ini t ion of the solar edge, referred to as the f i n i t e  Fourier 

transform definition (Hill, Stebbins and Oleson 1975) or FFTD hereafter, was applied 

to diametrical ly opposite limbs. This edge def ini t ion has several important 

properties. The f i r s t  is that the FFTD has a vastly decreased sens i t i v i t y  to 

atmospheric "seeing" compared to other definitions. The second is that the FFTD has 

enhanced sens i t iv i ty  to intensity fluctuations which peak sharply at the limb and 

manifest these fluctuations as diameter changes (see paper by Knapp et al. in this 

work.) These two properties conspire together to allow the detection of solar 

oscillations from earth-based observatories. 

3. DATA ANALYSIS 

In detai l ,  the new observations consist of 18 days of equatorial diameter 

measurements interspersed between May 21 and June 12, 1978. A diameter was recorded 

digi tal ly every 8 seconds after being fi l tered by a digital low pass ~C. type f i l t e r  

with a time constant of 16 seconds. These were later averaged together in groups of 

8 to form a time string sample of every 64 seconds. Corrections for atmospheric 

refraction were calculated and made to the data followed by a least squares f i t  

parabola. The resulting time strings, which ranged between 200 and 500 points, were 

multiplied by a cosine bell apodizing function which tapered the f i r s t  and last 10 

percent to zero and padded zeros out to 2048 points. Standard fast Fourier 

transforms were then computed, normalized to the number of points in the actual data 

string and stored. 

4. INTERCOMPARISON OF OBSERVATIONS 

For the 13 longer time strings, power spectra were computed and a 13 day 

average was formed. This average is plotted in Figure 1 as a function of frequency 

in milliHertz. Note the general character; a series of peaks with varying heights 

superimposed on a variable background. There is a larger than average feature at the 

very low frequencies which partial ly results from incomplete atmospheric refraction 

correction, but otherwise the average peak plus background height remains nearly 

constant. How does this spectra compare to those obtained previously; that is, how 

repeatable is this result? 
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To answer this important question we have made a thorough comparison between 

the newest data and that of Brown et al. (1978) taken in the fa l l  of 1975. The two 

aspects considered are (1) the repeatabi l i ty of the frequencies present in the 

spectrum, and (2) a comparison of the peak heights to background ratio, a measure of 

the noise both solar and nonsolar. We w i l l  address these tests in order and place 

the results in Table 1. In the f inal  section, the phase coherence of the new 

observations wi l l  be discussed along with their statistical significance. 

To begin with, the two sets of observations are listed as the f i rs t  item in 

Table1. Note that the 1975 set was mixed between solar equator and pole whereas the 

1978 data was taken entirely at the equator. As the second item in the table we give 

the average length of the dai ly observing run with the standard deviation of each 

average following the appropriate time. Third in the l i s t  is the FFTD scan amplitude 

used for the data sets. This amplitude specifies the amount of the solar limb used 

in the computation of the edge def in i t ion and dictates the sens i t i v i t y  of the 

observations to variable sized spatial structures (Hill 1978) Which may be present on 

the solar surface. This property wi l l  be examined more closely in a later paragraph. 

We now turn to the comparison of average power spectra. 

When comparing power spectra, a peak w i l l  be defined as a low-high-low 

combination of contiguous points in power and we wi l l  call frequency alignment of 

peaks between the two separate spectra the instance when the maximum power occurs in 

the same 30 microHertz wide frequency bin (the resolution of the data sets). When 

al l  peaks are considered under the above c r i te r ia ,  20 peaks are in frequency 

alignment between the 1975 and 1979 spectra. For a purely random source of diameter 

fluctuations, one expects approximately one-third of the total number of peaks to be 

in alignment by this selection criteria. The reason for this is simply that i t  takes 

three frequency bins to define a peak, one high and two low, yielding a one in three 

chance for a random alignment between another set of three bins. To calculate more 

carefully the probability that the alignment of 20 peaks could be of random origin a 

numerical simulation has been used. This is because the 1975 spectrum has 29 peaks 

where the 1978 spectrum has 36, giving trouble in the standard binomial coefficient 

technique. 

To simulate the comparison process, a Monte-Carlo calculation was performed. 

The method was to generate a large number of pairs of spectra, 1.0 x 105 in th is  

case, each with 29 and 36 peaks respectively placed at random frequencies within the 

93 frequency bins in the interval of interest. The number in alignment is counted 

for each random pair and sorted into an accumulating histogram. The result ing 

histogram is given in Figure 2 where the area under the curve has been normalized to 

unity. This should be interpreted as the probabi l i ty  of n peaks aligning as a 

function of n for a total ly random source. Taking the integral of this curve from n 

= 20 to 29, the maximum possible number in alignment, we find for the probability 
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Table 1. Comparison of Observations in Summary 

Data Sets 1975 1978 

1. 

2. 

3. 

4. 

5. 

No. of days 11 13 
Equator 5 13 
Pole 6 0 

Ave. data length 7 h ± 1~6 6~2 ± 1~9 

FFTD scan amp. 13.6 arc sec 27.2 arc sec 

Number of peaks 
in frequency range 
0.2 - 3.0 mHz 

Ave. peak to peak 
plus background 
heights ratio 

29 36 

35.8% ± 15.4% 33.8% ± 15.5% 
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P(n ~ 20) = 9.4 x 10 -4 . For a Gaussian distribution with half width equal to ~, this 

probabi l i ty represents a 3.8 ~ result  away from such a random or ig in and is 

stat is t ical ly  a good indication of the repeatability of the phenomenon in nature. 

One obvious question raised by this comparison is: Although the number of 

peaks in alignment appears to be s t a t i s t i c a l l y  s ign i f icant ,  should we not expect 

better agreement? Since we now have observational evidence that each peak in the 

spectrum is a superposition of several eigenstates of the sun each characterized by a 

different spatial structure on the surface, the f i l te r ing due to differing aperture 

size and the location of the aperture on the solar edge (i.e., pole or equator) wi l l  

a l ter  the average peak location(see Hi l l  1978). Also, over a period of time the 

mixture of states within a part icular  peak is l i ke l y  to change depending on the 

nature of the driving mechanism. Any change in mixture (i.e., in amplitude of an 

eigenstate) w i l l  a l ter  the combined power level of a peak as well as change i ts  

average location by small but significant amounts. With this understanding of the 

processes, the agreement between the two average power spectra must be considered 

good. 

To address the second test enumerated above we must again go to the 1975 and 

1978 average power spectra. Comparing the mean rat io of peak height to peak plus 

background height for the two averages gives an indication of differences in signal 

and noise. For the 1975 observations of Brown, Stebbins and Hi l l  (1978) th is  mean 

was found to be 36%, to be compared with 34% for the new observations in the 

frequency range between 0.20 and 3.00 mHz and is l is ted as item 5 in Table 1. The 

second moment of the dist r ibut ions of the ratios is examined by comparing the 

standard deviations for these ratios which are 15% and 16%, respectively. From this 

i t  can be concluded that the character of the two sets of data are quite similar and 

that the signal to background ratio has remained nearly the same. 

5. PHASE COHERENCY 

We now turn to the subject of phase coherency in the observed oscillations, a 

matter which has received much attention in the l i terature (Hill and Caudell 1979; 

Brown, Stebbins and Hill 1978; Keil and Worden 1980; Caudell and Hill 1979; Grec and 

Fossat 1979). Phase coherency has been reported in two previous works, 

inconclusively at f i r s t  by Brown, Hill and Stebbins (1<J78) and more clearly by Hil l  

and Caudell (1979) in a new analysis of the SCLERA 1973 oblateness data. In th is  

l a t te r  paper, six osc i l la t ions were found to display coherence on 7 days' data 

spanning a 13 day period. The statistical significance of this result was examined 

more carefu l ly  by Caudell and Hi l l  (1979). They concluded that the probabi l i ty  of 

producing these six phase solutions by random noise was 3.8 x 10 -5 compared to 1.6 x 

10 -2 for a completely random signal. A similar phase analysis is performed with the 

new observations; a considerably more convincing result is found. The phases referred 
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to are determined from the daily Fourier transforms of time strings of fluctuation in 

the observed solar diameter. Since these are, by definition, only determinable to 

within a multiple of 2~ on each day, coherence is found when a re la t i ve ly  straight 

line can be produced by the addition of certain multiples of 2x to each day's phase. 

The s ta t is t ica l  significance of a phase solution is judged by the size of the 

residuals around the straight line, that is, the standard deviation, o, of the linear 

f i t .  

For the peaks in power confined to the frequency range 0.2 to 1.05 

mi l l iHertz,  a l l  18 days of 1978 data were analyzed for phase coherency. This was 

achieved through the use of an automatic procedure which, when given the 18 dai ly 

phases over the 23 day span, would sweep a least squares f i t  straight l ine through 

individual multiples of 2~ until the best f i t  was found. Each solution found in this 

way was then manually confirmed to be indeed the best. This was repeated for the 12 

peaks in the frequency range under study. The final solutions for these oscillations 

have been plotted in Figures 3, 4, and 5 with the multiples of 2~ added in as a 

function of day number. Theo for these l inear f i t s  range between 0.6 rad and 1.0 

rad. Note that l i ke  the work of Hi l l  and Caudell (1979), the phase solutions have 

been iterated to bring consistency between the frequency and the slope of the phase, 
( 

solution. The question now is what is the probability that this level of coherency 

is produced by a random source? 

The estimation of probabil i t ies concerning the statistical significance of 

natural phenomena can be d i f f i c u l t  in certain instance~part icularly when small 

samples are concerned. Analytical techniques usually involve a model of the 

s ta t is t ics ,  including the assumption of a probabil i ty d istr ibut ion,  based on the 

apparent "noise" in the data. Probabilities calculated from models like these are 

inherently sensitive to the assumptions and, therefore, may lead to d i f fer ing 

results. An example of a phenomenon where this has proved a problem is discussed by 

Caudell and Hi l l  (1979). Here, we again usea more direct approach and resort to a 

Monte-Carlo numerical simulation. The problem of s ta t i s t i ca l  modeling is then 

alleviated at the sacrifice of large amounts of computer time. For this calculation, 

a set of 18 random phases was chosen between 0 and 2~. These were then placed in the 

daily arrangement indicated by the data set over the 23 day span. These random 

phases were then given to the same automatic solution finding routine used on the 

real data, the best linear f i t  found and the ~ computed. This sigma was then stored 

in the appropriate bin of an accumulating histogram and the automatic procedure 

repeated with the choice of 18 new random phases. The resulting histogram generated 

from 5,000 t r i a l s  is given in Figure 6 where a bin size of 0.03 radians was used. 

The area under the curve has been normalized to unity. Care must be taken in not 

performing too few t r ia ls  in_any Monte-Carlo simulation and, therefore, stabi l i ty of 

the result must be empirically determined. 
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Upon examining Figure 6 we see that the sigmas associated with the real data 

fal l  well away from the peak, which occurs near 1.2 rads. In fact, there are several 

instances where the o obtained from the observations are sufficiently low that the 

Monte-Carlo simulation with 5,000 t r i a l s  fai led to yield a non-zero result in the 

histogram. To evaluate the randomness of a particular linear f i t  to the phase data 

we compute the probability that a random noise source wil l  lead to a sigma less than 

or equal to the observed value. This probabil i ty is given by the integral of the 

distribution in Figure 6 from zero to the observed sigma. This function is plotted 

in Figure 7 as a function of a particular sigma. The range of observed sigmas is 

plotted on Figure 7. From this we conclude that on an individual basis the 

probability that a single phase solution is produced by a random noise source is on 

the average 4 x 10 -3 compared to an expected value for pure randomness of 0.5. Taken 

as a set of 12 independent observations the resultant probabil i ty would be the 

product of these 12 individual probabi l i t ies, producing an incredibly small 

probability. This phase data constitutes one of the strongest pieces of evidence for 

the global nature of the solar oscillations to date. 

In summary, the new set of solar diameter measurements made at SCLERA 

confirms the existence and repeatability of the solar oscillations and lends strong 

evidence to their global nature. 
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ABSTRACT 

We postulate that the rotation and evolution of solar surface structure can 

function as a source of noise in solar limb definition measurements. To test this 

hypothesis, we have produced a time series of 216 spectroheliograms taken at two 

minute spacings. These spectroheliograms were obtained in an Fe I line, formed at a 

depth simi lar to optical depth unity at the limb. We foreshortened this data in 

order to simulate the solar limb brightness profile and passed i t  through the f in i te 

Fourier transform definition (FFTD) algorithm used by Hill and his collaborators at 

SCLER~ In this work we were able to determine the amount of variation in solar limb 

position which is attr ibutable to evolutionary changes in solar surface structure. 

We also a r t i f i c i a l l y  rotated one of these surface structure functions in order to 

determine the effects which surface structure rotation might have on limb position. 

In this paper, we conclude that rotation alone can produce power only at low 

frequencies (~ ~ 1 mHz). However, the evolution of solar surface structure exhibits 

a power spectrum which is similar to that observed with the SCLERA instrument at all 

of the frequencies. We also show that standing surface structure patterns can 

produce phase for a period of seven days such as the phase coherence found in the 

observations at SCLERA, although in the case of the la t te r ,  the periods are 

significantly longer. 

1. INTRODUCTION 

Periodic changes in the apparent solar diameter have been observed by Hill 

and his co-workers (Brown, Stebbins and Hill 1978; Hi l l ,  Stebbins and Brown 1975) at 

the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA); 

these are thought to result from global osci l lat ions of the entire sun. Other 

workers, attempting to observe similar periodicities in large-scale velocity patterns 

(Grec and Fossat 1976; Brookes, Isaak and van der Raay 1976; Dittmer, Scherrer and 

~ NAS/NRC Resident Research Associate. 
Operated by the Association of Universities for Research in Astronomy, Inc. 
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Wilcox 1977; Dittmer 1978), and intensity (Musman and Nye 1977; Livingston, Milkey 

and Slaughter 1977; Beckers and Ayers 1977) have had l i t t l e  success. Brown, Stebbins 

and Hi l l  (1978) point out that interpretation of the la t te r  observations and their  

comparison with diameter measurements are d i f f i c u l t .  In fact, apparent solar 

diameter osci l lat ions can result from a number of sources. Using Hi l l ' s  limb 

position def ini t ion, changes in opacity or temperature structure can lead to an 

apparent change in the solar diameter without the presence of any mass motion; thus, 

the unsuccessful search for velocity osci l lat ions does not confirm or refute the 

diameter measurements. Similar problems occur in the interpretation of intensity 

observations; consequently, the i nab i l i t y  of other observers to find brightness 

oscillations does not negate the SCLERA results. Several investigators have examined 

the possibility that the SCLERA results may, in part, be attributable to changes in 

the earth's atmospheric transmission (Fossat and Ricort 1975) or to changes in solar 

surface structure (Worden and Simon 1976). 

We have computed the effect of evolutionary changes in solar intensity 

patterns upon measurements of the apparent solar diameter which use the f i n i t e  

Fourier transform definition (FFTD) of the solar limb position (Hil l ,  Stebbins and 

Brown 1975). The properties of the FFTD limb position definition are discussed by 

H i l l ,  Stebbins and Brown (1975) and Brown, Stebbins and Hi l l  (1978). To br ie f ly  

review the FFTD, the limb position is obtained from the transform: 

= [1/2 
F(G; r,a) J-1/2 G(r + a sin ~s) cos (2~s) ds (1) 

where r is the radial distance from the center of the sun, a the distance over which 

the s l i t  is scanned, and G(r) is the limb darkening profile. With a fixed value for 

the scan amplitude a, the limb position is that value of r for which F = O. In 

practice, the definition is implemented by scanning a s l i t  sinusoidally across the 

solar limb. By varying the scan amplitude a, and making scans both at the equator 

and pole, effects due to solar oblateness can be separated from brightness effects 

(changes in the limb darkening function). By observing for periods lasting from 7 to 

9 hours on 11 different days, Brown, Stebbins and Hill (1978) have generated a mean 

power spectra of the limb position which shows periodici t ies at a number of 

frequencies. Their data have also been tested for peak repeatabil i ty. They found 

that approximately 2/3 of the stronger peaks were coincident between the f i rs t  and 

second halves of their data. The SCLERA investigators have also shown that a degree 

of phase coherence m~ exist for many of these frequencies (see Figure I of Hill and 

Caudell 1979). The coherence is manifested as a constant phase dr i f t  in time shown 

over a number of days. Their measurements were made with a 100" long s l i t  oriented 

parallel to the solar limb and a scan amplitude (a) of 13."6. The observed 

periodicities compare well with those predicted by Christensen-Dalsgaard and Gough 
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(1976) based upon models of the solar interior. 

In order to test how evolutionary changes in solar intensity patterns affect 

the zero point of equation (1), and thus the limb position, we observed intensity 

patterns at disk center over a period of several hours in a line formed at an optical 

depth similar to an optical depth of unity at X5500 A in the continuum near the solar 

limb. These observations were a r t i f i c i a l l y  rotated to the limb in order to generate 

a time-dependent limb darkening function Gt(r) which was then used in equation (I). 

A time-dependent solar limb position, rlimb(t), was thus generated as a function of 

both evolutionary and rotational changes in solar surface structure. We then 

searched rl imb(t ) for periodici t ies and have compared our results with those of 

Brown, Stebbins and Hill (1978). 

In § 2 we describe the observations, their subsequent reduction and some of 

the problems that arise in their interpretation. Section 3 considers periodicities 

in the data and their  o r ig ins .  Finally, in § 4, we discuss the implications of our 

findings for experiments designed to measure the solar limb position using the FFTD 

definition. 

2. OBSERVATIONS AND REDUCTION 

The observations consist of a time sequence of spectroheliograms made at disk 

center, using the universal birefringent f i l t e r  on the Sacramento Peak Tower 

Telescope (30-inch aperture). They were made in the core of Fe I 5171 which has a 

mean height of formation approximately 450 km above optical depth unity at X = 5500 

A f i l tergram was taken every two minutes during a period of 7.2 hours. Other 

relevant data pertaining to these filtergrams are: bandpass - 1/8 A; exposure time 

1/4 sec; image scale .102 mm/arcsec; image size 215"x 147" on the sun. One such 

filtergram is shown in Figure 1 along with a similar filtergram taken simultaneously 

in the continuum. 

Each frame was digit ized, using the Sacramento Peak fast microphotometer, 

sampling every 1/2" (360 km) along both axes with a Gaussian spot whose FWHM was 

1."5. The characteristic curve of the f i lm,  obtained from step wedges and 

calibration spots, was used to convert microphotometered f i lm densities to 

intensit ies. Thus the observations are reduced to two-dimensional intensity 

patterns, I t (x,y) ,  obtained at 216 points in time, each separated by two minutes. 

The x axis is 215" long and parallel to the equator; the y axis is 147" long and 

perpendicular to the equator. The effect of the s l i t  used in the FFTD limb position 

definition is to integrate the light along the y-axis with equal weighting, and along 

the x-axis with weighting determined by equation (1). Thus the intensity pattern at 

each time t was averaged over the y axis to obtain 
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Ny 

It(x) = llNy i~ I I t (x,y i )  (2) 

where Ny is the number of digitized points along the y axis. 

To remove the effects of sky transparency changes, uneven exposure and 

development and large-scale changes caused by fi lm irregularities over distances on 

the order of the frame size, we f i t  a second order polynomial to I t(x) at each time 

t ,  using least squares. I f  It(x ) is the fitted polynomial at time t ,  we then compute 

I ' t (x )  - I t (x ) / I t (x )  (3) 

Thus any real change in the average solar intensity from one frame to the next is 

lost, as well as any spatial changes with dimensions on the order of the frame size. 

Variation in transmission from point to point on the f i l t e r  w i l l  be 

independent of time. Thus, by averaging I't(x) over all of the frames, we can obtain 

the f i l t e r  prof i le and remove i t  from the data. Another set of data is thereby 

generated; this is given by: 

N t 

where N t : 216 is the total number of frames. The suppression of intensity 

variations that are caused by local film irregularities is perhaps the most d i f f icu l t  

problem. In order to get an estimate of their contribution to the data, a final set 

of data is generated in which adjacent frames are averaged together so that 

: ½ + , 

where At = 2 minutes. Besides averaging out f i lm i r regu lar i t ies ,  this 2 minute 

sampling rate may also suppress contributions from the 5 minute oscillations. 

The time dependence of the limb darkening function G(r) is next obtained from 

the observed intensity fluctuations I~(x), where P can represent one or more primes. 

This is done by a r t i f i c i a l l y  rotating I~(x) to the limb. We assume that G(r) w i l l  

undergo variations similar to those observed at disk center, where the variations are 

reduced by foreshortening and by horizontal transfer. Since we have chosen a line 

formed at approximately the same height as the continuum at the limb, horizontal 

transfer w i l l  affect the contrast of very small features such as granulation; 

however, large-scale features w i l l  be affected only at the extreme limb, where 

foreshortening has already dropped the contrast to almost zero. Variations in G(r) 

may also be produced at the equator by rotation Of the observed intensity patterns 
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through the field of view. 

accomplished by rotating the f i rs t  point in I~(x) The art i f ic ial  rotation is 

to a position near the limb, such that the remainder of the data string extends just 

beyond the limb. This process is shown schematically in Figure 2 where the original 

data, lying between points A and B, is rotated to l i e  between points A" and B". 

The data isthen resampled in equal increments of solar radius (ar) near the limb. 

All of the elements of IF(x) fa l l ing into a given ar increment are then averaged, 

thereby accounting for foreshortening. The data is next multipl ied by a time 

independent limb darkening function Go(r) to produce 

G~(r) : Go(r)l~(r) (6) 

where IF ( r ) i s  obtained by the resampling of I~(x). An example of the reduction 

process for one frame is shown in Figure 3. 

The apparent FFTD limb position rlimb(t ) is then generated as a function of 

time by substituting G~(r) into equation (1) and searching for the value of r for 

which the integral in equation (1) is zero. 

In order to determine the relat ive contributions of large or small-scale 

fluctuations in It(x) to variations in rlimb(t), and thus the importance of including 

smearing due to horizontal transfer, I ' t (x ) is smoothed to suppress intensity 

variations smaller than 12,000 km. The variations greater than 12,000 km are also 

divided out so that only small- scale fluctuations remain. This procedure showed 

that almost all of the observed signal comes from features larger than 12,000 km; 

furthermore, horizontal transfer is only of minor importance in suppressing the limb 

position fluctuations generated by changes in the limb darkening p ro f i l e .  

Calculations designed to simulate horizontal transfer were performed and i t  was found 

that the fluctuations in I't(x) were suppressed by factors of 0.5 and 0.1. 

The significance of our results was examined by looking at purely random 

signals. Using a random number generator, we have generated sets of data, I~(x), and 

passed them through the analysis described above. The random data were multiplied by 

factors which gave them the same rms variations as our observational data. Random 

data which fluctuated over both large and small scales were tested in this manner. 

In addition to intensity changes which occur during the course of solar 

evolution, the intensity pattern at the limb may be altered by the effects of solar 

rotation upon the equatorial regions. To test the effects of solar rotation alone, 

one of the aforementioned solar limb profi les was ar t i f ic ia l ly  rotated across the 

limb at intervals corresponding to three minutes of rotation. The rotated profile 
was then passed through the FFTD as described above to determine the possible 

variation in limb position produced solely by the rotation of a fixed solar intensity 
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Figure 1. Sacramento Peak fi l tergrams obtained in the Fe I 5171A l ine and 
simultaneously in the continuum showing surface structure. A sequence of 216 of 
these were used in this analysis. 

B" 

, 

i 
TO ERRTH 

SOLRR 
LIMB 

Figure 2. A schematic representation of the sun (not to scale). The fi ltergrams 
shown in Figure 1 are obtained between points A and B. The data is then rotated 
a r t i f i c i a l l y  to l i e  between A" and B" and then resampled to take foreshortening 
into account. 
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Figure 3. A f i l tergram such as that shown in Figure 1 reduced to one dimension 
(upper left) ,  foreshortened and limb darkened to represent the actual intensity at 
the solar limb; without seeing (lower l e f t ) ,  with 1" seeing (lower right). In the 
upper right is an example of variations in the derived FFTD limb position when this 
pattern is allowed to rotate around the limb. 
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pattern around the solar limb. The simulated rotation was computed for 256 time 

steps, effectively modeling the solar rotation for 13 hours. The variations in limb 

position, generated by both evolutionary and rotational changes, were then Fourier 

analyzed. An example of the limb position changes generated by rotation is given in 

Figure 3 along with illustrations of various steps in the reduction process. 

3. RESULTS 

3.1. Observed Periodicities 

Figure 4 shows the temporal power spectra of limb position fluctuations, 

r l imb(t), generated from: (a) l ' t (x)  [~ imb(t) ] ;  (b) l~"t(x) [ r l imb( t ) ] ;  (c) I~(x) 
smoothed over 31 spatial points in order to remove features smaller than 12,000 km; 

and (d) I~(x) divided by a 31 point running mean of I~(x) so that only features 

smaller than 12,000 km remain. Figures 4c and 4d show that most of the fluctuations 

generated by the raw data result from large-scale features, affirming the proposition 

of Brown, Stebbins and Hill (1978) that small-scale features will have a negligible 

effect. 

The average power levels for ~imb(t) [~ 40 (milliarcsec) 2] and for rlimb(t ) 
[~ 30 (mill iarcsec) 2] are higher than the value of 25 (mill iarcsec) 2 observed by 

Brown, Stebbins and Hill (1978). I f  we multiply the fluctuations in It'(x ) by 0.5 to 

simulate the effect of horizontal transfer, the average power level of the 

fluctuations in ~imb(t) drops to ~ 12 (milliarcsec) 2. Since we have shown that most 

of the signal comes from large scale features, this may overestimate the effect of 

horizontal transfer on the fluctuations. 

Table I offers a comparison of the periods of some of the stronger peaks 

shown in Figure 4a with the observations of Brown, Stebbins and Hill (1978) and with 

the predicted radial p-mode frequencies of Christensen-Dalsgaard and Gough (1976). 

Deubner (1977) has pointed out that, because of the almost continuous range of 

predicted periods, such a comparison cannot be used to prove that global oscillations 

have been observed. One must spatially resolve the various modes in order to make a 

meaningful comparison. Nevertheless, our calculation shows that many of the periods 

observed by Brown, Stebbins and Hil l  (1978) could originate from changes in solar 

intensity patterns. The source of these intensity changes, however, has not yet been 

addressed. 

To test the effects of atmospheric seeing, we have convoluted the time- 

dependent limb darkening function G~(r) with both 1/2 arcsec and 1 arcsec seeing 

before computing ~imb(t) from equation (1). Seeing of 1/2 arcsec increases the 

power by approximately 5% while 1 arcsec seeing decreases i t  by about 10%. This 

result confirms that the FFTD is largely independent of the effects of seeing. 

The stat is t ica l  r e l i ab i l i t y  of the data shown in Figure 4 is very low. In 

order to increase the re l i ab i l i t y ,  we have subdivided our data f i r s t  into two 
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Figure 4. Temporal power spectra of limb position fluctuations found by passing the 
216 limb intensity functions, such as shown in Figure 3, through the FFTD formalism. 
Before computing the FFTD limb positions used to generate each figure, we (4a) 
removed a second order polynomial from the intensity fluctuations (equation 3); (b) 
averaged together the intensity fluctuations on temporally adjacent frames (equation 
5); (c) smoothed the intensity f luctuation over 31 spatial points to suppress 
features smaller than 12,000 km; and (d) removed features larger than 12,000 km by 
dividing each set of intensity fluctuations by a 31 point spatial running mean. 
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Table 1. 

Observed Period (min) Predicted Period (min) 

This Study 

102.0 

46.0 
39.4 
32.0 

23.0 
21.3 

14.6 
12.8 
11.6 
10.4 

8.0 
7.5 

6.5 
6.0 
5.2 
4.9 

Hill et al. 

(above 95% conf) 

66.2 
44.7 
39.0 
32.1 
28.7 

24.8 

21.0 
19.5 

13.3 
12.1 
11.4 
10.7 
9.9 
9.3 
8.5 
7.8 
7.6 
6.9 
6.7 
6.5 

Christensen-Dalsgaard 
& Gough 

62.22 
41.98 

32.32 

26.00 

21.51 
18.33 
15.95 
14.13 
12.64 
11.54 
10.60 
9.81 
9.12 
8.52 
7.94 
7.53 
7.12 
6.75 
6.41 
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subsets, each 3.6 hours long, and then into three subsets each 2.4 hours long. In 

the f i r s t  case, our effective resolution is changed from .0386 mHz to .0772 mHz and 

in the second, to .115 mHz. The upper l i m i t  on periods that can be easily observed 

drops from approximately two hours to one in the f i r s t  case and to approximately 45 

minutes in the second. The positions of peaks with frequencies higher than ~ .35 mHz 

are affected very l i t t l e  by the sectioning. The fact that many of the peaks survive 

the sectioning of the data indicates that they are of solar origin, and attributable 

to long-lived solar phenomena. The average power drops from 40 (milliarcsec) 2 to 

25 (milliarcsec) 2 in the f i r s t  case and to 16 (milliarcsec) 2 in the second. To make 

a quantitative estimate of the stabi l i ty of the power spectra, similar observations 

over a period of several days are necessary. 

Figure 5a shows the power spectrum which would result solely from rotation. 

Also shown is the average power spectrum observed by Brown, Stebbins and Hill (1978). 

We can immediately see that rotation produces almost no high frequency power. Once 

again, this is in l ine with the contention of Brown, Stebbins and Hi l l  (1978) that 

small scale features (granulation) wil l  have minimal effects on the FFTD. However, 

at frequencies less than 1 mHz, the mean power level is between 5 and 40 

(milliarcsec)2; this is clearly compatible with the SCLERA results and demonstrates 

that rotation of solar features alone can be a substantial source of noise. However, 

since the SCLERA results for the solar equator are very simi lar to those for the 

pole, where rotation has no effect, the indication is that the rotation of solar 

surface structure is not a dominant effect. 

Spatial and temporal variations in I t (x  ) may arise from several sources. 

Changes in the average sky transparency, differential changes in the sky transparency 

across the aperture, uneven exposure or development of the f i lm, changes in the f i lm 

emulsion from one point to the next, variations in the transmission across the 

f i l t e r ,  and actual changes in the solar intensity pattern w i l l  al l  produce 

fluctuations in I t(x).  In attempting to isolate true solar effects from other 

sources, some of the actual solar variations must also be suppressed. We may also 

underestimate some of the non-solar sources of intensity fluctuations. These two 

problems place a fundamental l imi t  on the accuracy of our measurements, the magnitude 

of which is d i f f icu l t  to determine. Thus, these calculations should be interpreted 

as only a rough estimate of the possible solar ef fects  on llmb posit ion 

determinations which use the FFTD definition. Nevertheless, the results are quite 

dramatic and show that the interpretation of apparent limb shift measurements is not 

a straightforward exercise. 

3.2. Random Data and Phase Coherence 

We have generated ten sets of random data for l~(x) (R = 1 - I0) and have 

used them to generate FFTD limb position fluctuations for which power and coherence 
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Figure 5. (a) Temporal power spectrum of limb position fluctuations that were 
generated by rotating a single limb intensity prof i le such as shown in Figure 3 
around the limb. Each time step is generated by rotating the intensity prof i le an 
appropriate distance; thus excluding evolutionary changes in the surface intensity 
pattern. 

(b) The temporal power spectra of limb position variations observed by Brown, 
Stebbins and Hill (1978). 
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spectra have been computed. 

Each set of data was generated such that the mean spatial scale of the 

fluctuation is approximately 12,000 km and the rms variance is approximately 1%, in 

agreement with the observations. The individual power spectra have average power 

levels near 40 (mil l iarcsec) 2 with several peaks well above this level. The 

positions of the peaks vary randomly from one spectrum to the next. All but one or 

two peaks for each of the ten spectra were removed by subdividing the data into three 

shorter sections and averaging together the resulting spectra. 

In Figure 6a, we plot the coherence and phase spectra'between two of the 

random data sets. Before computing the coherence spectra, the real and imaginary 

parts of the cross-power spectra and the individual power spectra were smoothed over 

five frequency points using rectangular weighting. Figure 6b shows the coherence and 

phase spectra obtained by averaging 9 separate spectra obtained from 9 d i f ferent  

pairs of the random data. Figure 6a indicates that, with a limited data sample, some 

frequency ranges exhibi t  substantial coherence even though the data is random. A 

mean coherence of approximately 30%, shown in Figure 6b, could be expected from a 

large number of random data samples. This result shows that some "phase coherence" 

may result from purely random noise sources and that observed coherence should be 

interpreted with caution. 

Hi l l  and Caudell (1979) have found a constant phase d r i f t  at several 

d i f ferent  frequencies in data taken on seven di f ferent  days; they argue that th is  

supports the conclusion that their data is of solar origin and results from global 

osci l la t ions.  The fact that high coherence (60-80%) can be found in several 

frequency bands for random data indicates that caution is necessary in interpreting 

phase and phase changes. To test whether their technique for f i t t i ng  a straight l ine 

through phases found on different days would produce similar results for random data, 

we generated seven random phases between 0 and 2~ and assumed that the phases were 

measured on the days corresponding to their observations (i.e., the 8, 9, 10, 11, 19, 

20, 21 of September, 1973). Following Hill and Caudell (1979), we held the phase on 

the f i r s t  day constant and added multiples of 2T to the other phases unt i l  we 

obtained the best f i t  to a straight line. This process was repeated several hundred 

times so as to build up a statistical distribution of f i t s  and rms error. 

Table 2 gives the slope and rms error (0) of the f i t t ed  l ines found by Hi l l  

and Caudell (1979) at the six different frequencies. The average value of o for the 

f i t s  at the six frequencies is ~ 0.75 radians. Figure 7 gives the d is t r ibu t ion  of 

ois we found by f i t t i n g  300 di f ferent  sets of random phases. The average slope of 

our f i t t ed  straight l ine was 1.63 radians/day with a standard deviation of 0.85 

radians/day. Theaverage value of ~ was 0.756 radians and the standard deviation 

about the mean was 0.157 radians. Four of the values measured by Hi l l  and Caudell 

fal l  within, and one value just outside, one standard deviation of our figure. The 
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Figure 6. (a) Coherence and phase spectra between limb position fluctuations 
generated by passing two independent random data sets through the FFTD formalism. 

(b) Coherence and phase spectra found by averaging together results such as those 
shown in Figure 6a for 9 pairs of random data. 
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value of o they found at 0.606 mHz, which is much larger than expected from random 

data, is strongly influenced by one stray data point taken on the 21st of September 

(see Figure 1 of Hill and Caudell 1979). 

Five of the values of ~ found by Hi l l  and Caudell are smaller than the 

average of our random distribution. They estimated the probability to be 3 x 10 -12 

that random data could exactly produce their result. However, the important question 

is not whether random data reproduces the i r  part icular results but whether i t  can 

produce or do better (smallero) than their results. Thus, the pertinent question is 

as follows: In six t r ia ls  with random phases, what is the probability that f ive of 

the t r ia ls  wi l l  give an error less than or equal to about 0.74 radians (their largest 

value excluding that found at 0.606 mHz)? From the distribution shown in Figure 7, 

we compute that the probabi l i ty of getting a value of ~ less than or equal to 0.74 

radians in a single t r i a l  is 0.43. I f  we consider six t r i a l s  with f ive outcomes 

result ing in o's of th is magnitude, the probabi l i ty computed from the binomial 

distribution is 0.052. Furthermore, the probability that random phases would produce 

one f i t  better than 0.59 radians ( their  best f i t )  is 0.4. The chance that random 

numbers could produce the findings of Hi l l  and Caudell is much higher than the 3 x 

10 -12 they quote. Indeed, their results dif fer by just one standard deviation from 

what could be expected i f  a l l  of the phases they measured were random. Thus, 

constant phase dr i f t  is not a conclusive argument for the solar origin of their data. 

Recently, Caudell et al. (1980) have found s imi lar  phase coherence for 18 

days of data. While this result tends to indicate that a coherent phenomenon is 

present, we feel that caution should be taken before ascribing i t  solely to a global 

solar osc i l la t ion.  Solar surface features, which can produce the type of power 

spectra we have shown here, are also long-lived. Livingston and Orrall (1974) have 

shown that supergranular patterns may exist for 3-5 days in some cases. Distortion 

of a standing supergranular pattern caused by differential rotation may produce phase 

drif ts of the type seen in the SCLERA data. This would indicate that solar surface 

structure may not be a truly random noise source in limb definition measurements. We 

have run preliminary tests on data in which one day's phase is part ial ly dependent on 

the previous day's phase. In a series extending over 18 days, we find that the mean 

value of o can be lowered by 10-20% by assuming some form of partial coherence. 

4. CONCLUSIONS 

We must f i r s t  note that our calculations and observations have been 

exploratory in nature and that further work is necessary to clearly separate all of 

the phenomena that can affect solar limb measurements. Nevertheless, we have shown 

that solar intensi ty patterns could subs tan t i a l l y  in f luence l imb pos i t ion  

determinations. We feel that the following conclusions are possible: 

(1) Changes in the apparent solar limb position, as determined from the FFTD 
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Table 2. 

Frequency Slope rms error 

(mHz) (radian/day) (radians) 

0.248 2.75 0.74 
0.366 4.16" 0.65* 
0.414 4.76 0.59 
0.463 0.01 0.66 
0.539 3.72 0.64 
0.606 2.80* 1.25" 

average 3.04 O. 77 

* These values were estimated from Figure I of Hi l l  and Caudell (1979). 

The other values were sent to us by T. Caudell. 
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Figure 7. Sigma is the rms variation of the residuals obtained when a set of seven 
t o t a l l y  independent phases are f i t  with a s t ra ight  l ine.  Each phase is allowed to 
change by multiples of 2~ unti l  the best f i t  (smallest sigma) is found. The process 
was repeated for 300 independent sets of random phases. P(~) is the probability that 
a certain sigma w i l l  have a value that f a l l s  in a b inao = 0.05 radians about th is  
value of sigma. 
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formalism (equation I),  can result from evolutionary and rotational changes in solar 

in tens i ty  patterns. The magnitude and per iod ic i t ies  generated by the in tens i ty  

variations are similar to those measured by Brown, Stebbins and Hil l  (1978). Further 

work, which is needed to conclusively determine the effect of these phenomena, should 

include photoelectric measurements in order to el iminate some of the problems 

produced by the use of f i lms and observations on a large number of days. Such work 

is currently in progress. 

(2) I t  has not been demonstrated conclusively that the relationship between 

phases observed at the same frequencies on different days reflects the origin of the 

data. We have shown that random data can produce phase relationships that mimic the 

observations; further work is  therefore necessary to correctly interpret the phase. 

We conclude that evolution and rotation of solar intensity patterns may be a 

substantial source of noise in solar limb position measurements. We do wish to note, 

however, that this does not indicate that the SCLERA results are s t a t i s t i c a l l y  

insignificant. Indeed, the SCLERA oscillations may be the source of the changes in 

the solar intensity pattern which we are observing. Ultimately, the determination of 

the re la t i ve  contributions of solar osc i l la t ions  and random noise sources to the 

SCLERA results wi l l  be made through studies of phase coherence over long periods of 

time. We feel that this is a problem which warrants significant additional study and 

one to which we are devoting considerable time. 

We would l ike to thank Dr. T. Caudell for providing us with the SCLERA phase 

coherence results. We would also l i ke  to thank Dr. H.A. H i l l  and his collaborators 

at the University of Arizona who organized an excellent and useful symposium during 

which these problems were discussed. 
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OBSERVATIONS WITH HIGH TEMPORAL RESOLUTION 

OF THE SOLAR Ca + K LINE 

L Duvall, W. Livingston, and ~ Mahaffey 
Kitt  Peak National Observatory 
Tucson, Arizona 

ABSTRACT 

High time resolution (At = I0 s) photometric scans of chromospheric Ca + K are 

examined for evidence of propagating waves. The scans refer to a quiet area (1 x 7 

arc seconds) near disk center. Diagnostics include l ine prof i le  movies, time 

sequence spectrograms and power spectra. Both upward and downward (reflected?) 

disturbances having lifetimes ~ 1-2 minutes are seen. 

1. INTRODUCTION 

I t  has long been known that calcium K spectroheliograms display bright points 

that are a few arc seconds in size and have a transitory l ifetime of approximately a 

minute (Jensen and Orrall 1963). These bright points are especially evident in the 

v io le t  reversal feature in the core of Ca I I  K 3933A, usually designated K2v. One 

may speculate that these K2v bright points represent a manifestation of outward 

propagating waves-'suddenly enhanced by the chromospheric density gradient. In this 

preliminary study we attempt to better define the temporal nature of the bright 

points and look for evidence of waves in the time domain from 20 s to 10 m. 

2. THE OBSERVATIONS AND REDUCTION PROCEDURE 

On a day of "good" seeing (~ 2 arc seconds), the 82 cm image of the sun 

produced by the McMath Telescope was centered over the entrance s l i t  of the 13.5 m 

spectrometer, positioned so as to avoid any "network" or "plage." The s l i t  dimension 

was equal to 1.0 x 7.5 arc seconds, and the image was driven to remove the mean 

component of solar rotation. For this experiment the double-pass spectrometer was 

operated in single-pass in order to improve the signal to noise ratios and because 

only temporal changes were of interest. A wavelength interval of 5 A was scanned by 

the spectrometer in 1§6, with 4 scans being summed to constitute a single record 

having a repet i t ion time of 9~5. Thus the Nyquist frequency is 0.053 Hz (period 

20s). This process was continued for 80 m after which the system noise was determined 

by inserting a lens into the beam, reducing the spatial resolution to approximately 1 

x 2 arc minutes. Another 80 m run was then performed. Observations were made on two 
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days, 11 and 14 December 1978. An additional simi lar run was made on 26 December 

1978 for purposes of comparison, using Mg b 5183, a l ine formed in the low 

chromosphere. 

Each record was normalized to a local "continuum" window and adjusted in 

wavelength to a fixed photospheric reference line in order to eliminate the effects 

of transparencY change and spectrograph dr i f t  (for procedural details see White and 

Livingston 1978). Examples of line profile variations that remain after the above 

adjustments are displayed in Figure 1. (Movies of these prof i le variations, 

accelerated x 40, have also been produced.) 

A quadratic f i t  was made to the extreme absorption core of the Ca + K l ine, 

K 3, and the residual intensity, IK3, and relat ive wavelength, reduced to velocity, 

VK3, were determined. Average power spectra for IK3 and VK3 were calculated as 

follows. The observation length of ~ 414 points was padded to 512, then broken into 

3 overlapping segments of 256 points, each of which, suitably apodized, was padded to 

512 points. The 3 spectra were then averaged together. Figure 2 shows the low 

frequency end of these average power spectra. The dominant periods and relat ive 

power are given in Table 1. Power spectra made with the integrating lens in place 

showed that system noise, with the possible exception of the "seeing" component, was 

negligible. 

Sou-Yang Liu (1974) has reported that intensity perturbations sometimes 

propagate from the far wing of K into the core K232. The profile movies previously 

mentioned show these effects rather inadequately due to unavoidable image-motion 

disturbances. A more useful tool is a "time sequence spectrogram," a pictor ial  

representation of the l ine prof i le as a function of time. Each spectrum scan is 

converted back to intensity on a CRT picture with wavelength as the abscissa and time 

the ordinate. Figure 3 is such a display confined to near l ine core. The rather 

impulsive nature of the intensity and velocity disturbances is clearly v is ib le ,  

although occasionally there is a suggestion of a near sinusoidal event (e.g., at the 

top of the figure). The power spectrum provides a quantitative description of the 

frequency content of the picture ignoring phase. But phase information is needed to 

see the wave phenomena that Liu found. In Figure 3 the arrows point to a bright 

feature that moves from the wing to the l ine core with time. To accentuate such 

features we have subtracted the time-averaged profile from the data set to produce 

Figure 4. Now one sees a multitude of t i l ted features, mostly pointing toward the 

line core, suggesting propagation both upward and downward. Downward manifestations 

seem confined to very near the core. 

3. DISCUSSION 

The time sequence spectrogram (Figure 3) displays three phenomena. The very 

narrow horizontal streaks arise from image motion; these are spurious and should be 
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Figure 1. A segment of the line profile movie showing the development and decay of a 
Kpv bright point. The vertical fiducial is fixed with respect to the photospheric 
IThes. As the intensity of K2v increases, an apparent velocity shift is induced in 
K3, producing a pseudo correlation. 
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Figure 2. Power spectra for the Ca + K run on 11 December 1978. Velocity and 
intensity both refer to K 3. The strong peak at 187 sec may be due to the induced 
correlation illustrated in Figure I. 



241 

Table 1. Dominant Period(s) and Relative Power 

for IK3, VK3, IMg, and VMg 

Periods 

Intensity Velocity 

Ca + K 3 

Mg 5183 

Ca + K 

Mg 5183 

285 
(185) 
(141) 

363-262 a broad feature 
(155) 

Power 

(325) 
(244) 
187 

(146) 

295 
.(157) 

60(10 -7 ) 

1(10 -7 ) 

17(10-2) 

5(10 -2 ) 
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Figure 3. A time sequence spectrogram for 11 December 1978. The wavelength scale is 
set by photospheric lines outside the region displayed and refers to center disk 
value of Ca t K (3933.682 A). Arrows point to t i l t ed  intensity patterns indicating 
upward propagating disturbances. 
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Figure 4. A time sequence spectrogram for 11 December 1978, with the time average 
prof i le removed. The V-shaped patterns centered on X = 0 suggest both upward and 
downward propagating disturbances. 
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ignored. The second feature is the horizontal banded structure corresponding to the 

f ive minute and 180 second "oscil lat ions." Liu proposes that the f ive minute 

component originates with "network" fragments while the 180 second power is confined 

to the K2v points. The evident randomness Of this pattern suggests either a short 

coherence time or a continuous mixing of the osci l lat ion trains. The third 

phenomenon found in the spectrogram is the t i l t ed  features best seen in Figure 4. 

According to Liu, as we go from A~ ± 0.3 A to K 2 to K 3 we move upward from 350 Km to 

700 Km to 1580 Km respectively. Thus a bright feature which moves with time 

consecutively through these spectral regions represents direct evidence for an 

outward propagating disturbance which produces local heating, presumably through 

(shock?) dissipation. By the same reasoning, downward propagating waves are also 

seen; we may speculate that these arise from reflection. 

In summary, we have i l lust rated that the solar chromosphere contains 

oscillatory and transitory phenomena having time scales of seconds to minutes. No 

single diagnostic is completely suff ic ient and we point to the u t i l i t y  of prof i le 

movies, time sequence spectra, and power spectra for analyzing these motions. 
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EXCITATION OF SOLAR G MODES WIlll PERIODS NEAR 160 MINUTES 

D. Keel ey 
Science Applications, Inc. 
Palo Alto, California 

ABSTRACT 

Solar g modes with ~ = 1 to 4 and periods near 160 minutes have been 

investigated using a solar model with normal structure. Radiative dissipation in the 

region below the convection zone is much greater than the driving provided by nuclear 

reactions or the opacity mechanism. A crude treatment of convection suggests that i t  

also is not an important source of driving. The damping due to turbulent viscosity 

is also small. Excitation of these modes by coupling to convective turbulence is 

substantial in terms of the rms energy of the modes, but the surface velocity is very 

small because of the large amount of mass involved in the oscillation. 

1. INTRODUCTION 

The 2 h 40 m period f i r s t  reported by Severny, Kotov and Tsap (1976) and by 

Brookes, Isaak and van der Raay (1976) has been supported by more recent observations 

(Scherrer et al. 1979). In this paper, properties of modes in this period range are 

examined in the context of a conventional solar model, and the i r  s t a b i l i t y  

investigated as described below. 

A model representing the sun was obtained by evolving a homogeneous 1M e 

model from the zero age main sequence unt i l  i t  resembled closely the present sun. 

The properties of the model were as follows: L = 3.83 x 1033 erg sec -1, R = 6.9136 x 

1010 cm, Z =.02, Y(surface) =.244, X(center) = 0.39. The mixing length was 1.238 

pressure scale heights. The convection zone included about 1.2 x 1031 grams and 

extended down to a temperature of about 1.5 x 106 K. 

The differential equations for adiabatic eigenfunctions were written in the 

form used by Osaki (1975), and solved by the method of inverse i terat ion.  The 

damping (or excitat ion) was then determined by perturbation theory, using the 

adiabatic eigenfunctions. The turbulent excitation energy and viscous damping were 

calculated as described by Goldreich and Keel ey (1977), except for an improvement in 

the integral over the wave numbers in the turbulent spectrum. 

2. LINEAR STABILITY ANALYSIS 

The condition for l inear i n s t a b i l i t y  is that a net posit ive amount of PdV 

work be done during one cycle of the osc i l la t ion.  In calculat ing growth rates 

according to perturbation theory, only the nonadiabatic part of the pressure 

perturbation can contribute to the work integral. I f  the time dependence is assumed 
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to be exp(i~t), then the nonadiabatic pressure perturbation is 

6Pna (~3 " ~ p :  . 

in which a denotes a Lagrangian perturbation, and all other symbols have their usual 

meaning. For a given mass element, there is a positive contribution to the driving 

i f  

V.~ ~ - E > 0 , (2) 

in which ~ is the displacement. 

2.1. Radiative Contribution 

equations used for the radiative flux ~r are The 

-~r 4 : - ~ vJ (3) 

I 
J -  B = - ~:TT~v.#" r (4) 

in which J is the mean intensity, B is the Planck function, and m is the absorption 

coeff icient. Since the perturbation of the scalar quantity v- ~r is required in 

equation (2), i t  is convenient to write an equation for i t  directly: 

v !  V-~ r -½ .[KpV(K-~V.~r)] = - ~ - v ' { l v ~  (5) 

The second term on the le f t  is usually omitted in calculations of both the 

hydrostatic model and the damping. Its effect on hydrostatic models is normally 

small, but for some oscillation modes its perturbations have a large effect on the 

damping. It is especially important at the outer boundary of the solar convection 

zone. 

I t  is customary to do Eulerian perturbations in nonradial calculations 

because they commute with spatial derivatives; this problem is more di f f icul t  to deal 

with in these circumstances than i t  is for radial motions. However, in regions where 

K or other quantities vary very rapidly in space, the Eulerian perturbations are very 

much larger than Lagrangian perturbations. Because i t  is ult imately necessary to 

construct the Lagrangian perturbation for use in equation (2), the cancellation of 
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several significant digits, which could result when going from Eulerian to Lagrangian 

at the outer edge of the convection zone, could have a serious effect. Numerical 

errors due to noise in the eigenfunctions could occur in this potentially important 

driving region. Even i f  the eigenfunctions are not noisy, possible systematic 

effects due to the grid structure could introduce signif icant errors. For these 

reasons, Lagrangian perturbations were used throughout, and terms which were 

cancelled in part or total ly by similar terms from the convective flux perturbation 

were handled explicit ly. The final expression for the perturbation of V.~r ~ D is 
EQUATION 6 

+ (~-FrK) ;  K - (~ j ;KFr j ) ;K-  ~j;KFrK;J (6) 

in which B ~ (Kp) -1. Index notation has been used because ordinary vector notation 

is somewhat ambiguous for the last two terms. The semicolons denote covariant 

derivatives. 

2.2. Convective Contribution 

An equation for the time-dependent convective flux was written in the form 

given by Cox et al. (1966): 

c 
dt = T ' (7) 

in which the timescale T is taken to be the mixing length divided by the local 

~c ( i) is the convective f lux as calculated from convective velocity, and mixing 

length theory. The perturbed form of the equation is 

6~ c ~c ( i) 
= ~ (8) 

The Lagrangian perturbation of the instantaneous flux was taken to be 

 (Fc 
in which a unit vector in the direction of -vP is taken as the direction of the 

Fc(i) is the magnitude of the f lux as calculated in the usual convective f lux,  and 

way. Equation (9) expands out to the form 
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- - - r -  H ~ -  ({i - ~r vz Yzm ' (10) 

in which H is the pressure scale height, 

^ ~  1 A 
V-  r ~ + ~ v ±  , and ~ :  { r r  Y~m+ ~± vl Y~m 

The perturbation of the divergence of ~c is given by 

~(v.g" c) = v.(~F c) - v~:vF c , ( I I )  

in which the last  term is the same form as in equation (6) for the radiative f lux ,  

and is partly cancelled by i t .  

2.3. Nuclear Contribution 

The energy generation rate has been written in the usual form: 

E = m.pn T v , (12) 

from which the perturbation in the adiabatic approximation is obtained: 

Constant values for n and v were used throughout the energy-generating region. Since 

r 3 - 1 is quite constant also, the nuclear contribution can easily be scaled to any 

desired values of the exponents nandv .  For the results given in Table 1, the 

values n= I ,  v = 15 were used. The high value fo rv  was used because the nuclear 

reactions cannot maintain the equilibrium abundance of products in the PP chain for 

which the exponent ~ ~4 or 5 ~s appropriate. Since nuclear driving did not appear 

to be an important effect, i t  was not considered necessary to treat this contribution 

in more detail. 

2.4. 

instabi l i ty  (equation 2) becomes 

The nuclear reactions always contribute to i n s t a b i l i t y ,  

perturbation in a region where v .  F > O. 

The Condition for Local Drivin 9 

With the approximations discussed above, the condition for driving of the 

(14) 

as does the density 
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Table 1 

TABLE 1. g Modes Near 2h40 m : 9600s 

: 1 2 3 4 

Period (s) 10196 9473 9840 9647 
Nodes 6 I0 15 19 
Ampl i tude r a t i o  12 I0 22 36 

Radiative damping 
rate (s -1) 1.40-13 4.02-13 9 .16-13 1.49-12 

Convective damping 
rate 8.80-17 -1.38-15 -4.26-15 -5.75-15 

Turbulent damping 
rate 1.92-15 1.50-14 2 .61-14  2.85-14 

Nuclear 
excitation rate 1.29-14 1.33-14 1 .37-14 1.38-14 

Radiative damping 
below convection 
zone 99% 98% 96% 96% 

Turbulent 
excitation 
energy (ergs) 9.3+25 1.6+26 1.3+26 7.9+25 

Energy for 1 cm/sec 
at surface (ergs) 1.1+33 5.8+32 8.7+32 1.4+33 



250 

3. RESULTS AND CONCLUSIONS 

Adiabatic eigenfunctions and frequencies were calculated for several modes at 

each value of ~ in the range ~ = I to 4, and the work integral  was calculated as 

described in § 2 above. The results are summarized in Table 1 for the 4 modes with 

periods closest to 160 minutes. In addition, the radial and transverse components of 

are shown in Figure l for  the ~ = I mode. The 200 point grid resolved the 6 nodes 

of the ~ = 1 mode quite we l l ,  but resolut ion was not as good for  the 19 nodes at ~ = 

4. However, i t  is un l i ke ly  that errors large enough to a l te r  the conclusions are 

present. 

Except for  the ~ = 1 mode, the ra t io  of the maximum radial displacement to 

the surface displacement increased strongly wi th ~, as indicated in Table 1. 

Radiative damping was by far the dominant dissipative mechanism, and most of that 

damping occurred below the convection zone. Convective f l ux  transport provided 

dr iv ing near the surface of the convecton zone in an amount comparable to the 

radiative driving there. The energy expected in these modes as a result of nonlinear 

coupling to convective turbulence was ~ 1026 ergs, whereas the energy required for a 

surface velocity of 1 cm/sec is ~ 1033 ergs. In any case, the turbulent excitation 

mechanism would not be a satisfactory one unless the observations eventually show 

that many modes are excited. 

The observations are not easi ly  understood in terms of the conventional 

considerations discussed in this paper. 
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THE COLLECTIVE EXCITATION OF g-MODES IN THE SUN 

C.L. Wol f f  
NASA-Goddard Space F l igh t  Center 
Greenbelt, Maryland 

ABSTRACT 

Osci l la t ions of the solar i n t e r i o r  ( l inear  g-modes)may be strongly driven by 

the c o l l e c t i v e  i n f l uence  of a l l  the modes upon the nuc lear  reac t ions  in the core. 

This here to fo re  neglected e f f e c t  could couple the modes, reduce the e f f e c t i v e  

amplitudes near the center, and spa t i a l l y  concentrate most of the osc i l l a t i on  energy 

in to  jus t  a port ion of the rad ia t ive i n te r i o r .  I f  operating at su f f i c i en t  strength, 

th i s  can reverse the conventional conclusion, drawn from single mode calcu lat ions,  

that  almost a l l  solar g-modes are damped. Furthermore, i t  would put the theory in to  

rough harmony wi th three otherwise t r oub l i ng  observat ions :  ( ! )  the " low" neu t r i no  

f l u x  measured by Davis (1978), (2) the high correspondence found by Wol f f  (1976) 

between recurrence periods in solar a c t i v i t y  and the rotat ional  beat periods of g- 

modes, and (3) the f luc tua t ions  in the sun's diameter which imply g-mode a c t i v i t y  at 

high angular harmonics (H i l l  and Caudell 1979). A nonl inear expression is derived 

f o r  the loca l  rate of  work done on an ar ray of o s c i l l a t i o n  modes by the nuc lear  

reactions. Three addit ional tests of the model are suggested. 

1. INTRODUCTION 

There is  evidence tha t  g-modes are exc i ted  in the sun at angular  harmonic 

numbers 4 >> I ( H i l l  and Caudell 1979; Wol f f  1976). This cons is ts  of a d i r e c t  

detection of osc i l l a t o r y  power in the correct frequency range, a demonstration that 

par t i cu la r  osc i l l a t i ons  display phase coherence over many days, and a detection of 

the long beat periods implied by the ro ta t ion of g-modes. This evidence is discussed 

in detai l  in § 5. A l i k e l y  consequence of the exc i ta t ion of high harmonic modes is  

that a very large number of modes w i l l  be active. As I wrote in 1974, "There is not 

much physical d i f ference between the properties of two high-order modes of s im i l a r  

order.  I f  one high harmonic mode is exc i ted  by the s ta r  and mainta ined against  

d iss ipat ing mechanisms, we must therefore expect that a whole range of neighboring 

harmonics w i l l  also be driven to comparable steady amplitudes." As an example, l e t  

us take just  the f i ve  angular orders (4 = 6 to I0) for  which good evidence was given 

by Wol f f  (1976). For each value of  4, there  are 4 + I d i f f e r e n t  s tanding waves 

corresponding to the poss ib le  az imuthal  harmonic numbers. Adding these gives 45 
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d i f fe ren t  angular states. But each angular harmonic can exis t  in numerous radial 

harmonics. I f  only f ive radial harmonics are active for the typical angular state, 

one has 5 x 45 = 225 different standing waves possible in this small range, ak = A~ = 

5. Hundreds or thousands of l inear g-modes are not unreasonable to expect. Because 

of th is,  I feel that conventional calculations of growth rates (which consider each 

mode as though no others were present) are in serious risk of missing interactions 

which may be of major importance. 

In contrast to the observations, l inear theories find that g-modes of high 

value are damped and, therefore, are not expected to be observed. There is even some 

ambiguity as to whether the lowest angular harmonics (~ C 3) can be excited. 

Christensen-Dalsgaard, Dilke, and Gough (1974) found several such modes with a net 

exc i ta t ion  but, in s l i g h t l y  d i f f e ren t  solar models, Dziembowski and Sienkiewicz 

(1973) and Shibahashi, Osaki, and Unno (1975) found a l l  such modes to be damped. 

However, many of the modes are so s l i g h t l y  damped that they lose only ~10 -10 of 

thei r  energy during each cycle. For these, not much additional driving is needed to 

change the damped mode into one that is excited. Furthermore, i f  there is a way to 

increase by an order of magnitude the ratio of driving to damping, a very large array 

of l inear modes now thought to be damped would become excited. 

In this paper, a way of obtaining increases of this magnitude is described. 

I t  depends upon nonlinear coupling of modes by the nuclear term. This causes 

individual modes to receive perturbations from all the other modes which outweigh the 

weak dr iv ing and damping terms of conventional l i near  theory. Temperature 

fluctuations in parts of the core are assumed to exceed 5% (rms) due to the combined 

action of many g-modes. Moderately high harmonic modes are expected since they have 

relat ively smaller amplitudes at the surface, thus reducing the energy losses there. 

Radiative losses very close to the center of the sun are reduced by the par t ia l  

cancellation of the many modes involved. This picture of the solar core also di f fers 

from the conventional one i n t h a t  the occasionally large local osci l lat ion amplitudes 

would almost certainly keep the inner core well mixed. As discussed in ~ 5, mixing 

is a known wayto solve the solar neutrino problem. 

SPATIAL REDISTRIBUTIONS OF AMPLITUDE 

Several members of the workshop were quite skeptical that the consideration 

of ensembles of modes could avoid the large amplitudes and heavy radiation damping 

which are known to occur in most individual l inear modes near the center of a star. 

For this reason, two elementary examples are presented here of situations in which a 

group of modes can have strength in the central regions which is less than that found 

i f  the l inear modes were computed one at a time in the usual manner. 

The f i r s t  example does not even require coupling between the l inear modes. 

Those modes, which have antinodes in the v i c in i t y  of the shell (mean radius, r~ = 0.1 
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Re) where nuclear burning makes i ts  greatest contribution toward the driving of most 

g-modes, are especially well situated to be driven by the nuclear mechanism. I t  is 

not unlikely that many of these modes w i l l  have larger amplitudes than others. For 

s impl ic i ty then, let  us consider an ensemble of modes each of which has an antinode 

at r~. Let us wr i te  the local temperatue f luc tua t ion  due to the i th mode as e i sin 

mi t where, 

ei- a(~-Jo)i ' (i) 

~T is the Lagrangian perturbation in the mean temperature T o, 
osci l lat ion frequency. The rms amplitude of a typical l inear mode is, 

I~_ N 211/2 
_ ~ e i 

, i=1 

and mi is the 

In these terms, the time average of the squared fluctuation due to N modes is, 

(2) [ i 2 
i=1 

where all mi are assumed incommensurate. Closer to the ste l lar  center by at least 

one radial wavelength of a typ ica l  mode, the radial phase can be taken as random. 

The typ ica l  mode, then, has a local amplitude of e i /~2-, where e i is theampl i tude 

at the nearest antinode of that mode. Now, the mean squared temperature f luctuation 

is only 

Comparison of equations (2) and (3) shows that the squared f luctuation due to all the 

modes is twice as large at r = ~ as i t  is far  from re when each is compared t o ~  i 

which is the appropriate quantity for conventional, single mode calculations. The 

above conclusion is unchanged after integrating over al l  angles, which affects (2) 

and (3) by the same factor.  F ina l l y ,  a di f ference of more than a factor  of two can 

occur i f  e becomes f i n i t e  and attention is shifted to a highly nonlinear function of 

the temperature, such as the nuclear term. 

The second example gives larger effects.  To i l l u s t r a t e  the point,  we need 

only two groups of modes whose osci l lat ion frequencies are about the same and whose 

radial harmonic numbers, k, d i f fe r  by two. There are many such cases (see Figure 1). 

Most of these l i e  above &29 mHz, where the many curves are converging on the figure, 

but there are some cases which f a l l  as low as 0.18 mHz. Any pair  with ak = 2 w i l l  
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do, but we wi l l  choose a case where l kl >> 1 so that simple asymptotic forms can be 

used for the eigenfunctions. The two groups of modes near 0.18 mHz with (k, ~, m) = 

(-9, 4, m) and (-11, 5, m) have radial eigenfunctions which are adequately 

approximated in the g-region by the sine waves plotted in Figures 2a and 2b. In the 

exponential regions, the behavior is indicated schematically by the dashed curves. 

The ordinates are S -1/4 Q in which variable the eigenfunctions approach pure sine 

waves when plotted on a logarithmic distance scale, provided Ikl is large enough (see 

Wolff 1979, especially equation (19) and Figure 4). The sum of the two curves is 

given in Figure 2c and immediately suggests a way in which the star can concentrate 

osci l la tory motion in the v i c i n i t y  of the strongest nuclear dr iv ing, r = r~, and 

diminish its exposure to radiation losses near the center and in the envelope. The 

star need only couple the approximately equal osc i l la t ion  frequencies of the two 

groups so that they are exactly the same; the d is t r ibu t ion  in Figure 2c can then 

continue for roughly half a year unt i l  rotation separates the groups. I t  is 

important to note that the concentration shown in Figure 2c cannot apply to al l  

angular directions. This is obvious in linear theory where the modes are orthonormal 

spherical harmonics and imply a total cancellation of the concentration when 

integrated over a spherical surface. But, in nonlinear theory, oscil lation energy 

can be concentrated into a small fraction of all possible directions. Wolff (1974) 

derived a way of doing this by coupling al l  the l inear modes of a given value of ~. 

He showed that this could proceed in the sun i f  nonlinear coupling was able to make 

fractional changes of ~ 10 -5 in the oscillation frequencies of the linear modes. We 

can reasonably assume that coupling is adequate to make these changes since our model 

already requires much larger fractional perturbations (~ 10 -3 , as deduced from the 

spacing of eigenvalues in Figure 1) to achieve the radial concentrations il lustrated 

in Figure 2c. In summary, the solar core can develop, from time to time, very 

interesting nonlinear modes whose amplitudes are concentrated in all three spatial 

dimensions, provided that the nonlinear driving term is strong enough to couple the 

oscillation periods of appropriate groups of modes. The simplest i l lustrat ion of the 

method may probably be found when only two groups of l inear modes are used with 

radial harmonic numbers differing by two. 
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Figure I. The distribution of linear g-mode oscillation ~requencies, ~ = m/2~, in a 
standard solar model. The curves are labeled by ~, the principal index of the 
spherical harmonic. The abscissa is k, the radial harmonic index. Acceptable 
oscillation frequencies whose modes satisfy the required physical boundary conditions 
occur for integer values of k and ~. On the scale of this figure, the frequencies of 
l inear modes are independent of the azimuthal number, m, because of the sun's very 
slow rotation. 
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Figure 2. The effect of coupling the osci l lat ion frequencies of two similar modes. 
a~he approximate radial dependence of osci l lat ion amplitude for a mode, k = -9 and 

• (b) The same for  a mode, k = -11 and ~ = 5. The ordinates are in a natural 
variable related So energy• (c) The sum of (a) and (b).  This gives a new mode whose 
amplitude is diminished by a factor of f ive, both in the central regions and near the 
base of the convective envelope (: 0.7 R~ in th i s  model). Al l  curves have been 
normalized to one at t he i r  largest maxlmum. For the curve in (c), the larger 
amplitudes l i e  in layers where nuclear dr iv ing has i t s  greatest ef fect  on the 
osci l lat ions. 
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3. DEPARTURE FROM LINEAR THEORY 

The unlinearized f lu id equations commonly used in pulsation theory are 

dp+pv ~ = 0 (4a) 
dt 

'+'d--t" + vP +vW = (turbulent forces) dt p (4b) 

() 1 d ]~ + ~V ~ = c - " + (turbulent viscosity) (4c) 
y T d-'t p " p 

where p, p, and v are the density, pressure, and Velocity of the f l u i d ,  and d/dt 

stands for (a/Bt + ~ • v). Perturbations of the gravitational potential, W, wi l l  be 

neglected because high harmonics wi l l  be of interest. Left members of the equations 

contain the adiabatic terms. The right members have the nonadiabatic terms which 

wi l l  be discussed later. For g-modes in the solar core, the total pulsational energy 

greatly exceeds the nonadiabatic losses per cycle so that the fami l iar  quasiadiabatic 

approximation is valid. Using equation (1) this can be written as 

~P : be (5) 
Po 

and 

~P = ybe 
Po (6) 

where ap and ap are the Lagrangian perturbations in the density and pressure, b = 

1) -1 , and Y = 5/3 in the solar core. 

We need an order of magnitude estimate of how the adiabatic terms of (4) 

depart from l inear i ty  as the relative temperature perturbation, B, becomes large. To 

obtain this, we wi l l  f i r s t  write, 

P-  (Po + 6p) = Po(1 +ybe) : Po(1 + o) Yb 

and similar ly,  

(7) 

p = Po(1 + e) b (8) 

The indicated approximations are f a i r l y  good since b and ¥ are of order unity and e 

is not expected to exceed a few tenths.-Using (7) and (8) to el iminate p and p, we 

see that the veloc i ty  in equation (4a) must balance terms ~ (1 + e) b. In the 

adiabatic members of (4b) and (4c), the ve loc i ty  balances terms ~ (1 + e). Very 
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roughly then, the veloci ty f i e ld  w i l l  solve these equations i f  i ts  dependence one 

has exponents, b and 1, comparable to the other terms. Assuming this holds well 

enough for our purposes, no term in the lef t  members of equations (4) varies with e 

at a rate faster than~l + e) 2b = (I + e) 3. The lower curves in Figure 3 show the 

function, 

(1 + O)B 
1 + oB (g) 

for two values of B. Since the denominator is merely the l inearized form of the 

numerator, the ratio represents the fractional departure from l ineari ty of any term 

in the equations of motion whose dependence at some value of e approximates (1 + e)B. 

The curve B = 2 typ i f ies  the behavior of the adiabatic terms in (4) while the B = 4 

curve is a generous upper l im i t .  From the f igure, errors would not be expected t o  

approach ~ 10% until the local temperature fluctuation exceeds a few tenths. 

Unlike the preceding situation, highly nonlinear behavior is common for the 

nonadiabatic terms. The turbulence is usually discussed in terms of a generalized 

pressure tensor and is thought to be negligible in our problem. But a unique form of 

turbulence w i l l  be suggested in § 4.2 as the ultimate l i m i t  on the growth of 

pulsational amplitudes. The radiative exchange term, p-1(V • ~), contains two 

strongly nonlinear functions in the radiative f lux,  

= vT 4 
constant • - -  ; pK 

namely, the opacity < and the temperature to the fourth power. Using equation (8) 

and the opacity tables of Cox and Stewart (1970) for solar core conditions, one can 

show that there is considerable cancellation between the variatioRs of pK and T 4. 

This is not true in the outer envelope of the sun. However, in the core, the overall 

temperature dependence of the radiat ive term turns out to be quite slow, 

corresponding to B < 2 in Figure 3. The order of magnitude proof is too long to 

include here but i t  depends on two approximations: (1) the distance between nodes of 

the oscillation is taken to be much shorter in at least one dimension than the local 

temperature scale height; and (2) the gradient and divergence operators are replaced 

by ~/L, where L is the shortest of the 3 internodal distances. 

The nuclear burning term, ~, is notoriously sensit ive to temperature. For 

pulsations of in f in i tes imal  amplitude, B = 12. This comes pr imar i ly  from the 

reaction, 3He + 3He ÷4He + 2 1H, as pointed out by Dilke and Gough (1972) and by 

Unno (1975). For f i n i t e  amplitude pulsations, B varies during the cycle and the 

following procedure was used. The conventional interpolation formula for the rate 
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Figure 3. The f ract ional  departure from l i n e a r i t y  of (1 +e) B as a function of the 
re la t i ve  temperature change, e. The behavior of most terms in the pulsation 
equations is t yp i f i ed  by the curve for 6 = 2. The curve for B = 4 is an upper l i m i t  
for al l  terms except those for nuclear heatin~ and turbulence. The nuclear curve is 
drawn for material at a temperature of 9 x 10 U K and containing 75% hydrogen by mass. 
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per unit mass of nuclear energy generation is: 

= ~o(i + 6p/po)(1 + O) n 

Using equations (5) and (8), this becomes 

c -- % ( 1  + o) • 

(10) 

(11) 

where B = n+ b here. In order for equation ( i i )  to typ i fy  the true energy released 

over an osci l lat ion cycle, ~o and n must be numerically determined for each mean 

temperature, To, and each range, ± e, of the fluctuation. For this purpose, a matrix 

of ~ values was calculated using the expressions of Fowler, Caughlin, and Zimmerman 

(1975) for the 9 reactions of the proton-proton chain. A well-mixed core was assumed 

with a hydrogen mass fraction of 75%. The calculations were made for a density of 

100 g cm -3, a grid of mean temperatures (6, 7, 8, ... 15) x 106 K, and an array of e 

values. The abundances of 7Be and 3He were in equilibrium with the local mean 

temperature while the abundances of deuterium and 7Li were allowed to fluctuate 

during the oscillation cycle. By interpolating within the ~ matrix and constructing 

the appropriate derivative, the exponent in equation (11) becomes a known function of 

e and T O , permitting a plot of the departure from l inear i t y  of the nuclear heating 

term. I t  is shown in Figure 3 for a mean temperature of 9 x 106 K. When the local 

temperature fluctuations are only a few percent, linear theory holds very well. As 

the fluctuations grow larger, increases of an order of magnitude wil l  occur in the 

nuclear term before any serious error arises in the other terms of equation (4). 

Thus, a range exists for e from approximately 0.04 to 0.2 where linear theory remains 

valid except that the nuclear term is underestimated. I suggest that portions of the 

solar core are pulsing in this range for three reasons. (I) There are many t r u l y  

linear modes (e÷ O) for which the total damping exceeds the driving by less than an 

order of magnitude. More and more of these modes would become excited as e exceeded 

0.1 and the enhancement of the nuclear term became greater. ( I t  is necessary to 

treat the modes in groups, as in § 2, to avoid the large amplitudes near the center 

which would disrupt the osci l latory motion, but this also further improves the 

prospects for excitation by s igni f icant ly  reducing radiation damping.) (2) The 

combination of groups of modes to produce a spatially concentrated, nonlinear mode is 

a step in the direction of existing local treatments of the problem. Dilke and Gough 

(1972) and Unno (1975) have already demonstrated that linear g-modes can be excited 

when the envelope of the star is neglected. By appropriate coupling of modes similar 

to theirs, nonlinear modes could probably be formed with reduced envelope activity. 

(3) Large amplitude oscillations in the core can resolve three discrepancies between 

observations and conventional theory (§ 5) while maintaining small enough surface 
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amplitudes to remain consistent with other measurements. 

4. COLLECTIVE EXCITATION AND DAMPING 

4.1. Collective Effects on the Nuclear Excitation Term 

I t  may be hereafter assumed that parts of the sun's core are occasionai ly 

osci l lat ing in the range of temperature fluctuations just given. A lower l im i t  to 

the nonlinear driving term is now derived. The rate of mechanical work done on the 

pulsations by the nuclear reactions is given by the integral over the ste l lar  mass of 

dU = dm<e6c> 

where dm is the mass element, 6c is the Laorangian perturbation of E, and the 

indicated averaging is taken over time. By equation (11) this becomes 

dU--  o<e [(1 + of -  1]> 

For integer values of B, th is  has an exact expansion in terms of binomial 

coefficients, C 6 ~ B ! [ ( 6 - j ) !  j ! ] - I  I t  is  

6 
dU =dm c o Z I Cj6<Bj+I> • (12) 

j=~ 

Since there w i l l  always be an integer w i th in  4% of the desired value of 6 (recal l  

that 6 Z 12), in te rpo la t ion  between these is probably easier than use of the 

noninteger form of equation (12). In conventional growth rote calculations, equation 

(12) is  approximated by dU 1 = dm E o B ( e 2) . Although t h i s  f i r s t  order 

approximation to the work integral  w i l l  not be used, i t  is i ns t ruc t i ve  to divide 

equation (12) by dU 1 to emphasize how this paper departs from conventional work: 

dU = i + (B - I ! <e4> + t 5! . . . .  + (13) 
dU--1 (6 3 ! 3! <o2-~ . <e2> " '"  

The omitted odd powers of o w i l l  be shown to have zero time averages in our model. 
The ~ollective influence of al l  the modes enters equation (13) direct ly only 

in the time averages of even powers of o. I t  also enters i n d i r e c t l y ,  when o is 

large, by af fect ing 6 as mentioned ear l ie r .  I f  there are a large number N of 

ind iv idual  modes and none has more than a small f rac t ion  of the energy, then the 

amplitude of the i th  mode, o i ,  is much less than ]e[. ByFigure 3, each mode has 

nearly perfect l inear behavior so that i ts time dependence is sinusoidal. Thus, 

N 
e = z e i s in~i t  (14) 

i= i  
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wi l l  hold unt i l  the mode approaches i ts  l im i t i ng  amplitude. In the fol lowing 

calculat ion, al l  osc i l la t ion  frequenciesmi w i l l  be assumed to be independent and 

incommensurate. This gives a lower l imi t  to the overall nuclear driving but does not 

revise our belief that, in fact, some of these frequencies wi l l  couple. I t  follows 

from equation (14) that the time average of e raised to any odd power must vanish. 

For even powers, an amplitude distribution must f i r s t  be assumed. For brevity, the 

simplest useful one w i l l  be chosen; however, more rea l i s t i c  d is t r ibut ions are 

expected to give comparable results unt i l  the rat io in equation (13) becomes much 

greater than 1. All the stronger modes are assumed to have the same amplitude A and 

the weaker ones are set equal to zero. In the l imi t  of a large number, Ns, of strong 

modes, i t  can be shown that 

<02q> : (2q - 1 ) ! I  (<02>) q 

= (2q - 1)!! (erms)2q 

, o r  

= (I/2 N s A2) 1/2 in this case and (2q - I ) ! !  stands for the product, where erm s 

1.3.5...(2q - 1). The factorial can increase the nuclear energy generation by much 

more than one might have guessed from knowledge only of the rms amplitude. 

Physically, th is increase ref lects the fact that, when the modes interfere 

constructively, they enhance the nuclear burning much more than they reduce i t  during 

destructive interference. The ratio dU/dU 1 can now be numerically evaluated and i t  

is plotted in Figure 4. The figure shows how the nuclear portion of the work 

integral departs from its linear value as the rms temperature fluctuation rises. Two 

different equilibrium temperatures were used for the solar material, 9 and 12 x 106 

K, roughly bounding the layers in a mixed model where nuclear reactions are important 

to the pulsation. From the figure one sees that this driving is greater than linear 

theory would give by factors of 3 to 10 in the range of f luctuat ions, 0.10 < e < 

0.14. Actually, this range w i l l  be more l ike 0.06 < e < 0.08 because the plotted 

curves considerably underestimate the enhancements. (That is because a constant B 

was used, appropriate to the location e = erms, whereas an averaging over a 

s ta t i s t i ca l  d is t r ibu t ion  of B values would describe better the true si tuat ion.) 

Nevertheless, i t  is already clear from the figure that many modes can be expected to 

switch from a damped condition to one of excitation under the combined effects of the 

extra driving in th is range and the reduced damping caused by the spatial 

concentration. The following limitations should be kept in mind. 

4.2. Limitations on Harmonic Numbers and Amplitudes 

Very high radial harmonics cannot be making the main contr ibution to the 

enhanced nuclear driving. The nodes of such harmonics are too closely spaced in the 

radial direct ion, placing a l i m i t  on how far the f l u i d  can move in an osc i l l a t ion  
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a generous upper l imi t  to the behavior of the radiation damping term in the core. 
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cycle. In turn, that l imi ts  the total temperature f luctuation available since the 

motion is curl-dominated. In order to obtain temperature fluctuations exceeding ± 5% 

near r~, the typical l inear modes being coupled must have harmonic numbers, -k < 15 

for low values of ~. For ~ = 10, the condit ion becomes -k C 10 and there is l i t t l e  

further change for higher ~ values. 

The second l imi tat ion applies to the angular harmonics of the g-modes with 

osci l lat ion periods = 1 hour seen by the SCLERA telescope. These limb measurements 

by Hi l l  and Caudell imply motions of the photosphere and subsurface layers in which 

(~r/r)  ~ 10 -6 . Fa i r ly  large ~ values are required to make such a small surface 

motion consistent with a large amplitude in the core. Figure 5 shows how much the 

radial motion is diminished as i t  traverses the convection zone from rb, the base of 

the zone, to 0.98 Re, a subsurface layer. Th solid lines come from the relation, 6r 
~/2 r~*+ 1.5 

P : constant, where ~* : [~(~ + 1)] 1/2 . The l ines are dashed where 

this ceases to be a good approximation. Three plausible base levels have been used, 

(rb/Re) = 0.5, 0.6, and 0.7. Reductions ~10 -4 are needed in Figure 5 in order that 

the surface amplitudes w i l l  imply motions at r b for which (dr/r) ~ 10 -2 • Motion of 

th is  order of magnitude can lead to the large temperature f luc tua t ions  at greater 

depth required by our model. Therefore, our model could conveniently explain the 

SCLERA observations with ~ values greater than about 15. This is ce r ta in l y  

consistent with the measured range, 20 ~ ~ < 40, but more detailed measurements and 

modeling w i l l  both be required before a stronger statement can be made. 

Finally, the maximum displacement of the f lu id  at an antinode must be less 

than half the distance between the nodes. To exceed this would produce unphysical 

amplitudes. The condit ion for osc i l l a t o r y  motion would thereby be v io lated and a 

partial transit ion to circulatory motion would occur loCal ly.  S ign i f i can t  energy 

losses would resul t  because of the f a i l u re  of part of the f l u i d  to return smoothly 

after such an extreme excursion. This is a form of turbulence, of course, but i t  may 

not be useful to t ry  to describe i t  by the conventional expressions normally inserted 

into equations ~) by pulsation theorists. Rather, the phenomenon is more analogous 

to the droplets expelled from a pond af ter  a pebble has been thrown in. I bel ieve 

that th is  mechanism l i m i t s  the size of the osc i l l a t i ons  described in th i s  paper. 

Each nonlinear mode should grow unti l  the antjnodes having the most extreme motion 

begin to throw off "droplets" at an average rate comparable in energy content to the 

nuclear driving. Since this phenomenon should occur most often at the most central ly 

located antinodes, an adiabatic s t ra t i f icat ion may develop in a t iny  core (radius, 

10 -2 Re) due to the frequent mixing. (Incidentally, shock phenomena are not expected 

in our model because the high sound speed in the core keeps v/c < 10 -2 throughout the 

star. ) 
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F i g u r e  5. The ra t io  of (ar/r)  at a subsurface layer,  r = 0.98 R e , and (~r/r) at the 
base of the convection zone, r h. Very strong reductions in subsurface amplitudes 
occur for all modes with high a~gular harmonic numbers, ~. The stronger reductions 
occur for the thicker convection zones. The small limb excursions measured by Hi l l  
and Caudell are roughly consistent with the large core amplitudes advocated herein at 
ordinate values on this figure ~ 10-4. This implies that high ~ harmonics are needed 
in our model and this is consistent with the measurements. 
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5. OBSERVATIONAL TESTS OF THE MODEL 

5.1. Existin 9 Evidence 

In the preceding sections, theoretical means are described by which g-modes 

may be excited in the sun. Present day uncertainties concerning stellar interiors 

prevent anyone from demonstrating more than the plausibi l i ty of a purely theoretical 

argument about the excitation of g-modes in the solar core. But there are three sets 

of observations which, taken al l  together, form a f a i r l y  strong case against the 

standard, unmixed solar models. These observations are al l  consistent with the 

pulsating mixed model described herein. 

Numerous radial velocity measurements taken in this decade have shown 

oscillatory power in the range (15 minutes to I hour) appropriate to g-modes; among 

the earl iest are those of Durasova, Kobrin, and Yudin (1971) and Deubner (1972). 

However, these measurements fai led to display precise, reproducible periods and 

angular harmonic structure, leaving most people in doubt as to whether they 

represented global modes. The f i rs t  good evidence of g-modes in the sun was Wolff's 

(1976) indirect detection of the i r  rotation periods; th is exercise was undertaken 

because of the likelihood that these periods might be easier to detect than the much 

more numerous osc i l la t ion periods. Under appropriate nonlinear coupling stronger 

than about one part in 105 , Wolff (1974) demonstrated that large numbers of solar g- 

modes can couple to form a small number of r i g i d l y  rotating modes, each having an 

array of osc i l la t ion  periods but jUst one rotation period. The set of theoretical 

rotation periods derived can be regarded as a unique signature of coupled g-modes. 

Later, the not unreasonable assumption was put forth by Wolff (1974) that oscillatory 

power in the solar core and therefore in the lower convection zone would modulate 

solar ac t iv i ty .  To a remarkable degree, the per iodic i t ies in two centuries of 

sunspot data matched the beat periods between g-mode rotation periods. Since the 

detected beat periods had been derived from modes with angular harmonic numbers ~ = 

6, 7, 8, 9, 10, and one higher order mode, the agreement was strong indirect evidence 

that many g'modes with ~ ~ 6 are excited. I t  further implied that groups of linear 

modes with a single value of ~ had become coupled so as to concentrate the i r  

oscillatory power in longitude; these particular beats could not otherwise have been 

observed. These observations support the present paper because they strongly 

indicate that high ~ modes are excited and concentrate the i r  power in at least one 

spatial dimension. 

In their solar diameter measurements, Hill and Caudell (1979) achieved the 

f i rs t  direct detection of g-modes, represented by oscillatory power at periods of 45 

and 67 minutes. These periods are too long to be p-modes whether the standard solar 

model or a mixed one is used. The measurements were taken by Hill and Caudell at two 

different scan amplitudes, providing a rough measurement of the typical horizontal 

wavelengths involved. These are referred to in terms of a range of spherical 
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harmonics, 20 < ~ < 40. Finally, the modes display phase coherence over the two-week 

observational interval, proving that they are global modes. 

Continued confirmation of these measurements wi l l  have major consequences for 

the study of solar in ter iors.  The high angular harmonics detected by Hi l l  and 

Caudell are al l  damped by radiation losses near the solar center under standard 

calculations. Also, when a standard extrapolation is made of the surface amplitudes, 

these measurements imply impossibly large motion in the in te r io r  unless an 

exceptionally thin convection zone is assumed. Thus, the Hi l l  and Caudell 

observations are not consistent with conventional, uncoupled g-modes in a standard 

solar model. The conventional approach provides neither an excitation mechanism nor 

acceptable central amplitudes. Both d i f f i c u l t i e s  could be avoided by the scheme 

proposed in this paper. Finally, a well-known problem of the standard model is its 

i n a b i l i t y  to explain the low value of the neutrino f lux  seen in the Davis (1978) 

experiment. Unless there is an undetected error in the nuclear physics, Davis' 

measurements imply the standard model is incorrect in at least the central tenth of 

the solar radius since that is where v i r t u a l l y  al l  the detected neutrinos are 

generated. As many authors have noted (e.g., Bahcall 1977), thorough mixing of the 

core material could a l lev iate this problem. Mixing increases the hydrogen mass 

fract ion from 0.5 to 0.75, thereby lowering the central temperature bylseveral 

mi l l ion  kelvins. Because of the extreme temperature sens i t i v i t y  of the relevant 

reactions, the mixed models have neutrino fluxes which are lower than those predicted 

by the standard model by a factor of 3, putting them in agreement with the Davis 

experiment. The large amplitude pulsations limited by turbulent losses as proposed 

herein would almost cer ta in ly  mix the central parts of the core in a time much 

shorter than 109 years. (The turbulent l i m i t  discussed in § 4.2 takes place at 

antinodes whose dimensions are ~ 10 -2 or 10 -3 R e . This means that diffusion lengths 

are of comparable size, giving adequately rapid mixing.) By providing a mixing 

mechanism, our model is consistent with Davis' (1978) neutrino f lux to the currently 

achieved levels of accuracy. 

5.2. Future Tests 

The model has several consequences which can be searched for in data now 

being accumulated. First of a l l ,  the sun's nuclear burning rates vary in this model, 

result ing in a modulation of the neutrino f lux  on time scales of months and years. 

This variation in burning rates follows from the fact that many nonlinear modes with 

d i f ferent  ~ values are active. The modes rotate at d i f ferent  rates in the sun, 

causing enhanced burning as the longitudes into which the i r  osc i l la tory  power is 

concentrated rotate past each other. In addition to d i rec t ly  modulating the 

neutrinos, the extra burning is associated with s l ight  mixing events in d i rec t ly  

changing the neutrino rate. I t  is not clear whether the direct or indirect effect 
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wi l l  be the larger. 

Secondly, upwellings of huge scale are to be expected in the convective 

envelope from time to time. These are caused by the occasional high concentrations 

of osc i l la tory  power at certain lat i tudes and longitudes, heating the baseof the 

convection zone asymmetrically. Transport of the extra heat to the surface would 

seem to be accomplished most ef f ic ient ly by flow patterns on scales comparable to 

those of the osci l la t ions.  (Of course, there would also be a local increase in the 

intensity of small scale convection, carrying off part of the heat with no net upward 

mass f lux.)  The large scale upwellings seem to me to be unavoidable in an 

adiabatically stratif ied layer and have played a part in all my solar papers since 

1974. The more interesting question is their intensity. In particular, w i l l  they 

reach the surface with velocities that are detectable? This can only be answered by 

observation in view of the uncertainties in the theory of astrophysical convection. 

Thirdly, an asymmetric flow l ike the above must increase the surface 

brightness in and near the upwelling region. Thus, the sun's in tens i ty  as seen at 

the earth wi l l  vary sometimes with a period of roughly 27 days. This small effect 

may be detectable by experiments that are, or ~ shortly wi l l  be, in space. 

Detection of any of the above three effects would lend support to our model. 

But the most convincing confirmation would come i f  appropriate recurrence tendencies 

were proven. Variabil i ty on definite time scales of months and years is predicted by 

this model (Wolff 1976) on the basis of the easily calculable rotation periods of 

most solar g-modes. The standard picture of the sun would be inconsistent with a 

neutrino flux proven to be variable but i t  might be able to accommodate upwelling and 

luminosity changes by means of more rea l i s t i c  treatments of flow in convective 

envelopes. 

6. SUMMARY 

A method was described for excit ing g-modes in the sun at the high angular 

harmonic numbers required by the observations. Qualitatively, i t  can resolve three 

serious discrepancies between conventional theoretical work and solar measurements. 

I t  proposes a new picture of the solar i n te r io r  wherein the core of the sun is in a 

quite di f ferent state from the almost peaceful conditioh envisioned by most solar 

physicists. 

The key theoretical feature of this paper was that i t  noted the very large 

number of linear modes which are probably active (hundreds or thousands) and assumed 

that they w i l l  occasionally combine to produce large temperature f luctuat ions 

exceeding 5% in various small regions of the sun's core. Such large f luctuat ions 

produce strong nonlinear effects through the nuclear reactions. An i l lustrat ion was 

given on how this could concentrate the oscillation energy into layers favorable to 

excitation and diminish the exposure to losses near the center and in the envelope. 
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A set of nonlinear modes would result which formed at fa i r ly  regular intervals and 

grew until their amplitudes became large enough for turbulence to l imi t  their further 

growth. Thetype of turbulence thought to be signif icant (§ 4.2) s t i rs  the inner 

core material with mixing lengths ~ 10 -3 Re, guaranteeing a well-mixed core. The 

most important unproven aspect of this model was the assumption that perturbations of 

10 -3 in the oscillation frequencies wil l  occur during mode coupling so that spatial 

concentration in the radial dimension can be achieved. 

Today, pulsation theory cannot make def in i t ive predictions about the sun 

because of major unknowns like the composition and temperature gradient in the core, 

the true importance of turbulence, and the detailed nature of coupling among linear 

modes. Therefore, i t  is especially dangerous to ignore inconvenient observations. 

There are now three groups of observations weighing against the conventional view of 

an unmixed solar core pulsating only in very low angular harmonics at infinitesimal 

amplitude, i f  at a l l .  I t  is possible to avoid the negative implications of each 

group of observations by either questioning i ts  va l i d i t y  or by making special 

revisions to the theory, but i t  is not encouraging when so many special arguments are 

needed. In contrast to this,  the model advocated in this paper seems to be 

compatible with all three groups. These groups are: (1) the observation by Hill and 

Caudell that solar g-modes are active at high ~ values; (2) the indirect detection by 

Wolff (1976), implying that nonlinear coupling is operating among g-modes, 

concentrating their  osci l latory power in the angular dimensions; and (3) the 

unexpectedly low measurement by Davis (1978) of the low solar neutrino flux. The 

neutrino problem has received much attention and numerous solutions have been 

proposed. In his review, Bahcall (1979) has described al l  solutions depending on 

solar model revisions as "ad hoc." I t  is possible that the model presented herein is 

the f i r s t  exception: i t  explains three troublesome data sets, not just that of the 

neutrinos, and i t  is a fa i r ly  plausible outcome of the presence of many high order g- 

modes in a fluid containing an extremely nonlinear driving mechanism. 

Finally, the model implies several other things which can be tested in the 

coming years. I t  predicts time variabi l i ty on certain definite time scales (measured 

in months and years) for the phenomena modulated by the g-modes; specifically, these 

are the solar neutrino flux, upwellings of global scale in the convective envelope, 

and rotat ional ly asymmetric brightness of the sun. See @ 5.2 for details. With 

appropriate adjustments for the different physics involved and the shorter data sets 

available, many of these future tests may be simi lar in principle to that given by 

Wolff (1976) using the extensive records of solar activity variations. 
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COMMENTS ON GRAVITY MODE EXCITATION MECHANISMS 

W. Dziembowski 1 
Department of Physics 
Universi ty of Arizona 
Tucson, Arizona 

Studies of nonl inear  e f fec ts  in so lar  o s c i l l a t i o n s  may help us i d e n t i f y  a 

mechanism for gravi ty  mode excitat ion. However, we do not expect that nonl inear i t ies 

in the perturbation of nuclear energy generation rate as discussed by Wolff (1980) 

are indeed relevant. Nonadiabatic effects for  gravi ty  modes trapped in the i n te r io r  

are quite small: typical  l inear  growth or damping rates are in the range of 10 -9 

I0 - I0  per pu lsat ion period (see e.g., Keeley 1980). In such a s i t u a t i o n  energy 

exchange between modes due to three-mode resonant coupling (see Dziembowski 1980) 

w i l l  c e r t a i n l y  be important  at the ampl i tude leve l  wel l  between the onset of the 

nonlinear effects discussed by Wolff. 

Thus, fo r  the hypothesis that  long-per iod so lar  v a r i a b i l i t y  is  the 

manifestation of gravi ty  modes, we attach more promise to the invest igat ion of three- 

mode resonant interact ions. Moreover, nonlinear mode interact ion may account in a 

natural way for  amplitude decline of 2h40 m osc i l la t ions occurring on the time scale 

of few years (Kotov, Severny and Tsap 1978). Decay due to radiat ive damping occurs 

on the time scale by at leave f i ve  orders of magnitude longer. 
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SOME THEORETICAL REMARKS ON SOLAR OSCILLATIONS 

D. Gough 
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ABSTRACT 

The properties of the ' l inear  modes of osci l la t ion of a nonrotating 

nonmagnetic star, with particular reference to the sun, are briefly described. The 

most l i ke l y  mechanisms by which they might be excited are reviewed, and i t  is 

concluded that stochastic excitation by turbulence is probably the dominant mechanism 

that drives the solar f ive minute osci l lat ions. Phase coherence of one of the 

components of the SCLERA diameter data is i l lus t ra ted,  and the new f ive minute 

oscillations in the Birmingham whole-disk Doppler data are discussed. Finally some 

of the problems raised by conflicting evidence concerning the structure of the sun 

are aired, but not resolved. 

1. INTRODUCTION 

From the properties of linear eigenmodes and the values of the oscillation 

amplitudes that are observed at the solar surface, i t  is consistent to suppose that 

the amplitudes of most of the modes are small throughout the sun, except possibly in 

the upper atmosphere. Though i t  is a circular argument to conclude from this that 

the amplitudes really are small, the present discussion is nonetheless based towards 

linearized theory. Such theory may prove to be inadequate for a complete description 

of solar osc i l l a t i ons ,  but i t  is no doubt useful in providing us with an 

understanding of much of the essential physics. 

Interest in solar osci l lat ions extends beyond the phenomenon i t se l f .  The 

modes experience conditions inside the sun, and thus provide us with the opportunity 

to perform a seismological inversion on the solar inter ior .  Because l inear 

eigenmodes of a given model of the sun can be computed with re lat ive ease and 

certainty, and because there exists a considerable body of inverse theory developed 

chiefly by geophysicists, one has reason to anticipate at least a modicum of success. 

At present the quality of the data is probably inadequate to warrant using the entire 

mathematical machinery that has been developed for studying the earth, but the 

information we do have available is sufficient to have posed several problems worthy 

of discussion. 
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Before such discussion is possible, i t  is necessary to establish the basic 

properties of the linear eigenmodes. This wil l  be done briefly, after which some of 

the issues that have been raised in other contributions to this workshop wi l l  be 

addressed. 

2. CLASSIFICATION OF LINEAR NORMAL MODES 

The following discussion wi l l  concentrate on the most commonly encountered 

modes of oscillation that can exist in a nonrotating nonmagnetic star. These were 

classified by Cowling (1941) into p, f, and g modes for adiabatic oscillations of a 

polytrope; i t  is believed that a formal classification of this type is possible for 

adiabatic osci l lat ions of any s te l la r  model. Since the equilibrium model is 

essential ly spherically symmetrical--at present the inhomogeneities produced by 

convection w i l l  be ignored--a l inear mode is separable in radial and angular 

spherical polar coordinates and time, with sinusoidal time dependence and an angular 

dependence that is proportional to a tesseral harmonic. The mode can be 

characterized by three integers n, 4, m, where ~ and m denote the degree and order of 

the tesseral harmonic and n is usually called the order of the mode. The oscillating 

frequency is independent of m. I t  is convenient to regard n as being negative for 

the g modes, zero for the f modes and positive for the p modes. 

Broadly speaking, as Inl increases so does the number of nodes in the radial 

component of the displacement eigenfunction. Indeed, for smoothly varying stellar 

models such as a polytrope of low index, Inl is equal to the number of nodes in the 

radial displacement, I as is also the case for any realistic stellar model when Inl is 

su f f ic ient ly  large. Otherwise the situation is rather more complicated. The 

algebraic method of node counting described by Eckart (1960), and employed by 

Scuflaire (1974) and Osaki (1975) for stellar oscillations in which perturbations in 

the gravitational potential are ignored, breaks down when gravity is correctly taken 

into account. Nevertheless, i t  seems that the symmetry of the governing equations is 

such that eigenfrequencies Cannot cross under continuous transformations of the 

equilibrium model. Thus i t  seems l ikely that a value of n can be uniquely assigned 

to any mode of a s te l la r  model in such a way that i t  agrees with Cowling's 

classification when the equilibrium model is transformed continuously by any path to 

a polytrope of low index. However, this has not been proved. 

S t r i c t l y  speaking, this discussion applies only to adiabatic osci l lat ions 

subject to per fec t ly  re f l ec t i ng  boundary conditions. These have real 

eigenfrequencies and eigenfunctions. The linear nonadiabatic oscillations, possibly 

with leaky boundary conditions, are not purely oscillatory and the problem of their 

l ln the case ~ = 0 alone, the center of the star is considered to be a node. 
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classif icat ion is more complicated (cf. Christensen-Dalsgaard 1980), though for most 

modes the eigenfrequency is almost real. In the following discussion I shall loosely 

call such an osci l lat ion a normal mode. Because the quality Q, which is the ratio of 

the damping or growth time of the osci l lat ion to i ts  period, is high, the deviations 

of the basic properties of the o s c i l l a t i o n  from the adiabatic normal modes are 

generally small; therefore, adiabatic and nonadiabatic approximations w i l l  not be 

differentiated except where such dist inct ion is important. 

3. NATURE OF THE OSCILLATIONS 

A precise formal classif icat ion of modes of the kind described above would 

provide a useful means of specifying the mode unambiguously and concisely, but a more 

physical description is often much more informative. In simplesituat ions, such as 

that discussed by Cowling, p modes are stationary acoustic waves, f modes are surface 

waves and g modes are internal gravity waves. In more real is t ic  models of the sun, 

the local character of a mode can change with depth. In some places the dynamics of a 

mode might resemble that of a gravity wave, whereas elsewhere the motion might be 

characteristic of a surface wave or an acoustic wave. I t  is simplest to  recognize 

the local behavior when Inl is large and eigenfunctions vary with radius much more 

rapidly than the equilibrium model. In that case the JWKB approximation, or even the 

plane wave approximation, can be made. Several examples of solar modes are discussed 

in this way by Christensen-Dalsgaard, Dziembowski and Gough (1980) and Christensen- 

Dalsgaard and Gough (1980a) in these proceedings. 

The p modes of low degree ex is t  wi th substantial amplitude throughout the 

entire body of the sun. When n is large they may be regarded as ordinary sound waves 

propagating almost r ad ia l l y ,  and in th is  l i m i t  the energy density per un i t  radial 

distance is constant. The modes of high degree and low order propagate obliquely; 

these are confined in the surface layers by refraction resulting from the increase 

with depth of the sound speed. The pr inc ipal  restor ing force in an acoustic 

osci l lat ion is the pressure fluctuation produced by compression. Thus the velocity 

f i e l d  has a high divergence, and is almost i r r o t a t i ona l .  Typ ica l ly  most of the 

kinetic energy is associated with the vertical comPonent of the motion. 

When n is large the wavelength is small, and the speed of propagation is 

hardly influenced by the s t r a t i f i c a t i o n  of the star. The eigenfrequencies mn~ 

approach a harmonic sequence as n increases, wi th frequencies given by (e.g., 

Vandakurov 1967) 

~n~ - ~(2n+~+c as n ÷ ~ , (3.1) 

where r is the radial coordinate, R is the radius of the sun, c is the sound speed 
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and ~ is a constant which depends on the equil ibrium solar model. As is the case 

with solutions of the pure wave equation in a spherical cavity, mn,~ ~ mn-l,~+2 and 

~n,~+l ~ 1/2(~n,~ + ~n,~+2) as n ÷ =. Though equation (3.1) is correct in the l i m i t  

n ÷® at fixed f i n i t e  ~, i t  is useful to regard the formula as an approximation at 

f in i te  n, in which case the condition n >> ~ must be satisfied. 

I f  ~>> land n is large, but not much greater than ~, the eigenfrequencies 

may be estimated by ray theory. The period of oscillation is the time taken for an 

oblique wave i n i t i a l l y  propagating downwards from the surface to return to the 

surface. The dispersion relation is found by noting that in order for a sequence of 

such waves to interfere constructively to form a stationary wave pattern of order n, 

each ray must return to the surface n horizontal wavelengths displaced from i ts  

origin. One finds in this way that i f  the region of the sun occupied by the wave is 

approximatd by a polytrope of index ~, 

~n~ ~ 2n ~ok (3.2) 
~+1 ' 

where g = GM/R 2 is the surface gravity and y = (dlnp/dlnP)s, with p being pressure, p 

density and derivative being taken at constant specific entropy, and where k = [~(~ + 

1)]1/2/R is the horizontal wavelength. Moreover the penetration depth is found to be 

2nk -1, which is simply the level at which waves of frequency mn~ have a total 

wavelength k and therefore propagate horizontal ly. Equation (3.2) is correct for 

values of large n; when n is small, one must take more careful account of the 

boundary conditions, which add the constant ~ to the factor 2n. There is also a 

modification due to buoyancy i f  the polytrope is not adiabatically stratif ied. The 

complete formula is given, for example, by Gough (1978). 

I t  is clear from equations (3.1) and (3.2) that mn~ increases with ~ and n 

when n or ~ is large, and numerical solutions always exhibit this property regardless 

of the values of n and ~. Thus one would expect p-mode frequencies to be bounded 

below by that of the radial pulsation of order unity, although i t  does not appear 

that this has been proved. This mode of a typical solar model has a period of about 

one hour. 

The f mode, or fundamental mode, is essential ly a surface wave. The 

restoring force is provided by gravity, and were i t  not for the curvature of level 

surfaces in the unperturbed star and the variat ion of gravity with depth, the 

velocity f ield would be both irrotational and solenoidal and the frequency would be 

that of a deep water wave: m = (gk) 1/2, irrespective of the s t ra t i f i ca t i on  of the 

unperturbed state. The waves are concentrated in a layer of thickness k -1 

immediately beneath the surface. Thus when ~ >> 1, the deep water wave frequency is 

an accurate approximation. The kinet ic energy is approximately equally shared 

between the horizontal and vertical components of the motion. 

Internal gravity waves can exist i f  there is a region of the star which is 



277 

s tab l y  s t r a t i f i e d .  The r es to r i ng  force is provided by negat ive buoyancy which 

generates v o r t i c i t y ,  g iv ing r ise to an array of o s c i l l a t i n g  eddies. The frequency is 

lower than that of a p mode of the same degree, and consequently there is more time 

fo r  pressure to ad just  across the eddy. As a r e s u l t ,  the d i l a t a t i o n  of  the f l ow  is  

determined almost completely by the unperturbed density s t r a t i f i c a t i o n ,  and is such 

that the momentum density f i e l d  is almost solenoidal (cf. Ogura and Ph i l l i p s  1962). 

Osc i l la tory  g modes tend to be confined to stably s t r a t i f i e d  regions, and are 

evanescent in convect ion zones. Thus in the sun there are at l eas t  two classes of  

such modes: those confined to the i n t e r i o r  beneath the convection zone, and those in 

the atmosphere. Their frequencies are contro l led by the buoyancy frequency N which 

is given by 

d~np~ (3.3) 

This would simply be the frequency of a small o s c i l l a t i n g  f l u i d  parcel that  remains 

in pressure balance w i th  i t s  surroundings and which is imagined to d r i ve  no 

horizontal  f low. Note, therefore, that  because the motion of an actual g mode cannot 

be pure ly  v e r t i c a l ,  the ex t ra  i n e r t i a  provided by the h o r i z o n t a l l y  moving f l u i d  

reduces the frequency of the mode below N. A formal proof of th i s  statement is given 

by Christensen-Dalsgaard (1979). As ~÷ ® at f ixed n, the eddies become elongated in 

the radial  d i rect ion and the horizontal components of ve loc i t y  approach zero. The 

eddies become trapped near the maxima Nma x of N, and mn,~÷ Nmax from below. As [n l  

increases at f ixed ~, the eddies become more f la t tened in the ver t ica l  d i rec t ion ,  and 

the f low is predominantly hor izontal .  The grav i ta t iona l  potent ial  energy that  can be 

drawn on by an eddy decreases in comparison to i t s  i n e r t i a  and the f requency 

diminishes. Indeed, ~ ÷ 0 and Inl ÷ = at f ixed ~. When Inl and ~ are comparable, 

the k inet ic energy is shared about equally between the horizontal and vert ical  

components of the motion. Note that, unlike the p modes, the f modes and the g modes 

depend on the presence of horizontal variations in the perturbations, and so do not 

exist when ~ : O. 

Throughout most of the inner half by radius of the sun, N is probably of 

order 0.4 mHz which estimates, to within geometrical factors, the frequencies of 

in te rna l ly  trapped g modes with order not greatly in excess of degree. The 

dependence of N 2 on radius is depicted in these proceedings in Figure 1 of 

Christensen-Dalsgaard, Dziembowski and Gough (1980) for two solar models. The 

buoyancy frequency never exceeds about 0.45 mHz, which implies that these g modes 

cannot have periods less than about half an hour. Further details of the properties 

of the modes als~ are presented in Christensen-Dalsgaard, Dziembowski and Gough 

(1980). 

The frequencies of the atmospheric g modes can be rather greater than those 
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of the inter ior  modes. I f  the atmosphere is approximated by a perfect isothermal gas 

of molecular weight ~ at temperature T, equation (2.3) reduces to 

where H =~T/ug is the scale height of the atmosphere,~ being the gas constant. 

Taking ~ = 1.2 and T = 5800 K, the effective temperature of the sun, a value of about 

4 mHz is obtained for  N. Thus one expects atmospheric g modes to have periods 

greater than or approximately equal to 4 minutes. 

Note than in the corona the buoyancy frequency is less than one tenth that in 

the photosphere and low chromosphere. Thus the higher frequency g modes are trapped 

between the corona and the top of the convection zone. I f  the height of the base of 

the corona above the top of the convection zone is h, the g mode frequencies are 

approximately given by 

2 k2N 2 

k 2 + (n~/h + 5) 2 + 1/(2H) 2 ' (3.5) 

where a is a f i n i t e  phase factor that depends weakly on conditions in the corona and 

the convection zone and on k and n. 

I t  should perhaps be added that formally there is a class of l inear g modes 

tha t  are trapped in the convect ion zone. These have m2 < O, and so grow 

exponentially with time. They are sometimes called g- modes, to distinguish them 

from the osci l latory modes described above, which are then labeled g+. I f  an i n i t i a l  

equilibrium state of no motion was imagined, g- modes would grow i f  a region existed 

where N 2 < O. Their amplitudes would soon become large, and nonlinear effects would 

become important. This is convection, and i t  is not clear whether the l inear modes 

have much direct relevance to the f inal  state. 

Other forms of osci l lat ions are also possible. In particular, rotation and 

magnetic f ields modify the waves described above, and also add new spectra of modes: 

the inert ia l  osci l lat ions and the Alfven modes. Moreover, osci l latory dynamo modes 

in some form or other are presumably responsible for the solar cycle, and thermally 

controlled osci l lat ions with much longer periods arising from the coupling between 

the convective and rad ia t ive  zones may be operative. These modes w i l l  not be 

discussed here. 

4. GLOBAL OR LOCAL? 

The adiabatic normal modes of a nonmagnetic f l u id  star form a complete set 

(c~ Eisenfeld 1969, Dyson and Schutz 1979). Thus any disturbance can be represented 

as a superposition of these modes, and may be regarded as being in some sense 
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'global.' Nevertheless, a disturbance in i t i a ted  by a localized perturbation takes 

time to communicate with the rest of the sun, and before that time has elapsed the 

disturbance is genuinely 'local.' 

Whether a mode can be genuinely global rests on whether i t  can survive long 

enough to propagate around the sun. The modes of low degree are global, since their 

propagation times are comparable with the i r  periods. But for the modes of high 

degree the situation is less obvious. In particular, the five minute oscillations, 

which are p modes of high degree, have group velocities approximately equal to half 

the i r  horizontal phase veloci t ies,  as is apparent from equation (2.2) and the 

subsequent discussion. Thus a typical mode in the middle of the k-m power diagram 

presented, for example, by Deubner, Ulrich and Rhodes (1979) has k = 0.5 Mm -1 and m = 

2 x 10 -2 s -1, y ielding a group veloci ty of 20 km s -1, To travel a single 

circumference of the sun would take such a mode a time of about 2 x 105s, which is 

about 700 periods. Whether the mode survives so long is an open question. 

Observationally, Deubner, Ulrich and Rhodes (1979) found widths of the ridges in 

their power spectra consistent with coherence lasting for the entire duration of a 

day's observing; however that is less than 2 x 105s. Moreover, the theoretical 

estimates made in the investigation reported by Berthomieu et al. (1980) yielded 

decay times for some of the modes they selected which were also less than the travel 

time. This suggests, therefore, that though some of the five minute oscillations may 

be genuinely global, others may be localized. With su f f i c i en t l y  long and careful 

observing runs one might hope to resolve the discrete values of the horizontal 

wavelength k for the global modes. I t  must be borne in mind, however, that velocity 

f ie lds associated with convection or other large scale phenomena distort the wave 

patterns, thus rendering such resolution more d i f f i c u l t  than one might at f i r s t  

suspect. 

5. EXCITATION 

There has been considerable debate concerning the principal source of 

excitat ion of the osci l la t ions.  Broadly speaking, the dr iv ing mechanisms may be 

divided into two classes: those by which energy is transferred from the mean 

(horizontal ly averaged) environment to the osc i l la t ions,  and those that depend in 

some intr insic way on the interaction with the horizontal fluctuations produced by 

motion other than that associated with the oscillation i tsel f .  Of course both forms 

of energy transfer take place, and the dominant form may be different for different 

modes. Nevertheless there is mounting evidence that interactions with other motions 

is important in the overall dynamics of the modes. 

I t  has been argued by Ulrich (1970), Wolff (1972) and Ando and Osaki (1975, 

1977) that most of the modes responsible for the f ive minute osc i l la t ions are 

overstable in l inear theory, and thus would grow spontaneously to the i r  present 
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amplitudes from a presumed i n i t i a l  non-osci l lat ing state. This is the only 

suggestion implementing one of the f i rs t  class of driving mechanisms that has been 

investigated in detail. Ando and Osaki claim that the dominant driving process is 

the K-mechanism, whose importance in the dynamics of the radial pulsations of 

Cepheids and RR Lyrae stars has long been appreciated. An issue that has not been 

addressed by the advocates of this theory, however, is why i t  is that the amplitudes 

of the modes are so low. The mechanisms that l imi t  the amplitude of an overstable 

oscillator are nonlinear, and i t  is hard to envisage what they might be in the case 

of the five minute oscillations. To be sure, the amplitudes of density fluctuations 

in the low chromosphere may be large enough for nonlinear processes to be extremely 

important there, as has been pointed out recently for example, by Hi l l ,  Rosenwald and 

Caudell (1978), but aside from the chromospheric modes the energy densities are so 

small in this region as to make i t  quite unlikely that such processes can control the 

energy balance in si tu. This d i f f i c u l t y  must also be faced by anyone who argues 

that the longer period oscillations are l inearly overstable, or that the oscillations 

are stable in l inear theory but are f in i te-ampl i tude unstable. There is the 

poss ib i l i t y ,  however, that nonl ineari t ies in the chromosphere may modify the 

structure of the waves to so great an extent as to permit substantial leakage of 

energy into the corona. 

I f  one is to reject the idea that most of the f ive minute modes are 

overstable, one must explain why the l inear nonadiabatic analysis came to a 

contradictory conclusion. The reason presumably l ies in the convection-pulsation 

interaction, which is generally ignored. In these proceedings, however, Berthomieu 

et al. (1980) report that they found al l  the modes with ~ = 200 and 600 to be stable 

when convection was taken into account. I f  these modes are not atypical, most of the 

five minute modes might therefore be stable. The calculation of Berthomieu et al. 

employed a generalized mixing-length theory, in the form used by Baker and Gough 

(1979) to study RR Lyrae models; this method, however, is very uncertain. The result 

should therefore be regarded not as strong evidence for the s t ab i l i t y  of the f ive 

minute modes, but rather as an indication that one should at least doubt previous 

claims to the contrary. 

The second class of driving mechanisms is now addressed. Here the energy 

transfer to the modes is nonlinear, and is therefore much more d i f f i cu l t  to analyze. 

I t  is convenient to divide the transfer into two subclasses, the f i r s t  of which is 

transfer from the turbulent convective motion and the second, transfer from other 

modes of oscillation. In the latter case the energy of the oscillations that drive 

the mode might come, either directly or indirectly, from the convection or from one 

or more genuinely overstable modes. Of course there is also the poss ib i l i t y  that 

energy is extracted from other forms of motion, such as meridional circulation, the 

giant cells and rotation, or from the magnetic f ield, but i t  is unlikely that this is 



281 

important except possibly for a few exceptional modes. 

Random excitation of radial solar oscillations by turbulent convection has 

been discussed by Goldreich and Keeley (1977b). In this study the modes were 

presumed to be l inear ly  stable, much of the stabi l izat ion coming from a turbulent 

viscosity provided by those convective eddies of lengthscale L and velocity v whose 

characteristic timescales L/v fa l l  short of the osci l lat ion period by more than a 

factor 2~ (Goldreich and Keeley 1977a). The mean l im i t ing  amplitudes of the 

oscillations were then computed by balancing against the linear energy losses, which 

are proportional to the square of the amplitude, the rate at which energy is 

transferred to the modes via nonlinear interactions with convective fluctuations that 

are independent of the osci l lat ion amplitude. At the heart of the computation, 

therefore, is an estimation of the extent to which the normal modes respond to the 

convective fluctuations, and this is the most uncertain step. 

The energy transfer rate between two different components of motion, whether 

these components be convection and an oscillation or two oscillations, depends not 

only on the intensity of the motion but also on its geometry. The computation of the 

rate involves evaluating certain coupling integrals, which are analogous to the 

matrix elements encountered in quantum theory. To drive a particular mode of 

oscillation i t  is necessary to be able to generate a component of the motion that is 

possessed by that mode. Thus p modes are most e f f i c ien t l y  driven by pressure (or 

dilatation) perturbations, whereas g modes are best generated via their  vo r t i c i t y .  

Convection may therefore drive p and g modes of similar frequencies to very different 

amplitudes. Note that the f modes of high degree are almost free of both dilatation 

and vort icity, which perhaps accounts for the observation (e.g., Deubner, Ulrich and 

Rhodes 1979) that their amplitudes are rather lower than those of p modes of similar 

frequency and wavenumber. 

Goldreich and Keeley (1977b) made plausible estimates of the order of 

magnitudes of the terms that contribute to the coupling integrals. I t  was not 

possible to take the details of the geometry into account, because the structure of 

the turbulent convection is not known. From these estimates they concluded that the 

energy in any particular mode is approximately equal to the energy in a single 

convective eddy that resonates with the oscillation--that is to say, an eddy with a 

turnover time comparable to the period of osci l lat ion of the mode. Though this 

result is only very rough, i t  predicts amplitudes of radial modes that are so much 

smaller than the apparent amplitudes quoted by Hi l l ,  Stebbins and Brown (1976) and by 

Brookes, Isaak and van der Raay (1976) that i t  seems l i ke l y  that either the 

observations are not of radial modes or that the excitation of the modes is not 

predominantly by direct interaction with the convection. Another possibility, which 

is favored by Goldreich and Keeley, is that the observations have been 

misinterpreted. 
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Computations of this kind can easily be performed for other modes of 

oscillation. In particular, they may be applied to the five minute oscillations with 

encouraging results. In view of the uncertainties in the procedure i t  is probably 

adequate simply to equate the energy of each mode with a constant proportion of that 

of a resonating convective eddy, provided that such an eddy exists in the propagating 

region associated with the mode in question. I f  resonance occurs at more than one 

level, the two contributions are presumably added, though i t  makes l i t t l e  difference 

i f  one simply chooses the eddy of greatest energy. Using the model solar envelope 

whose f ive minute eigenfrequencies are reported by Berthomieu et al. (1980), and 

assuming the modes to be oscillating with random phases, an rms photospheric velocity 

amplitude of about 0.2 km s -1 is obtained i f  precise energy equipartition is assumed. 

This can be adjusted to the observed value of about 0.4 km s -I  either by setting the 

constant of proport ional i ty in the energy relat ion equal to 4, or by raising above 

unity the rat io of the convective turnover time to the osc i l la t ion  period that is 

considered to define resonance. 2 

A somewhat disturbing property of the outcome of this procedure is that the 

relat ive amplitudes of the di f ferent  modes contributing to the f ive minute 

oscillations are not in accord with the observations of Deubner, Ulrich and Rhodes 

(1979). Aside from predicting excessive f mode amplitudes, as one might expect, the 

photospheric velocity amplitudes of the p modes are found to increase with increasing 

wavenumber well into the range in which the observations indicate they should 

decrease. I t  is possible that modes of high wavenumber are so highly damped by 

processes other than direct convective coupling, such as radiation, that the assumed 

energy balance is no longer valid, though estimates from nonadiabatic calculations 

suggest this is not the case. Al ternat ively the high wavenumber modes may be 

modified substantially by inhomogeneities, especially in the chromosphere. 

In these proceedings Keeley (1980) reports an estimate by this method of the 

amplitude of a quadrupole g mode with a period of 160 minutes, adopting the same 

estimate for the coupling integral as was used previously for p modes. This is 

probably a sensible procedure, because the resonating eddies are at a depth of about 

I percent by radius beneath the photosphere, where this g mode local ly  has the 

character of a p mode (e.g., Chistensen-Dalsgaard and Gough 1980a). As with the 

radial modes of low order, the amplitude predicted is far below that quoted by 

Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976), which 

strongly suggests that i f  the osc i l la t ion  is a quadrupole g mode i t  is not excited 

2Keeley (1979) has obtained a similar result using ab in i t io  the procedure 
described by Goldreich and Keeley (1977a,b). 
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s tochast ica l ly  by the turbulent  f luc tuat ions.  Keeley's conclusion that  therefore the 

160 minute o s c i l l a t i o n  cannot poss ib l y  be a quadrupole g mode is perhaps a l i t t l e  

premature. 

The p o s s i b i l i t y  of exc i ta t ion  by nonlinear in teract ions with other modes of 

o s c i l l a t i o n  w i l l  be on ly  b r i e f l y  mentioned here. Though l i t t l e  work has yet  been 

done on t h i s  sub jec t ,  one can expect cons iderab le  progress in the f u t u r e ,  p a r t l y  

because the coupling in tegra ls  can be evaluated eas i ly  and wi th a reasonable degree 

of c e r t a i n t y ,  and p a r t l y  because we have a v a i l a b l e  a cons iderab le  body of  re la ted  

work on plasma tu rbu lence  and non l i nea r  g r a v i t y  wave i n t e r a c t i o n s .  An impor tan t  

d i f f e r e n c e  between an assembly of  high q u a l i t y  o s c i l l a t o r s  and the t u r b u l e n t  

convection considered above is that ,  even i f  the nonl inear couplings are weak, phase 

re lat ions between resonating modes can be maintained for  long periods of t ime, thus 

permit t ing substantial  t ransfers of energy. Provided the energy in the osc i l l a t i ons  

is su f f i c i en t  one might expect the motion to be chaotic on long timescales (cf., fo r  

example, Galgani and Vecchio 1979), but over the shor te r  i n t e r v a l s  dur ing  which 

observat ions  have been made a cons iderab le  degree of  coherence is  to be expected. 

Thus the long period osc i l l a t i ons  may a l l  derive t h e i r  energies, e i ther  d i r ec t l y  or 

i nd i r ec t l y ,  from modes with shorter periods. 

Some evidence that the exc i ta t ion  of the modes detected by the solar diameter 

measurements is i n t r i n s i c a l l y  nonlinear has recent ly been provided by Perdang (1980). 

Perdang f inds that the f racta l  dimension of the power spectrum published by Brown, 

Stebbins and H i l l  (1978) exceeds u n i t y ,  and cannot t he re fo re  be the spectrum of  an 

assembly of l i near  osc i l l a to rs  plus random noise. The dimension found is about 3/2, 

and is close to the value found for  the spectrum of turbu lent  Couette f low. Perdang 

concludes, therefore, that  the power spectrum of the long period solar osc i l l a t i ons  

is at least compatible wi th what one would expect from a large number of non l inear ly  

coupled o s c i l l a t o r s .  A s i m i l a r  r e s u l t  might be expected i f  the d i r e c t  coup l ing  

between the modes was n e g l i g i b l e a n d  the o s c i l l a t i o n s  were d r i ven  d i r e c t l y  by the 

convec t ion ,  s ince the dominant eddies d r i v i n g  d i f f e r e n t  o s c i l l a t i o n  modes are 

nonl inear ly  coupled. Note that  Perdang's resu l t  can also be considered to be fu r the r  

evidence against the suggestion that the SCLERA data is purely random noise. 

F i n a l l y  l e t  us re tu rn  to the 160 minute o s c i l l a t i o n .  I f  t h i s  i s  a g mode, 

the fact that other modes adjacent to i t  in the spectrum are not driven to such high 

amplitude is consistent wi th the exc i ta t ion  being by d i rec t  resonant coupling wi th  

other modes. I t  is claimed that the o s c i l l a t i o n  has maintained phase for  at least  

three years (Kotov, Severny and Tsap 1978; Scherrer et al.  1979), which suggests that  

accurate phase coherence between the resonat ing modes may be necessary. Such 

resonances are ra re ,  and on ly  a very few low order  modes are l i k e l y  to be exc i t ed  

s t r o n g l y  by t h i s  mechanism. The p o s s i b i l i t y  e x i s t s ,  however, t ha t  the 160 minute 

o s c i l l a t i o n  does not correspond to any l i near  eigenmode of the sun, but that i t  is  an 
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essent ia l l y  nonlinear phenomenon, such as that which appears to arise in cy l i nd r i ca l  

Couette f low (Swinney and Gollub 1978). 

6. PHASE COHERENCE OF THE DIAMETER MEASUREMENTS 

The means by which so la r  o s c i l l a t i o n s  are observed w i l l  not be discussed 

here, as they are described elsewhere in these proceedings. I do, however, wish to 

address one small point that concerns the solar diameter measurements. The reports 

of H i l l  and his colleagues have been doubted by many, but most of the c r i t i c s  would 

be less skep t i ca l  i f  phase coherence were c o n v i n c i n g l y  demonstrated. In these 

proceedings Caudell et a l .  (1980) present a s t a t i s t i c a l  argument suppor t ing  phase 

coherence, but such arguments are sometimes d i f f i c u l t  to assimi late when one is not 

f am i l i a r  wi th the s t a t i s t i c a l  tests that are being applied. One is often more l i k e l y  

to feel capable of judging the issue i f  one can ac tua l l y  see wandering of the phase. 

H i l l  and Caudell (1979) have presented a diagram which shows tha t  the 

a d d i t i o n  of  appropr ia te  i n teg ra l  m u l t i p l e s  of  2~ to the phases of several of the 

peaks in the power spectrum of the diameter measurements can produce resul ts  which 

are almost l i near  funct ions of time. The probab i l i t y  that a random sample of points 

could have fa l len  so close to s t ra ight  l ines is quoted to be very small. Thus i t  is 

concluded that phase is maintained. 

A worry tha t  has been expressed by some people deals w i t h  the fac t  tha t  

a rb i t ra ry  mul t ip les of 2~ must be added to the phases, and that only those that y ie ld  

the best f i t  to s t ra ight  l ines are included in the diagram. Of course one can argue 

tha t  t h i s  should not mat ter ,  because the same procedure was app l ied  to the 

computation of the random points. Nevertheless, i t  would perhaps be reassuring i f  

one could see a l l  the possible phases at once. 

At t h i s  workshop the SCLERA group made a v a i l a b l e  to me a l l  the phase data 

tha t  had been analyzed. I chose a sample at random. In Figure I is  p lo t t ed  the 

phases in that sample computed from the Fourier spectra of each day's observing as a 

funct ion of day number. Al l  the factors of 2~ that y ie ld  points w i th in  the confines 

of  the diagram are inc luded.  Whether one is  to be l i eve  tha t  phase is  mainta ined 

res ts  on whether one be l ieves  tha t  s t r a i g h t  nonve r t i ca l  l i n e s  may be drawn almost 

through the points. I t  is clear that s t ra ight  l ines of slopes of about 60 ° and -30 ° 

to the abscissa pass close to the points, but are they close enough to be convincing? 

In other words, i f  the points on the diagram represent the posi t ions of trees, does 

the diagram resemble more c losely a map of an orange p lantat ion or a map of a natural 

forest? 

To help answer that question one might compare the data with Figure 2, which 

is  a s i m i l a r  diagram cons t ruc ted  on about the same scale from a set of  u n i f o r m l y  

d i s t r i b u t e d  random numbers in the range [0 ,  2~). I t  is  immedia te ly  apparent t ha t  

pathways between the trees ex is t ,  as they do in Figure i ,  but th i s  t ime they are not 
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straight. Therefore i t  seems that phase here is not maintained, which is of course 

the case. I t  is interesting to notice, however, that had only the second half of the 

data been available, i t  would have been d i f f i c u l t  to assess on the basis of this test 

whether or not the phases were random. 

Now that one can see the difference between the observed and the random data, 

i t  is ins t ruc t i ve  to measure i t .  Best f i t  s t ra igh t  l ines were placed through the 

rows of trees in Figures 1 and 2 and the standard deviations o of the phases from 

those l ines were computed. In the case of the observations ~ = 0.65, and for  the 

random points o = 1.26. One can now refer to the Monte Carlo computation reported by 

Caudell et al. (1980). The random deviat ion ~= 1.26 l i es  close to the maximum in 

the computed distr ibut ion function, as one should expect, whereas the value ~ = 0.65 

is well into the t a i l .  Moreover, a perusal of the remaining SCLERA data revealed 

that the sample i l l u s t r a t e d  here is not atypical .  Thus one is forced to conclude 

that Figure 1 resembles an orange plantation, albeit poorly laid out, rather than a 

forest, and that the diameter measurements do, therefore, maintain phase. 3 

M. Gabriel pointed out during the meeting that ro tat ional  s p l i t t i n g  of 

nonaxisymmetrical normal modes would destroy phase coherence over an in terva l  

comparable with the beat period. For modes of low degree this period is of the order 

of the solar rotation period, which is about the same as the time interval over which 

the phase analysis has been performed. So why is phase maintained? Of course the 

axisymmetrical normal modes maintain phase, and so do pure runnng nonaxisymmetrical 

waves. Therefore, i f  all possible oscil lat ions of a given degree are present with 

random amplitudes, one should expect some degree of phase maintenance. Just how good 

the coherence should be has not been calculated, but i t  is p lausible that the 

standard deviation from perfect coherence that one would expect is not far from that 

of the observations. I f  that were the case, most of the scatter in Figure 1 would be 

the result of rotational sp l i t t ing,  and not of random noise. 

7. FIVE MINUTE OSCILLATIONS OF LOW DEGREE 

At this workshop Claverie et al. (1980) announced the discovery of a sequence 

of approximately equally spaced peaks in their  power spectra of l ine shif ts measured 

from l ight  integrated from the entire solar disk, with frequencies between about 2.5 

and 4 mHz. Because the instrumental s e n s i t i v i t y  to nonradial solar pulsat ions 

decreases rapidly with the degree of the mode (Hil l  1978, Christensen-Dalsgaard and 

Gough 1980b), i t  can immediately be concluded that i f  indeed solar osci l lat ions are 

responsible for  the data they must be of low degree. Consequently they must be of 

3After the workshop a similar analysis to that presented here was published 
by Grec and Fossat (1979). Unfortunately the authors had only 7 day's data 
available, and could conclude only that the case was not proven. 
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high order. S p e c i f i c a l l y ,  every a l t e r n a t e  peak is  due probably to a d i po le  

osc i l l a t i on ,  and the peaks between to superpositions of monopole and quadrupole modes 

having almost coincident frequencies. 

What are the properties of these osc i l l a t i ons ,  and to what amplitude would 

one expect them to be exc i ted?  Some r e s u l t s  of computat ions of  j u s t  the r ad i a l  

modes, carr ied out in col laborat ion with N.H. Baker, w i l l  be reported here b r i e f l y .  

A model envelope of the sun was constructed by in tegrat ing inwards from the 

sur face,  i n c l u d i n g  s l i g h t l y  more than 80 percent by radius (and mass). Turbu len t  

Reynolds stresses were incorporated in  the approximate way descr ibed by Baker and 

Gough (1979). The hydrogen and heavy element abundances were X : 0.745, Z = 0.02 and 

a mixing length of 1.5 pressure scale heights was chosen. This y ie lds  a convection 

zone 1.99 x 105 km deep, and a k-mdiagram fo r  the f i v e  minute o s c i l l a t i o n s  of  h igh 

degree s i m i l a r  to tha t  repor ted by Berthomieu et a l .  (1980). A spectrum of  

nonadiabatic radial pulsations was then computed, t rea t ing  convective f luc tua t ions  in 

a manner i d e n t i c a l  to tha t  used by Baker and Gough (1979) in  t h e i r  Ser ies B of RR 

Lyrae va r iab les .  The f requenc ies of the modes were subsequent ly  decreased by 6 

percent to take i n t o  account the replacement of the inner  core of  the sun in  the 

computations by a r i g id  sphere. The reduction factor  was arr ived at by assuming the 

asymptot ic  equat ion (3.1) to be v a l i d  f o r  a l l  the modes and, aside from the three 

lowest  order modes, the r e s u l t i n g  f requencies d i f f e r e d  from the ad iaba t i c  

eigenfrequencies of the standard model of Chr is tensen-Dalsgaard,  Gough and Morgan 

(1979) by less than I percent. 

A1 the modes with frequencies less than 4 mHz were found to be stable. Their 

s t a b i l i t y  coef f i c ien ts  are shown in Figure 3. In te res t ing ly ,  these coef f i c ien ts  are 

w i th in  a factor  of 2 of those obtained by Goldreich and Keeley (1977a) fo r  the modes 

w i th  f requencies in  excess of 2.5 mHz. This is  r a the r  s u r p r i s i n g ,  s ince the two 

c a l c u l a t i o n s  made apparen t l y  very d i f f e r e n t  assumptions in the t rea tment  of the 

Reynolds stresses. Some of the modes with frequencies above 4 mHz were found to be 

unstab le ,  w i t h  e - f o l d i n g  t imes as-short  as one day. This r e s u l t  should be t rea ted  

w i th  some cau t ion ,  however, because the f requenc ies  are c lose to Lamb's c r i t i c a l  

frequency for  wave propagation in the atmosphere. Energy leakage into the corona, 

which was ignored in these computat ions,  may add s u b s t a n t i a l l y  to the damping of  

these high frequency o s c i l l a t i ,  ;. I f  a l l  the modes are indeed stable, stochastic 

exc i ta t ion by turbulence is a l i k e l y  candidate for  the predominant d r iv ing  mechanism. 

P lo t ted  also in Figure 3 is  the r a t i o  of the ampl i tude Am of the sur face 

luminos i ty  var ia t ion ,  measured in magnitudes, t o  the surface ve loc i t y  amplitude v s 

( in  m s - I )  scaled by the f ac to r  2/3,  which is the value of the spa t i a l  f i l t e r  

f u n c t i o n  fo r  rad ia l  modes appropr ia te  f o r  the who le -d isk  measurements (e.g., H i l l  

1978). I t  is  ev ident  t h a t ,  i f  these p red i c t i ons  of  l i n e a r  theory  are good 

approx imat ions to r e a l i t y ,  the v e l o c i t y  ampl i tudes of  up to  30 cm s - I  quoted by 
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Claver ie  et a l .  (1980) imply l um inos i t y  ampl i tudes in the v i c i n i t y  of  10 -5 mag. 

Though luminosity measurements of the sun have not yet been performed with su f f i c ien t  

precision to detect osc i l la t ions  of such low amplitude, i t  is feasible that in the 

frequency range in question they could be made. 

I t  would also be i n t e r e s t i n g  to at tempt to detect  s i m i l a r  o s c i l l a t i o n s  in 

other stars. This issue has already been raised i n  Connection with the long period 

osc i l la t ions ,  though there is at present some disagreement concerning the amplitude 

of the l um inos i t y  v a r i a t i o n s  that  should be expected (cf .  Severny, Kotov and Tsap 

1976, 1978; Deubner 1977). Granted that the presence of the envelope convection zone 

is l i k e l y  to be essential for  the i r  exc i tat ion,  one might expect to f ind low degree 

o s c i l l a t i o n s  at leas t  in s tars of type G and l a t e r .  C laver ie  et a l .  (1980) have 

already mentioned the poss ib i l i t y  of making Doppler measurements from a s a t e l l i t e ,  

but luminosi ty f luctuat ions may be easier to detect. Of course i t  would be best to 

have both. 

F ina l ly ,  we shall examine the dr iv ing of the radial modes, assuming that i t  

takes place through random exci tat ion by the turbulent convection. To obtain a rough 

estimate of the amplitudes one might expect, the fact has been disregarded that some 

of the higher frequency modes were found to be overstable; in addit ion, the simple 

energy balance of the kind deduced by Goldreich and Keeley w i l l  be assumed, 

cal ibrated against the local f i ve  minute osc i l l a t i on  amplitudes as described above. 

Thus each mode energy is equated with four times the energy of a single resonating 

convect ive c e l l .  The squares of the surface v e l o c i t y  ampl i tudes,  in m2s -2, are 

displayed in Figure 4. These should correspond roughly to the contr ibutions to the 

power spectra obtained by C laver ie  et a l .  made by the rad ia l  modes alonge. The 

f igure has a superf ic ia l  resemblance to the observations, showing a maximum amplitude 

of about (0.23 m s - l )  2 in the v i c i n i t y  of 3 mHz. In common wi th the es t imates  f o r  

the f i v e  minute o s c i l l a t i o n s  of high degree, the predic ted ampl i tudes of the high 

frequency modes are too great, but as mentioned above, substantial damping of these 

modes may resul t  from energy leakage into the corona. The amplitudes of the lower 

order modes in Figure 4 are greater than the corresponding values quoted by Goldreich 

and Keeley (1977b). The main reason is probably that the energy balance equation has 

been scaled upwards to bring the to ta l  energy of the f i ve  minute osc i l l a t ions  into 

agreement wi th  the observat ions.  In add i t i on ,  the equi l ibr ium model is d i f fe ren t  

from tha t  used by Goldreich and Keeley, and so are the surface ampl i tudes of the 

eigenmodes at a given mode energy. Though the calculat ions presented here are much 

less soph is t i ca ted  than those of Goldreich and Keeley, and make no pretense to be 

otherwise, they do suggest that a common process may dr ive the f i ve  minute modes of 

low and high degree. This is  not very su rp r i s i ng ,  since the eddies tha t  resonate 

with the f i ve  minute osc i l la t ions  t y p i c a l l y  have character is t ic  length scales rather 

smal le r  than the wavelengths of the modes, and so the coupl ing is  u n l i k e l y  to be 
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sensitive to the global structure of the oscillation eigenfunctions. 

8. ON HELIOSEISMOLOGY 

One of the most exciting prospects that recent observations have brought into 

view is the potential diagnosis of certain aspects of the sun's structure. In 1975 

Deubner published a k-m power spectrum of the five minute oscillations that heralded 

a diagnostic study of the convection zone. Soon afterwards Hi l l ,  Stebbins and Brown 

(1976) announced their discovery of longer period oscillations in the solar diameter 

that were no doubt associated with modes that penetrate into the radiative interior. 

Severny, Kotov and Tsap (1976) announced long period oscillations in spectrum line 

shifts that were immediately confirmed by Brookes, Isaak and van der Raay (1976), and 

we have learned at th is workshop of the f ive minute osci l la t ions of low degree 

(Claverie et al. 1980). None of these observations has yet led to any certain 

inference, but they have stimulated several diagnostic investigations. 

Most attention has been devoted to the f ive minute modes of high degree, 

because good observations of both the i r  temporal and the i r  spatial structure have 

been made (e.g., Deubner, Ulrich and Rhodes 1979). Thus i t  has been possible to 

i d e n t i f y  the modes. Theoret ical inves t iga t ions  of the dependence of the 

corresponding eigenfrequencies of linear modes on the structure of the solar model 

are reported in these proceedings by Berthomieu et al. (1980) and by Lubow, Rhodes 

and Ulrich (1980). Because the modes exist in a layer only a few percent of the 

solar radius deep, they give us no direct information about most of the in ter ior .  

However, the osci l la t ions do penetrate beyond the upper boundary layer in the 

convection zone, beneath which we are f a i r l y  confident that the s t ra t i f i ca t i on  is 

approximately adiabatic. This enables us to extrapolate to the base of the 

convection zone and so estimate i ts  depth. Both of the studies last mentioned 

concluded that the observations seem to imply the depth of the convection zone to be 

about 2 x 105km. 

Evidence against so deep a convection zone has been provided by Hi l l  and 

Caudell (1979), and discussed by Christensen-Dalsgaard, Dziembowski and Gough (1980). 

Hill and Caudell concluded that oscillations with periods 45 minutes and 66 minutes 

have horizontal variations with characteristic wavelengths of order 2~R/30, where R 

is the solar radius. I f  these are simply interpreted as nonradial modes with ~ : 30, 

the periods imply that they must be g modes trapped beneath the convection zone. 

This is d i f f i cu l t  to reconcile with the models suggested by Berthomieu et al. (1980) 

and Lubow, Rhodes and Ulrich (1980) because the attenuation of the mode amplitudes 

through the deep convection zone would be too great for the modes to be observable at 

the photosphere (Dziembowski and Pamjatnykh 1978). I t  seems l ikely that there are 

solar models with low heavy element abundances of the kind discussed by Christensen- 

Dalsgaard, Gough and Morgan (1979) that are not subject to th is d i f f i c u l t y ,  but 



291 

acceptance of them raises more problems than i t  solves (Christensen-Dalsgaard, 

Dziembowski and Gough 1980). In particular, the conclusions already drawn from the 

five minute oscillations are contradicted. 

In an attempt to harmonize the conf l ic t ing evidence, Rosenwald and Hi l l  

(1980) have proposed that the upper boundary conditions applied in the computations 

o f  the f ive minute eigenfunctions are incorrect. They base the i r  argument on the 

results of an ear l ier  attempt to determine the spatial structure of the modes 

observationally (H i l l ,  Rosenwald and Caudell 1978). The implications of the i r  

conclusions are so important that some discussion of the analysis is not out of 

place. 

In the adiabatic approximation the pulsation eigenmodes are determined by a 

second-order linear differential equation. For any given frequency m there are two 

independent solutions, which in an isothermal atmosphere under constant gravity 

either oscillate with height or vary exponentially according to whether m is above or 

below some c r i t i ca l  value mc" For horizontal wavelengths appropriate to the f ive 

minute oscillations, the eigenfunctions in the atmosphere resemble those of radial 

pulsations, and ~c is approximately Lamb's acoustical cutoff frequencyYg/2c, which 

is a decreasing function of temperature. Solutions with m corresponding to the five 

minute modes are approximately exponential in the photospheric regions; in the corona 

they are either exponential or osc i l la tory ,  depending on whether the horizontal 

wavenumber is greater or less than about 0.2 Mm -1. For one of the exponential 

solutions the energy density in ~he oscillation decreases with height, while in the 

other i t  increases. Hi l l ,  Rosenwald and Caudell (1978) refer to these solutions as 

B_ and B+ respectively. As is usual for evanescent waves, the 8. solution 

essentially describes the response of the atmosphere to a disturbance from beneath, 

and the B+ solution to a disturbance from above. Of course a normal mode is a 

superposition of both. 

I f  the physics of the chromosphere and corona were understood, i t  would be 

possible at least in principle to determine the five minute eigenfunctions from the 

condi t ion that there is no inwardly propagating energy at i n f i n i t y .  But 

unfortunately we are not in a position to carry out that program. Nevertheless, i t  

is hard to imagine how the response of the chromosphere could be such as to generate 

a solution in the evanescent region that appears to have a large component apparently 

associated with a downward propagating coronal wave. Accordingly one might naturally 

expect the amplitude rat io of the B_ and B+ solutions to be of order unity in the 

chromosphere-corona transition region. I f  that were the case, the amplitude of the 

B+ solution would be negligible in and below the photosphere, and the reaction of the 

atmosphere to the waves in the resonating cavity beneath would hardly d i f f e r  from 

that calculated by ignoring the B+solution ent i re ly.  Indeed this was confirmed 

numerical ly  by Berthomieu et al. (1980), who found that the f i ve  minute 
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e igenf requenc ies  were ex t remely  i n s e n s i t i v e  to mi ld  changes in the boundary 

cond i t i ons  they imposed at an op t i ca l  depth of  10 -8 . Never theless,  i t  can be 

maintained that th is  resu l t  is no more than conjecture based on experience gained in 

s im i l a r  but d i f fe ren t  s i tua t ions ,  and that i t  must not be accepted without question. 

The work of H i l l ,  Rosenwald and Caudell (1978) was an at tempt to determine 

the combinat ion of B_ and B+ so l u t i ons  o b s e r v a t i o n a l l y .  S u r p r i s i n g l y ,  i t  was 

concluded that for  the f i ve  minute osc i l l a t i ons  the displacement amplitude of the B_ 

solut ion exceeds that of the B+ solut ion by only a factor  of about f i ve  at an opt ical  

depth of 0.I. I f  the l i near  solut ions were extrapolated into the chromosphere, the 

B+ component would be so dominant as to render the measurement hard ly  p l aus ib le ,  

This resul t  has some s i m i l a r i t y  to a conclusion of Schmieder (1976, 1979) who found 

from an analysis of phase re lat ions that at some frequencies atmospheric osc i l l a t i ons  

appear to be downward propagating waves. Nevertheless i t  has been argued that the 

increase in amplitude wi th height produced by the B+ solut ion gives r ise to nonlinear 

phenomena, which render l i near  extrapolat ion inva l id .  So drast ic  a modi f icat ion to 

the s t r uc tu re  of the e igen func t i ons  in the so la r  atmosphere is  beyond anyth ing 

considered by Berthomieu et a l . ,  and according to Rosenwald and H i l l  (1980) could 

reconci le the observed k-m power spectra with a convection zone much shallower than 

that favored by Berthomieu et al. and Lubow. 

This conc lus ion  too can be quest ioned, f o r  the ana lys is  of H i l l ,  Rosenwald 

and Caudell (1978) depends on several assumptions. I t  should be real ized that the B_ 

:B+ ampl i tude r a t i o  f o r  the f i v e  minute o s c i l l a t i o n s  was determined by comparing 

v e l o c i t y  and r a d i a t i o n  i n t e n s i t y  ampl i tudes,  and to do t h i s  i t  is  necessary to 

perform a nonadiabatic calculat ion.  H i l l ,  Rosenwald and Caudell did so, using the 

Eddington approximation to rad ia t ive  transfer.  In th is  approximation the governing 

d i f f e r e n t i a l  equat ions are of the f ou r th  order,  and so admit four  independent 

solut ions. Their re la t i ve  proportions cannot be determined by only two observations, 

and so i t  was necessary to r e s t r i c t  the c lass of admiss ib le  so l u t i ons  by adopt ing 

c e r t a i n  boundary cond i t i ons .  In p a r t i c u l a r ,  i t  was assumed tha t  the heat f l u x  

perturbat ion vanished at the lower boundary of the domain of computation, which was 

s i t ua ted  in the convect ion zone at a temperature of  13000 K. I t  has been argued by 

Gough (1977) and Baker and Gough (1979) tha t  convect ion can induce large f l u x  

perturbations, and indeed the computations by Baker and myself of radial pulsations 

that  are discussed above predict in a l l  cases that the heat f l u x  perturbat ion at T = 

13000 K is  a c t u a l l y  greater  than i t  is  in the photosphere. Furthermore our 

temperature pe r tu rba t i ons  at T = 0.3, where our outer  boundary cond i t i ons  were 

applied, are somewhat greater than those found by H i l l ,  Rosenwald and Caudell, which 

suggests a reduc t ion  in the B+ ampl i tude.  A d i r e c t  comparison w i th  observat ion 

should not be made, because our treatment of both convection and rad ia t ive  t ransfer  

was too crude to describe adequately the osc i l l a t i ons  in the photospheric regions. 



293 

Nevertheless, the computations do cast doubt on the analysis of H i l l ,  Rosenwald and 

Caudell (1978), and weaken the case against a deep convection zone. 

I t  is  worth not ing that  per tu rbat ions  in the convect ion might also a f f e c t  

s i m i l a r  c o n c l u s i o n s ( H i l l ,  Rosenwald and Caudell 1978) fo r  the long period 

osc i l la t ions.  In par t icu lar ,  the convective a c t i v i t y  can modify the l imb darkening 

func t ion ,  upon which the i n t e r p r e t a t i o n  of the SCLERA data depends, and the 

convective blue sh i f t  inval idates a naive conversion of spectrum l ine  sh i f ts  to mode 

ve loc i t ies .  

I f  the B+ s o l u t i o n  i s  of  l i t t l e  s i g n i f i c a n c e  in d e t e r m i n i n g  the 

eigenfrequencies, so is the T-T re lat ion in the atmosphere (Berthomieu et al. 1980). 

In that case the f i ve  minute osc i l la t ions provide us with a clean diagnostic of the 

convection zone, as was previously postulated by Gough (1977) and Ulr ich and Rhodes 

(1977). Roughly speaking the i r  frequencies are given by equation (3.2), where y and 

are to be i n te rp re ted  as averages of the ad iaba t ic  exponent and po l y t r op i c  index 

appropriately weighted according t o t h e  eigenfunction amplitude. Thus as k decreases 

and the penetration depth increases, the averages weight more heavi ly the adiabatic 

region where ~ = (Y - 1) -1 and the r ight  hand side of (3.2) increases: the functions 

m(k) defined by the ridges in the k-m power spectra have smaller gradients than one 

obtains from equation (3.2) wi th  y / ( ~ + l )  constant (assuming that  y / ( ~  + I )  is  

adjusted to y i e l d  about the r i g h t  value o f ~ ) ,  and the d i f f e rence  between these 

gradients is a rough measure of the s t a t i f i ca t i on  in the v i c i n i t y  of the penetration 

depth. A more precise measure might in pr inc ip le be constructed by considering more 

complicated aspects of the power spectra (cf. Gough 1978) but i t  would be successful 

only i f  the positions of the ridges were defined more precisely. This is l i k e l y  to 

be a d i f f i c u l t  task,  p a r t l y  because the f i n i t e  durat ion of a p a r t i c u l a r  mode may 

render the determination of i t s  frequency too inaccurate (Berthomieu et al. 1980) and 

p a r t l y  because nonl inear  i n t e r a c t i o n s  wi th other forms of motion, such as 

supergranulation, d is to r t  the wave patterns in such a way as to broaden the ridges 

obtained by the current  observat ional  techniques. Both these e f f ec t s  y i e l d  

unce r ta in t i es  which fo r  some modes are comparable to the r idge widths a l ready 

achieved by Deubner, Ulr ich and Rhodes (1979). 

I f  the convection zone is indeed deep, how is  one to exp la in  the r esu l t s  of 

H i l l  and Caudell (1979)? E i ther  the hor izonta l  length scale deduced from the 

observations is in error,  or that scale does not measure the horizontal wavelength of 

the modes. Another p o s s i b i l i t y  is  tha t  the ampl i tudes r e a l l y  are so high in the 

i n te r i o r  that the estimates of the attenuation through the convection zone made by 

Dziembowski and Pamjatnykh (1978) and Christensen-Dalsgaard, Dziembowski and Gough 

(1980) on the basis of l inear ized theory are incorrect. A l te rna t ive ly ,  as has been 

suggested fo r  the 160 minute o s c i l l a t i o n ,  the o s c i l l a t i o n s  are not the r e s u l t  of  

normal modes of osc i l l a t ion  of the sun. These poss ib i l i t i es  w i l l  not be discussed 
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here, but i t  is worth recall ing that large perturbations to the supergranular 

velocities induced by modes of low degree (Gough 1977) could give the impression in 

the photosphere of a mode with a much shorter horizontal wavelength (cf. Gough, 

Pringle and Spiegel 1976). 

The f ive minute osci l lat ions of low degree discovered by Claverie et al. 

(1980) provide an additional diagnostic that hasadirect bearing on this issue. These 

modes are particularly interesting because they penetrate to the center of the sun, 

though the information the frequencies give us weights the outer regions most 

strongly (see equation 3.1). Moreover, because the orders of the modes are high, i t  

is l ikely that the objections raised by Rosenwald and Hill (1980) to the analyses of 

Berthomieu et al. (1980) and Lubow, Rhodes and Ulrich (1980) would be of lesser 

importance. The reason is that the ratio of the B_ and B+ amplitudes can be regarded 

as defining a photospheric boundary condition, and this in turn determines the 

parameter ~ in equation (3.1) and a simi lar term in the analogue of equation (3.2) 

that is valid for small n. Accurate comparison of theory with the f ive minute 

oscillations of high degree measured by Deubner, Ulrich and Rhodes (1979) is possible 

when n is of order unity, but for the low degree modes n is about 20. Thus 

uncertainties in ~ should be of lesser importance for the low degree modes, and the 

eigenfrequencies can be predicted with greater accurac~ 

I t  is too early to assess the implications of these new data. Comparison of 

the mean frequency separation with those of the modes of a particular sequence of 

solar models has utilized a model deficient in helium and heavy elements and with a 

comparatively shallow convection zone (Christensen-Dalsgaard and Gough 1980b). This 

again contradicts the evidence from the other f ive minute modes. However, the 

discrepancies between the observations and the predictions of models of the kind 

preferred by Berthomieu et al. (1980) and Lubow, Rhodes and Ulrich (1980) is only 

about 1 percent, and we must await a better estimate of the accuracy of the new data 

before we take this apparent contradiction seriously. 

There are two other classes of modes that deserve brief mention. The f i r s t  

is the chromospheric modes, which are p modes of high degree trapped in the 

chromospheric minimum of the buoyancy frequency N (e.g., Ando and Osaki 1977), and 

the second is the atmospheric g modes trapped between the top of the convection zone 

and the bottom of the corona. Both are insensitive to the structure of the sun 

beneath the photosphere. 

According to the computations of Ando and Osaki (1977) and Ulrich and Rhodes 

(1977) the chromospheric modes should all have frequencies in the vicini ty of 0.027 

s -1. Their precise values are sensitive to the buoyancy frequency above the 

temperature minimum. Adiabatic g-mode eigenfrequencies of the Harvard-Smithsonian 

Reference Atmosphere (Gingerich, Noyes and Kalkofen 1971) are displayed in Figure 5. 

As is evident from equation (3.5), they depend both on the value of N in the 
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atmosphere and on the height of the base of the corona. Because the temperature rise 

between the chromosphere and corona is very steep, the variation of N is too, and the 

height h of the resonant cavity is almost independent of frequency. Consequently, 

unlike the nonchromospheric p modes, the atmospheric g modes all sample conditions in 

the same region. That is why the g-mode ~(k) relations plotted in Figure 5 are less 

curved than those for the f and p modes, as is evident also from the approximate 

formulae (3.2) and (3.5). Thus, the differences in the information content of the 

various g-mode eigenfrequencies are less marked than in the cases of p modes, and 

anything but the crudest inversion is unlikely to be possible. 

Another problem with atmospheric diagnostics is the existence of large 

amplitude inhomogeneities. As Ulrich and Rhodes (1977) have pointed out while 

discussing the chromospheric modes, and Dziembowski at this workshop regarding the g 

modes, i t  may never be possible to isolate ridges of power as has been done for the f 

and nonchromospheric p modes. Brown (1980) has presented some hint of g-mode ridges, 

but i t  may be vain to hope for more than the approximate locus of gl" 

Not only can oscillations measure the temperature and density strat i f ication 

of the sun, but they can also detect large scale motion. The most obvious form of 

motion that one might hope to measure is the solar rotation, and already evidence of 

rotational sp l i t t i ng  has been seen in several of the observations (e.g., Deubner, 

Ulrich and Rhodes 1979; Caudell and Hill 1978). Moreover, other phenomena, such as 

the periodic change in structure of the 160 minute oscillation reported by Severny, 

Kotov and Tsap (1978) and the 12.2 day oblateness osc i l la t ion  reported by Dicke 

(1976), may be related to ro ta t ional ly  induced precession of normal modes (Gough 

1980). L i t t l e  information is yet available, but what we have al l  hints that the 

average of the sun's angular velocity is rather larger than the surface value. 

The most detailed data that is available comes from the measurements of five 

minute osci l la t ions by Deubner, Ulrich and Rhodes (1979). In th is work the signal 

was f i l t e red  through an effective N-S s l i t  192" long placed across the equator. 

These modes have spatial structures proportional to the sectorial harmonics 
m sin 

Pm (c°Se)cosm@ in spherical polar coordinates, where p m is the associated Legendre 

function. They are therefore confined to an equatorial belt with a total width of 

about 2(2/m)1/2R. Since m7 100 for all modes considered, the belt is no wider than 
m sin 

the s l i t .  Indeed, other modes proportional to P~ (cos0)cosm@ with ~ = m also 

contribute to the signal, but they too extend to latitudes no greater than about the 

s l i t  length. 

Because the modes are confined so closely to the equator they are not 

affected by the variation of angular velocity with latitude. Moreover, because m is 

large, Coriol is forces are unimportant. I f  rotation was the only large scale 

velocity f ie ld  present, the wave patterns would simply be advected with the mean 

angular velocity of the sun weighted by the kinetic energy density of the mode (Gough 
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Figure 4. Estimates of the squares of the surface velocity amplitudes of the radial 
modes PlO " P31 assuming stochastic excitation by turbulent convection. 
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Figure 5. Eigenfrequencies of the f i r s t  ten adiabatic g modes of the Harvard- 
Smithsonian Reference Atmosphere, plotted against horizontal wavenumber. The f, P2 
and P4. modes of the standard model of Berthomieu et al. (1980) are included for 
comparlson. 



297 

1978), Thus the measured variation of the pattern speed with horizontal wavenumber 

would be a genuine reflection of the depth dependence of the angular velocity, almost 

uncontaminated by latitudinal variations. The procedure could be applied at other 

lat i tudes ~ too, by s im i l a r l y  selecting appropriate modes with ~ = m sec2~. Note, 

however, that the waves are actually influenced by all the other components of the 

veloci ty  f i e l d ,  including the convection and any large scale c i rcu lat ion.  The 

analysis of the wave patterns is therefore somewhat more complicated than that 

implied here. 

9. CONCLUDING REMARKS 

Recent observations of solar osc i l la t ions have raised more questions than 

they have answered. Like the measurements of the neutrino flux and the oblateness of 

the solar image, they have stimulated much thought on the physics of the sun, which 

is contributing to our knowledge of ste l lar  physics generally. The subject is s t i l l  

in i ts infancy, and there is good reason to believe that imminent observations wi l l  

resolve some of our present confusion, and lead us to a better understanding of the 

solar interior. 

I am very grateful to N.H. Baker, T.M. Brown, T.P. Caudell, J. Christensen- 

Dalsgaard, G. Contopoulos, W. Dziembowski, M. Gabriel, H.A. H i l l ,  D.A. Keeley, J. 

Knapp, J.D. Logan, J. Perdang, R.D. Rosenwald, A.B. Severny and R.T. Stebbins for 

useful and interesting discussions on this subject. 
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FIVE MINUTE OSCILLATIONS AS A PROBE OF THE SOLAR INTERIOR 

S.H. Lubow, E.J. Rhodes, Jr .  and R.K. U l r i c h  
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Univers i ty  of Ca l i fo rn ia  at Los Angeles 

ABSTRACT 

The solar f i ve  minute osc i l l a t i on  has been shown to consist of a large number 

of  nonradia l  acoust ic  modes. Observat ions of these modes prov ide a probe of the 

solar i n t e r i o r ;  s p e c i f i c a l l y  tests on models of the solar convection zone. 

Among the various types of solar osc i l l a t i ons ,  the f i ve  minute osc i l l a t i ons  

are the best observed. They provide us w i t h  the greatest  amount of observa t iona l  

d e t a i l  f o r  t h e o r e t i c a l  comparison. As U l r i c h  (1970a), Wol f f  (1972), and Ando and 

Osaki (1975) have described, these osc i l l a t i ons  are due to nonradial acoustic modes 

which can penetrate to depths equaling 20 percent of the solar radius. The cur ren t ly  

resolvable modes (see e.g., Deubner, Ulr ich and Rhodes 1979) penetrate a few percent 

o f  the radius below the so la r  sur face and have ~ values tha t  range from about one 

hundred to about one thousand. We can conceptualize these modes as being trapped in 

two coupled cav i t ies .  The f i r s t  cav i ty  extends from the photosphere to some point 

below; the second extends from a po in t  in  the chromosphere up to the corona. 

Eigenmodes tunnel t he i r  wave energy between the two cav i t ies .  

Figure I presents evidence tha t  the observed modes are indeed h i g h l y  

nonradial acoustic modes. This f igure ,  taken from a recent paper by Deubner, Ul r ich,  

and Rhodes (1979), plots observed power contours as frequency (m) versus horizontal  

wave number (kh). Dashed l i n e s  i n d i c a t e  the r e s u l t s  of the l i n e a r ,  nonad iabat ic  

modal analysis of Ulr ich and Rhodes (1977) for  a solar envelope wi th a mixing length 

r a t i o  (k/H) equal to 2.0. The ove ra l l  agreement speaks f o r  i t s e l f .  The quest ion 

that we must address here is the inverse: Can these observations t e l l  us something 

about the s t r u c t u r e  of  the so la r  i n t e r i o r ?  The c u r r e n t l y  reso lvab le  modes can 

d i r ec t l y  provide information only about the region in which they propagate, a region 

tha t  extends a few percent of the rad ius below the so la r  surface. I n fo rma t ion  

concerning the sun's deep i n t e r i o r  can only be inferred by studying complete solar 

models. 

In order to i n i t i a t e  a probe of  the so la r  i n t e r i o r ,  a theory  t ha t  is  as 

complete as possible must f i r s t  be constructed; the s e n s i t i v i t y  of the resul ts  to the 

d e t a i l s  of  the theory  must then be tested.  We have considered several aspects of  
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Figure 1. Velocity power spectrum in frequency and horizontal, wave number. 
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these issues. In building upon the theory given in Ulrich and Rhodes (1977), we have 

included Coulomb corrections to the equation of state via Debye-Huckel theory; the 

outer solar boundary has also been moved from the chromosphere to the lower corona. 

An approximation of the model of Avrett, Vernazza, and Linsky (1976) was used to 

extend the chromospheric model. We have also improved the numerical accuracy of the 

codes used and have employed updated in te r io r  opacities obtained from Huebner. 

Figure 2 compares the old (dashed l ine) and new (solid l ine) results obtained for 

envelopes with ~/H equal to 2.0. The effects of making the Coulomb corrections and 

moving the outer boundary were similar; both processes acted to lower the frequency 

at each k h. The effects of the other improvements implemented were negligible. 

Frequencies obtained from envelopes with ~/H values of 1.5 and 3.0 are represented by 

the two sets of solid curves in Figure 3. The frequencies for the ~/H of the 1.5 

model pass a b i t  above the peak power and those for the ~/H of the 3.0 model pass a 

b i t  below the peak power, We then computed a complete standard solar model that 

matches the present solar mass, luminosity, radius, and heavy element distribution; 

i t  also makes the usual assumption that the primordial sun Was chemically 

homogeneous. The result is a unique solar model whose convection zone has ~/H equal 

to 1.65. At present, this model appears barely distinguishable from a best possible 

f i t .  A more quantitative statement concerning this f i t  wi l l  be made in the future. 

We now come to the question of the sensitivity of the results obtained to the 

detai ls of the model. One possible point to question is the sens i t i v i t y  of the 

results to the theory of convection. To answer that question, we considered two 

envelope models. One was computed with the usual mixing length theory of convection 

and the other with Ulrich's (1970b) nonlocal convection model. Both envelopes were 

chosen so as to have the same specific entropy in the adiabatic region, since the 

value of the specific entropy is provided by a complete solar model. Changes in 

frequencies were found on the order of 0.5% between the two models, or only about a 

f i f t h  the frequency separation between the ~/H of 1.5 and the ~/H of 3.0 models. In 

order to better understand this result, we then plotted the percent differences of 

the local sound speed in the two models versus the depth (Figure 4). The f u l l  

horizontal scale is a typical penetration depth of the modes. We can see from Figure 

4 that in only a relatively small region of space can (small) differences arise; this 

is because only in such a region are the exact values of convective eff ic iencies 

important in determining temperature structure. Next, we experimented with the outer 

boundary condition and found that only negligible ~0.1%) changes resulted from 

appl%ing an outgoing wave boundary condition as opposed to a zero boundary condition. 

This result is not at all surprising, since wave amplitudes are heavily damped by the 

time the wave penetrates into the corona. 

To summarize, a detailed modeling of the five minute oscillations has shown 

that the standard solar model with standard boundary conditions agrees well with the 
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observations. In the future, we hope to investigate the effects of the anomalous 

boundary conditions discussed by Hill, Rosenwald and Caudell (1978), the influence of 

alternative chromospheric models, and perhaps the question of nonlinear effects. 
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SENSITIVITY OF FIVE MINUTE EIGENFREQUENCIES 

TO THE STRUCTURE OF THE SUN 

G. Berthomieu,(1) A.J. Cooper, (1)(2) D.O. Gough, (1)(2)(3) 
Y. Osaki, (1)(4) J. Provost, (1) and A. Rocca (1) 

ABSTRACT 

The dependence of theoretical eigenfrequencies of five minute oscillation 

modes on the parameters that determine model solar envelopes has been investigated. 

I t  was found that the p mode frequencies are quite strongly correlated with the depth 

of the convection zone. Comparison of theory with observation suggests that the 

solar convection zone is about 200,000 km deep. 

I. INTRODUCTION 

Our investigation was similar to that described by Lubow, Rhodes and Ulrich 

(1980) though our motivation was somewhat di f ferent.  Our primary concern was to 

discover whether the recent observations of solar five minute oscillations (Deubner 

1975, 1977; Rhodes, Ulrich and Simon 1977; Deubner, Ulrich and Rhodes 1979) can be 

used to put useful bounds on the structure of the sun. Thus our quest was to 

discover how large is the set of solar models that can support normal modes of 

osc i l la t ion  with eigenfrequencies that l i e  on the ridges of the k-m diagrams 

constructed from the observations. To achieve this one must study the sensit ivity of 

the computed eigenfrequencies to variations in both the basic solar model and the 

assumptions of the normal mode theory. This is a necessary f i rs t  step in any attempt 

at inversion. 

2. THE SOLAR MODELS 

The majority of the five minute oscillations penetrate the sun to a depth of 

nomore than a few tens of thousands of kilometers. These modes can supply no direct 

information from the deep interior. Therefore we have confined our attention to the 
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envelope, and have constructed models by integrating inwards from a point in the 

chromosphere to a depth of about 5 x 10 5 km, paying l i t t l e  attention to whether our 

models would match onto plausible models of the core. 

Above the photosphere we integrated the hydrostatic equation subject to an 

assumed T-T relation. Opacities were computed with the routine used for constructing 

the Harvard-Smithsonian Reference Atmosphere (HSRA), which had been kindly supplied 

to us by Dr. C.J. Durrant. Beneath the photosphere radiative transfer was treated in 

the diffusion approximation, with opacities computed by linear interpolation in the 

tables of Cox and Stewart (1970), and generally the mixing-length formula quoted by 

Baker and Temesvary (1966) was used to compute the convective heat f lux, with mixing 

length proportional to pressure scale height. For the equation of state i t  was 

assumed that the gas was composed of only hydrogen and helium, plus the ten most 

abundant heavy elements in the relative proportions given by Ross and Aller (1976). 

Thermodynamic state variables were obtained by minimizing an approximation to the 

formula for the free energy adopted by Fontaine, Graboske and Van Horn (1977); for 

this purpose the radii of atomic hydrogen and helium were taken to be 2.2 A and 1.5 A 

respectively. Normally, turbulent stresses were ignored. 

Integrations were performed with a fourth-order accuracy Runge-Kutta 

algorithm. Typically 600 mesh intervals were used. 

3. OSCILLATIONS 

Most of the calculations used the adiabatic approximation to the equations of 

motion, subject to the conditions that the vertical displacement vanished at the base 

of the envelope and that the Lagrangian pressure perturbation vanished at the upper 

surface. The governing d i f fe ren t ia l  equations were integrated by second-order 

accuracy centered f in i te  differences using the program described by Baker, Moore and 

Spiegel (1971), in much the same way as had been done by Ando and Osaki (1975, 1977). 

Subsequent improvements to the eigenfrequencies were made by substi tut ing the 

eigenfunctions into variat ional integrals, which were evaluated to fourth-order 

accuracy. 

4. A REFERENCE MODEL 

A model was chosen with eigenfrequencies that reproduced the observations 

tolerably. I t  had been constructed with a T-T relation above T = 2/3 taken from the 

HSR~ Its hydrogen abundance was 0.745, its heavy element abundance was 0.02 and the 

mixing length was 2.5 pressure scale heights. I t  had a convection zone 230,000 km 

deep. The frequencies of i ts  lowest order eigenmodes, regarded as continuous 

functions of the horizontal wavenumber k, are shown in Figure 1 superposed on the 

power spectrum of Deubner, Ulrich and Rhodes (1979). 
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5. ACCURACY OF THE NORMAL MODE ANALYSIS 

Tests were made for numerical accuracy by varying the number of mesh 

in te rva ls  N and using Richardson extrapolat ion to estimate the l i m i t i n g  

eigenfrequencies as N + ~. The resul ts were compared with nonadiabatic 

eigenfrequencies computed by treating rad ia t i ve  t ransfer  in the Eddington 

approximation and estimating the effect of turbulent convective fluxes using the 

quasiadiabatic approximation. In the latter, horizontal fluxes were ignored and the 

fluctuations in the vertical fluxes were taken from the latter part of § 5 of Gough 

(1977a). Also, modes were computed subject to various other upper boundary 

condit ions: vanishing of Eulerian pressure perturbation and of vert ical 

displacement, and matching to a running wave in an isothermal corona. The results 

depended on the modes selected, but in all cases the deviations from the reference f 

and p mode adiabatic eigenfrequencies were less than the uncertainties in the 

corresponding observations. 

6. SENSITIVITY ANALYSIS 

This analysis was performed by computing the changes in the eigenfrequencies 

of modes of degree 200 and 600 resulting from variations in the parameters 

determining the equilibrium model. Composition, the atmospheric T-~ relation, the 

mixing length and the parameters defining the position of the transition between the 

two asymptotic branches of the convective f lux formula (cf. Gough and Weiss 1976) 

were varied separately. Also, models were computed using a nonlocal convection 

theory. 

Broadly speaking, the eigenfrequencies were most strongly influenced by the 

mixing length, which determines the adiabat deep in the convection zone and hence 

controls the depth of that zone. This result confirms a hypothesis to this effect by 

Gough (1977b) and ~Irich and Rhodes (1977). Changes in the atmospheric structure had 

very l i t t l e  effect on the f and p mode eigenfrequencies, except for the chromospheric 

modes. Thus we conclude that provided the eigenvalue analysis is a good 

representation of the five minute oscillations, the observations imply that the depth 

of the solar convection zone is about 2 x 105 km. 

7. DISCUSSION 

The conclusion of our sensitivity analysis, namely that the k-m power spectra 

of the f ive minute osci l lat ions imply that the convection zone of the sun extends 

some 30 percent of the solar radius beneath the photosphere, is almost unavoidable. 

I t  must be borne in mind, however, that our inference is subject to the val idity of 

the l inear normal mode analysis which, we must point out, has been challenged 

(Rosenwald and Hill 1980). 
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Because i t  is d i f f i c u l t  to reconcile Hi l l  and Caudell's (1979) g-mode 

interpretat ion of the 45 m and 66 m modes of Brown, Stebbins and Hi l l  (1978) with a 

deep convection zone (Dziembowski and Pamjatnykh 1978), Christensen-Dalsgaard, 

Dziembowski and Gough (1980) enquired whether a model with a shallow convection zone 

could be viable. They concluded that such a model might be consistent with Hill and 

Caudell's (1979) interpretat ion, though they did not actual ly construct one that 

successfully reproduced the observations. However, one cannot entertain the 

hypothesis that the solar convection zone is shallow without refuting the analysis 

summarized in th is report. Rosenwald and Hi l l  (1980) have gone some way towards 

doing so, by pointing out that the boundary conditions we apply in the chromosphere 

may be too poor an approximation to rea l i ty .  They ci te thedetermination by H i l l ,  

Rosenwald and Caudell (1978) of the spatial structure of the modes in the solar 

atmosphere, and show that this structure is not inconsistent with there being 

substantial deviations from the frequencies we have calculated. Nevertheless, the 

case is not proven: Stebbins (1980) has some further observational evidence to 

support Rosenwald and Hil l 's hypothesis, but Brown and Harrison (1980) observations 

seem to suggest a spatial structure more like that of the usual analysis such as that 

which we have reported here. None of the evidence is conclusive and we must await 

further observations. 

Granted that this gross issue wi l l  eventually be resolved, what more might 

one expect to learn from the five minute oscillations? Of course the oscillations 

carry information about the large scale motion beneath the photosphere and the 

convective f luctuat ions, but one would l ike also to be able to measure some 

properties of the s t ra t i f i ca t i on  in the superadiabatic boundary layer. Our 

experiments with modified convection formulae have revealed that to render th is  

possible one must improve the resolution of the k-~ power spectra substantially. We 

have also found that all the p modes of degree 200 and 600, which we presume are not 

atypical,  are stable when the i r  interaction with the convection is taken into 

account. The decay rates of the nonchromospheric modes yield quality factors as low 

as 100, which correspond to the current resolution l imi t  of the observations. The 

required improvements in resolution may not, therefore, be easily obtainable, and 

hence measurements of subtle features of the temperature and density strat i f icat ion 

beneath the photosphere are probably not imminent. 

We are grateful to J. Christensen-Dalsgaard, C.J. Durrant, P. Souffrin and 

J.-P. Zahn for useful discussions. 
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ABSTRACT 

The interpretat ion by Hi l l  and Caudell (1979) of some of the i r  solar 

osc i l la t ion  data as being due to g modes of degree greater than 20 seems to imply 

that the solar convection zone is much shallower than that in standard solar models, 

probably representing only a few per cent of the radius. We attempt here to match 

the observed periods in models of this nature; the rather complicated spectrum of 

oscillations in such models can be understood in terms of the asymptotic behavior of 

modes of large degree. Possible excitat ion mechanisms for the modes are b r ie f l y  

discussed. 

I. INTRODUCTION 

Since the in i t ia l  announcement of observations of large scale solar 

osc i l la t ions (H i l l ,  Stebbins and Brown 1976; Brookes, Isaak and van der Raay 1976; 

Severny, Kotov and Tsap 1976); i t  has been clear that such oscillations may represent 

very powerful probes of the structure of the solar interior (Scuflaire et al. 1975; 

Christensen-Dalsgaard and Gough 1976; Iben and Mahaffy 1976). For this potential to 

be realized, however, one must obtain some information about the horizontal structure 

of the motion as specified by its horizontal wavenumber, kh, or the degree, 4, of the 

oscillation. 

Until recently the f ive minute osci l la t ions were the only class of solar 

oscillations for which such information was available. As discussed by Berthomieu et 

al. (1980) and Lubow, Rhodes and Ulrich (1980), good agreement between the 

theoret ica l ly  predicted frequencies as functions of k h and the ridges of maximum 

power in the observed k h - m diagram can be engineered. On the other hand, these 

modes are sensitive to the structure'of only the outer few percent of the sun; 

indirectly, through the value of the entropy in the adiabatic part of the convection 
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zone, they provide information about the depth of the convection zone, but not about 

the structure of the regions deeper down. 

To investigate these deeper parts of the sun one must consider modes of lower 

degree and for these, mainly because their amplitudes are quite low, the horizontal 

structure is d i f f i cu l t  to determine. Therefore considerable importance is attached 

to the announcement by Hi l l  and Caudell (1979) of evidence for the nature of the 

horizontal structure of two of the modes observed by Brown, Stebbins and Hill (1978) 

(see the review by H i l l  1980). By comparing the power at two di f ferent scan 

amplitudes across the solar limb, Hi l l  and Caudell inferred that the modes with 

periods of about 66 and 45 minutes had ~ values in excess of 20. This conclusion was 

based on an analysis of the dependence of detector sensitivity upon ~, the details of 

which may be somewhat uncertain; the basic observational material is yet rather 

l imi ted,  and the s ta t i s t i ca l  significance of the result is probably not yet clear. 

Nevertheless, the result ,  i f  confirmed, may give important information about the 

solar interior, and i t  therefore merits some theoretical attention. Furthermore, i t  

is an instructive exercise in helioseismology to take the observations at face value 

and confront the predicted modes of oscillation of solar models with them. 

I t  was pointed out by Dziembowski and Pamjatnykh (1978) that the observed 

modes could not be interpreted in terms of a standard solar model. In the inferred 

range of ~ the periods of the f and p modes are al l  shorter than the observed 

periods. Hence the observed modes must be gravity modes, and such modes are largely 

confined to regions of the model within which their frequencies are below the local 

buoyancy frequency. The re la t i ve ly  extensive outer convection zone causes these 

regions to be deep in the solar model, and the modes are therefore very ef f ic ient ly 

trapped, the maximum of the relative displacement being larger than i ts surface value 

by a typical factor of 105 • I t  is d i f f i c u l t  to reconcile this result with tBe 

amplitudes observed at the surface, and to envisage an excitation mechanism for the 

modes. Moreover, i t  appears very l i ke l y  that the coherence between the trapping 

region and the surface would be destroyed by nonlinear effects. 

As stressed by Dziembowski and Pamjatnykh (1978) and Gough (1978), these 

problems may be avoided in solar models with a very th in convection zone. I t  is 

therefore interesting that such models have been discussed in a quite d i f ferent  

context. To account for the low observed solar neutrino counting rate obtained by 

Davis (see e.g. Davis 1978), Joss (1974) suggested that the sun had i n i t i a l l y  a very 

low abundance Z of heavy elements, and that the convection zone was subsequently 

enriched with heavy elements by accreted interstellar material to give the present 

observed value of Z of about 0.02. This hypothesis was tested by Christensen- 

Dalsgaard, Gough and Morgan (1979) who computed consistent evolution sequences of 

solar models affected by accretion. Owing to the re la t i ve ly  low opacity in the 

in te r io r  of these models, the i r  convection zones are shallower than those of a 
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standard solar model and, when Z is sufficiently small in the interior, the buoyancy 

frequency has a local maximum close to the bottom of the convection zone. This may 

provide a region that can trap relevant g modes. 

Thus i t  appears possible that these or s imi lar models may have modes of 

osci l lat ion corresponding to those that appear to have been observed by Hi l l  and 

Caudell, and the present paper reports an attempt to investigate this possibility. 

Relevant parts of the asymptotic theory of nonradial oscillations are reviewed in § 

2. In § 3 the models computed by Christensen-Dalsgaard et al. are discussed, and § 4 

studies in some detail the oscillations of one of these models, comparing them with 

those of a standard solar model. In § 5 we consider the oscillations of chemically 

homogeneous envelopes having very thin convection zones. Finally,§ 6 contains a 

summary of the results and a brief discussion of the various possible ways in which 

the modes might be excited. 

2. THE ASYMPTOTIC BEHAVIOR OF NONRADIAL OSCILLATIONS OF LARGE DEGREE 

As a background to the numerical results presented later ;  we review some 

results from the asymptotic theory of nonradial osci l lat ions with large 4. The 

derivation is discussed by Christensen-Dalsgaard (1979) (see also Shibahashi and 

Osaki 1976; Dziembowski 1977; Gough 1977; Dziembowski and Pamjatnykh 1978). 

Using JWKB analysis one finds that the amplitude ~r of the radial component 

of the displacement has the approximate form 

{ r ( r )  : r - 3 / 2 p - i / 2 0 1  _ m2/S 21/11 - N2/m21]i/4 

x [C 1 exp(~) + c 2 exp(-~)] (2.1) 

Here m is the frequency of osci l la t ion;  S~ and N are local acoustic and buoyancy 

frequencies, given by 

and 

S~ 2 = ~(~ + 1)c2/r 2 (2.2) 

[1 d~np d~np~ (2.3) 
N2 = g~r~l dr - ~ )  ' 

where c = (rlp/p) 1/2 is the adiabatic sound speed, p and p are pressure and density, 

r I = (d~np/d~nP)s where s is specific entropy, and g is the gravitational 

acceleration; furthermore 
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r (2.4) 
: i k r dr' , 

where the Idcal radial wavenumber k r sat isf ies 

kr 2 : ~ +  i ) (  N 2 r 2  ~ -  i ) ~  - S~2) (2.5) 

Equation (2.1) is not val id  close to the turn ing points where kr2 = O, near the 

singular point at the center, nor near the surface where the equilibrium structure no 

longer varies on a length scale much greater than that of the osc i l l a t i ons .  The 

eigenfunctions can be expressed in  terms of Airy functions near the turning points 

and Bessel functions near the center, and near the surface in terms of either Bessel 

funct ions or conf luent hypergeometric funct ions depending on the value of ~. The 

resu l t ing  consistent asymptotic representat ion leads to the determinat ion of the 

constants c I and c 2 in equation (2.1). 

Given ~, the model is thus separated into regions where kr 2 > 0 and where ~r 

osc i l l a tes  as a funct ion of r (these regions are cal led osc i l l a t o r y ) ,  and regions 

(cal led evanescent) where kr 2 < 0 and ~r decays or grows exponent ia l ly .  To each 

osci l latory region belongs a set of modes whose eigenfunctions are large only in the 

given region and whose eigenfrequencies can be estimated by considering that region 

in iso la t ion .  These modes, which one may cal l  the local modes of the region, 

normally correspond approximately to global modes--that is to say, modes of the model 

as a whole. This correspondence f a i l s  to be true only when the frequencies of two 

local modes belonging to di f ferent osci l latory regions are almost identical. In such 

cases the frequencies of the global modes generally exhibit  'avoided crossings,' and 

the corresponding eigenfunctions interchange thei r  nature (for a discussion of this 

phenomenon see, for  example, von Neumann and Wigner 1929; Aizenman, Smeyers and 

Weigert 1977; Christensen-Dalsgaard 1979; Gabriel 1980). Thus i t  is often useful to 

c lass i f y  global modes according to the osc i l l a t o r y  region that controls t h e i r  

behavior. I t  must be kept in mind, however, that th is  c l ass i f i ca t i on  is not 

invar iant  under continuous var ia t ions of the model (or var ia t ions in ~), since i t  

changes in the neighborhood of avoided crossings. Speci f ic  examples of th is  are 

given in § 4. 

One may note from equation (2.1) that the rat io between the amplitudes of ~r 

in two adjacent osci l latory regions is of the order of magnitude: 

#2 3/2p(r2)ll/2 expI+-{r2 F~(~ + ]1 /2[ (1 ~ ( I  ~-72)] I/2dr~ 

where r I and r 2 are the boundaries of the intervening evanescent region. Thus, when 

(2 
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is large, the degree of trapping of a mode (the rat io  between i ts  amplitude in the 

o s c i l l a t o r y  region to which i t  belongs and i t s  ampl i tude in the neighbor ing 

osc i l la to ry  regions) may be extremely large. 

For la rge ~ the model has an o s c i l l a t o r y  region close to the sur face;  the 

corresponding modes have frequencies whose squares increase approximately l i nea r l y  

with ~. These are the f ive minute osc i l la t ions and gravi ty waves trapped above the 

convection zone. Only the l a t t e r  can have frequencies in the relevant range, but i t  

seems unl ike ly that these could have values of ~ appropriate to reproduce the data. 

In what f o l l ows  we shal l  t he re fo re  r e s t r i c t  a t t en t i on  to tha t  part  of  the sun 

contained beneath the top of the convection zone. 

When the model has a convect ive envelope, S~ 2 > N 2 everywhere fo r  

su f f i c i en t l y  large ~. In that case there are osc i l la to ry  regions where m2 < N 2. The 

corresponding modes are gravi ty waves trapped between consecutive zeros of N 2 - m2; 

the i r  frequencies approximately sat is fy  

~ ( ~ +  l ) ] i / 2 I ~ i [ I ~ -  i ) ~  - ~2~]i/2dr : ~ ( n  - ½) (2.7) 
T 

where r I and r 2 are consecutive zeros of N 2 - ~2, with N 2 > ~2 in ( r l , r2 ) ;  and n is a 

pos i t i ve  in teger  such that  the number of zeros in ~r between r I and r 2 is  n - I. 
Equation (2.7) is val id only i f  N 2 is su f f i c i en t l y  smooth ( i t  cannot be used i f  N 2 is 

represented by, say, a step func t ion  or i f  N 2 changes very r a p i d l y ) ,  and the 

o s c i l l a t o r y  region ( r l , r 2 )  must not be ' too c lose'  to the s i n g u l a r i t y  at the center  

and the near s i n g u l a r i t y  at the surface. In p a r t i c u l a r ,  i f  m2 is very smal l ,  

equation (2.7) should be replaced by the expression given by Vandakurov (1967) which 

proper ly  takes the s i n g u l a r i t i e s  in to  account. Furthermore ( r l , r  2) must be wel l  

separated from any neighboring osc i l la to ry  regions, and N 2 - m2 must not become very 

small in the i n te r i o r  of ( r l , r  2) by, for  example, N 2 having a local minimum s l i gh t l y  

above m2. When (2.7) is va l i d  the local  spectrum is cons iderab ly  s i m p l i f i e d ,  

provided thatm2/S~ is much smaller than I ;  in th is  case the local squared frequency 

~ o c ( n , ~ )  is a func t ion  of only (n - 1 /2 ) / [~ (~  + 1)] 1/2 • Thus, i f  [~(~ + 1)] 1/2 is  

approximated by ~ + 1/2, 

f - 2  2(n, ~) : (2.8) 
mlo c 

where the function f depends on the behavior of N 2 in the region considered and can 

be computed from equat ion (2.7). When m2 is  c lose to a local  maximum Nm2 of N 2, 

N2(r) may be represented by a parabola in (2.7); i f ,  furthermore, m2/S~ is neglected 

compared with i ,  the approximate solution to equation (2.7): 
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_ I  
1 - 9m2 (n '  ~') n 

Nm 2 " : 2B------ T ~ + ~ -  (2 .9)  

is obtained, where 

B 2 = _½ rm2 d2N 
Nm---gd-~f r : r  m 

, (2 .1o)  

r m being the position of the maximum of N 2. Equation (2.9) is clearly a special 

instance of the general ;relation (2.8). Thus each local maximum Nm 2 of N 2 has an 

associated class of local modes, with squared frequencies tending to Nm2 like £ -1 as 

£ ÷=. Evidently the global spectrum for models with several local maxima in N 2 

could be extremely complicated. 

3. PROPERTIES OF THE SOLAR MODELS 

The solar models used here were computed using a modified version of 

Eggleton's (1972) evolution program. Opacities were obtained by linear interpolation 

from the tables of Cox and Stewart (1970), and the energy generation rate was 

computed with reaction rates from Fowler, Caughlan and Zimmerman (1975), assuming the 

p-p chain and the CNO cycle to be always in nuclear equil ibrium. The accretion of 

interstellar material was modelled by increasing Z in the convection zone at such a 

constant rate as to reproduce the present surface value Zs, which was taken to be 

0.02; the change in the mass of the model due to accretion was neglected. I t  was 

assumed that matter enriched with heavy elements was not mixed beneath the base of 

the convection zone. The in i t ia l  model was assumed to be in thermal equilibrium and 

chemically homogeneous, with abundances by mass X o and Z o of hydrogen and heavy 

elements respectively. For a given value of Z o, the model was calibrated by 

adjusting X o and the ratio ~ of the mixing length to pressure scale height to obtain 

a luminosity of 3.83 x 1033 erg s -1 and a radius of 6.96 x 1010 cm at an age of 4.75 

x 109 years. Further information about how the models were calculated was given by 

Christensen-Dalsgaard, Gough and Morgan (1979). 

Three evolutionary sequences were computed. One of these, Model A, is 

homogeneous in Z and serves as a reference standard model; the other two, Model B and 

Model C, having values of Z o of 0.004 and 0.001 respectively, suffer accretion. Some 

relevant information about these three models is contained in Table 1. (Note that 

Table 1 of Christensen-Dalsgaard, Gough and Morgan 1979 contains two misprints: the 

present central densities of Models B and C should be 135 and 129 g cm-3.) 

From Table 1 i t  can be seen that only Model C has a convection zone that is 



319 

Q; 
" 0  
0 

to  
-g 

%- 
o 

e~ 
0 

3 
I- -  

0 ~ ~ ~ ~ X ~ 0 ~ ~ v v v  v v  

I 

I 
, ~ .~ ,  ~-  

I ~ I ° 
- ,  o ~0 ~ o -~  ~ ~-- o c ; c ;  o 

0 ,--I ~ X ~ I--I ~ CO v v  v 

• , 

~c~ c~ 

o ~  ~" 

~ "  o 0 
,-i ~ ~ ~ ~ ~ ~ v V v 

c5 c5 ~ ~ ~ o~ c5 c5 x 

u c= ~ 
X v 

i o ~ "-'~" ~ ~ ~ ~ 
J:: :E: I E O -- ~E: ~ E 

U ~ Z X 

U O J= C ~ I-- ~ O ~ v E 
C X O v ~ N O 

N 

( -  

O~ ~ 0 tO tO tO ~I; ~- 0 0 

• • • QJ Q; ~'~ 4-~ r - -  0 

r--, 
I . -  

E 

E 

E 

E 
~ v  
X 

o 

o 

u 

v o  

o 



320 

suf f ic ient ly  thin as to render i t  possible for modes trapped in the in ter ior  to have 

observable amplitudes at the surface. This is also the only model considered with a 

predicted neutrino capture rate which is consistent with the observed value of 1.6 ± 

0.4 SNU (Davis 1978). Our subsequent discussion w i l l  therefore be devoted mainly to 

this model. 

The asymptotic analysis in § 2 showed that the modes of osc i l l a t i on  are 

largely shaped by the behavior of the buoyancy and acoustic frequencies. In Figure 

1, N 2 and $202 in units of gs/rs are plotted against X = r / r  s for  Model A (dashed 

l ines)  and Model C (sol id l ines) .  The rather complicated behavior of N 2 is most 

easily understood by rewrit ing equation (2.3) as 

N2 r l  g2 [ (~np ~ d~nX] 
= - -~ -  (Vad'V)~ + \B~nXip,T d~np] ' (3.1) 

where Vad = (2 ~n T/B ~n P)s, v = d ~n T/d ~n p and 8 = - (2 ~n p/B ~n T)p. In 

models l ike those considered here, without convective cores, the term in dcnX/d~np 

g i v e s  a posi t ive cont r ibut ion to N 2 in the region where hydrogen has been par t l y  

depleted by nuclear burning; this causes the pronounced local maximum in N 2 close to 

x = 0.1 in both models. (The small feature close to x = 0.17 is an a r t i f a c t ,  

probably caused by the use of l inear interpolation for the opacity; in fact, in both 

models i t  coincides almost exactly with the point where T = 1.0 x I07K). Further out 

the sound speed c decreases with increasing x, whereas g has a f a i r l y  broad maximum 

near x = 0.2 and decreases approximately as x -2 when x > 0.4 ( th is  outer region 

contributes r e l a t i v e l y  l i t t l e  to the mass of the model); the rapid decrease in g 

outweighs the decrease in c for  intermediate x, leading to a decrease in N 2. Very 

near the surface the decrease in c 2 dominates. In the models considered here the 

maximum in g combined with a decrease in v around x = 0.3 causes the second local 

maximum close to x = 0.35. This maximum, however, is absent in some 'standard' 

models of the sun (e.g. the model considered by Christensen-Dalsgaard 1979). 

At the bottom of the convection zone Vad - v, and hence N 2, tend to zero. In 

models with a deep outer convection zone, l i ke  Model A, N 2 therefore decreases 

monotonically from an i n t e r i o r  maximum. But in Model C the convection zone is so 

th in  that the rapid decrease in c2 in the outer parts of the model causes a t h i r d  

local maximum in N 2. The curious shape of N 2 near th is  maximum resul ts from the 

retreat  of the convection zone during evolut ion,  which produces a zone in which Z, 

and hence opacity, increases outwards. In fact the posi t ion of the maximum in N 2 

corresponds, in the mass Coordinate, to the base of the convection zone in the zero- 

age model. 
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4. THE OSCILLATIONS OF THE MODELS 

The main purpose of the present work is to attempt to understand the 

observations of solar modes of osci l lat ion with periods of 66 and 45 minutes and 

values of ~ in excess of 20. Even so, i t  is useful to take a wider look at the 

spectrum of oscillations in order to generally understand the oscillations of these 

and similar models and thus to consider whether modifications of the models might be 

able to provide better agreement with the observations. 

In the remainder of the paper, frequencies wi l l  always be given in 

dimensionless form. in terms of 

2 2r2/g s : (4.1) 

In this unit the squared frequencies of the observed osci l lat ions are °~bs,lv = 6.4 

and °~bs,2v = 13.8. 
Figure 1 shows that N 2 in Model C has three prominent peaks in regions 

designated M 1, M 2, and M 3, separated by the minima m I and m 2. Each of these peaks, 

Mi, supports a local spectrum of modes for su f f ic ient ly  large ~. These modes we 

label g~i)(¢ = ~,), where as in equation (2.7) n ( = I ,  2 . . . .  ) is one higher than 

the number of zeros of ~r in the osci l latory region corresponding to M i ,  and ~' is 

the value of ~. > 

The qualitative nature of the spectrum of oscillations in this model at large 

thus depends strongly on the value of o2. When o 2 is less than the minimum value 

N~I of N 2 at m I (which is about 7.7), there is just one class of g modes; these 

possess squared frequencies approximately satisfying (2.7) with r I close to the 

center and r 2 close to the bottom of the convection zone. As o 2 increases above 

N~I, however, the g modes spli t  into a class of modes trapped beneath m I and a class 

of modes trapped within the region M1, the latter modes having squared frequencies 

tending towards the maximum N~I of N 2 at M 1 (which is about 12.9) as ~ tends to 

inf inity. Finally the interior modes divide into modes trapped within M 2 and M 3 when 

o2 becomes greater than N~ (about 12.0), with squared frequencies tending towards 
2 

N~_c : 16.9 and N~3_" 15.9 respectively as ~ tends to inf inity. 

In Model A, N 2 has only two peaks, M~ and M~; here there is a single class of 

g modes for~ 2< N~, (about 16.5). Foro 2 > N~, this spl i ts into modes trapped in 
ul ~ m 2 

the two peaks, with ~quared frequencies tending to N~, " 17.3 and N2, - 20.4. This 
, c {2~ ~ 

requires ~ to be suf f ic ient ly  large to allow M 2 to support the g~ mode; equation 

(2.7) can be used to estimate that ~ has to be at least 20. For smaller values of ~, 

the spectrum of this model is presumably very similar to the spectrum of the solar 

model studied by Christensen-Dalsgaard (1979). 

The positions of the observed frequencies are also indicated on Figure 1 with 

dot-dashed lines. For the higher frequency the evanescent region between the surface 

and the outermost oscillatory region has about the same geometrical depth in the two 
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models. In Model C, N 2 is relatively large, greater than ~bs,2/2, in most of the 

evanescent region. Hence the degree of trapping of a mode at ~bs,2 need not be 

impossibly large in this model, provided that a mode associated with M 2 could be 
found. Model A, on the other hand, exhibits the strong trapping of interior g modes 

found in standard solar models. At the lower frequency the evanescent region in 
Model C is essentially just the very thin convection zone, and here one expects no 

problems with trappin~ in Model A the evanescent region is st i l l  quite deep at this 

frequency, and the trapping correspondingly strong. 

To support these qualitative predictions we have made extensive calculations 
of modes of Model C. In all cases the Eulerian perturbation in the gravitational 

potential was neglected, and the differential equations were solved using the 

constant coefficient method f irst used by Gabriel and Noels (1976) and described in 

Christensen-Dalsgaard (1979). The correction to the frequency, caused by the 
perturbation in the gravitational potential, was found using the Cowling (1941) 

perturbation approach. The computed squared frequencies are shown on Figure 2, 

plotted against ~, which is here regarded as a continuous variable (this is 

mathematically permissible, although of course only the integer values of ~ have 

physical significance). Some of the modes have been labeled with their Eckart (1960) 

classification, f irst used for modes of nonradial stellar oscillation by Scuflaire 

(1974) and Osaki (1975); this classification has the virtue of being invariant under 

continuous variations in ~ (or in any parameter characterizing the model), but i t  is 

not directly related to the physical nature of the mode. On the figure are also 

indicated the observed squared frequencies (dot-dashed lines), the maxima N~I , N~2 

and N~3 (dashed lines) and the minima N~I and N~ (dotted lines) of N 2. 
The global f mode is evidently ~lways t~e surface mode of the model. The 

remaining modes are all gravity modes. We first consider the low-order modes, with 

in the neighborhood ofo~bs, 2. Table 2 gives some pr~operties of these frequencies 

modes at ~ = 20; l~rl max/l~rl s is theratio of the maximum to the surface value of 
l~rl, Xma x is the position where I~ r I has its maximum, and E is the normalized 
pulsational energy 

E = I~S~rl2 + ~(~+1)l~h 12]pr2dr / [Ml{r(rs)l 2] , 
/ 

(4.2) 

where ~ is the amplitude of the horizontal component of the displacement vector. 

Furthermore, Figure 3 shows ~r as a function of x for the same seven modes. From the 

figure i t  is evident that the global gl, g3 and g4 modes correspond to the local 
gI3) , g~3)and g~3)modes, whereas the global g2 mode is the local gl 2) mode; the 

global g5 mode has to some extent the Eature of the local g~2) mode, although its 

frequency is too close to Nm2 to effectively trap i t  in M 2. On the other hand the g6 
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Figure 2. Squared frequencies for selected modes in Model C, as functions of~. The 
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I,  2, 3) and local minima N~ ( f~ '~ ,  2) ofvNZ'are also shown. The distandes of 
closest approach of the curV'@s at the avoided crossings beyond £ = 29 have been 
exaggerated. 
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and g7 modes c lear ly  belong to the i n te r i o r  of the model as a whole. The separation 

of the lowest order modes into two classes is confirmed by Table 2, which furthermore 

shows tha t  the modes associated wi th M 2 are much less severe ly  trapped than those 

belonging to M 3. 

Figure 2 shows that the gl and g2 modes engage in an avoided crossing when 

is close to 35; fo r  greater  values of ~, the gl mode thus corresponds to the local  

gl 2) mode, and the g2 mode to the local  gl 3) mode. Moreover i t  is  c lea r  t h a t ,  once 

above Nm2, the frequencies of the g5 and g6 modes begin to approach each other f a i r l y  

r a p i d l y ;  however there is  no avoided crossing between these two modes, merely an 

accidental close approach of the i r  frequencies between ~ = 30 and 40. (On the other 

hand i t  is  evident tha t  a s l i g h t  mod i f i ca t i on  of the model to increase the 

frequencies of the g(3) modes a l i t t l e  could change t h i s  behavior in to  two close 

avoided crossings;  t h i s  would almost c e r t a i n l y  happen as a consequence of the 

evolution of the model, i f  followed to a s l i g h t l y  greater age.) 

The pu lsa t iona l  energy E increases r a p i d l y  w i th  ~, as is shown in Figure 4. 

For the gl and g2 modes in p a r t i c u l a r ,  where m var ies  r e l a t i v e l y  l i t t l e  over the 

range of ~ considered, log E increases e s s e n t i a l l y  l i n e a r l y  w i th  ~, as might be 

expected from equation (2.6). 

For comparison, Table 3 shows the same quan t i t i e s  as Table 2, but f o r  the 

lowest order modes in Model A, in add i t i on  to a mode close to the second observed 

frequency. Clearly the modes belonging to M 2 in Model C are much less e f f ec t i ve l y  

trapped than the modes with s im i la r  frequencies in Model ~ Note that although there 

is no clear separation of modes belonging to M~ and to M~, the behavior of the energy 

of the g4 mode departs from the general increase in E wi th  decreasing order. This 

may indicate that th is  mode is progressing toward an association with M~. In fact 

the g4 and g5 modes engage in a weak avoided crossing between ~ : 25 and 30, and the 

g5(~=30) mode quite de f i n i t e l y  belongs to M~. 

I t  appears to be quite d i f f i c u l t  to match o 2 in Model C. Since we must obs,2 
require that ~ be greater than 20, the f i r s t  possible i den t i f i ca t i on  is g4(~:27), but 

f o r  t h i s  mode the energy is  imp laus ib l y  large.  The same is  t rue of g5(~=38), even 

though th is  is a mode belonging to M 2. I f  we relax the bound on ~ somewhat, g3(~=17) 

might be considered, but equa l ly  p laus ib le  i d e n t i f i c a t i o n s  could be found in a 

standard model. And one would have to consider values of ~ as low as 12 (which is  

probably ruled out by the observations) to iden t i f y  the observed mode with g~2),- an 

iden t i f i ca t ion  which might otherwise be at t rac t ive.  At an only s l i g h t l y  lower value 

of ~ one could make the far  more natural choice of the envelope f mode in a standard 

model. However i t  might be pointed out that by increasing the opacity in the region 

around M2, and hence decreasing N 2, i t  may be possible to reduce the frequency of the 

g~2)(~ = 20) mode enough to bring i t  into agreement with Oobs,2. 

Turning now to the 66 minute mode wi th squared dimensionless frequency 
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Table 2. 

Mode o 2 l~rlmax Xmax E 

l~rls 

gl 15.19 6.2x104 0.10 2.8x107 

g2 14.73 1'Ixi02 0.37 2.0xi02 

g3 14.10 5.8x103 0.09 2.7x105 

g4 13.08 1.2x103 0.08 9.4x103 

g5 12.29 22 0.44 11 

g6 12.05 53 0.07 20 

g7 11.36 37 0.07 10 

Modes with c = 20, in Model C. The table shows the 
Eckart classification, the squared dimensionless frequency, 
the ratio between maximum and surface displacement, the 
position of maximum displacement and the normalized 
pulsational energy (defined in equation 4.2). 
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Figure 3. The amplitude Or(x) of the radial displacement for the seven f i r s t  g modes 
at ~ = 20, in Model C. The~bscissa is uniform in x, from o ( le f t )  to unity (right). 
The Eckart c lassi f icat ion of the modes is indicated, as well as their  squared 
dimensionless frequencies ~ 2. 
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Tab] e 3.  

Mode o 2 t~rlmax 

i~rls 
Xma x E 

gl 19.36 4.5x107 

g2 17.79 1.7x106 

g3 16.77 8.8x104 

g4 16.32 1.8x104 

g5 15.61 3.9x104 

g6 14.84 2.3x104 

g7 14.10 2.2x104 

g8 13.36 1.8x104 

g22 6.41 2.8x103 

0.10 1.3x1013 

0.08 2.2x1010 

0.08 8.4xi07 

0.08 7.8x106 

0.07 1.1x107 

0.07 4.5xi06 

0.06 3.2x106 

0.06 2.0x106 

0.04 1.4x104 

Modes with ~ = 20, in Model A. The symbols have the same 
meaning as in Table 2. 
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O~bs, 1 = 6.4, Table 3 shows this mode to be severely trapped in standard solar 

models, although the degree of trapping is an order of magnitude less than for the 45 

minute mode. The situation is quite different in Model C as can be seen from Figure 

5. As expected, a number of possible identifications exist here with modes having 

relatively small energies. Indeed, for frequencies below Nml, there are many modes 

with comparable energies. 

I t  is of some interest to consider the variation ofo2 and log E with ~, in 

the l ight  of the qual i tat ive discussion at the beginning of this section. To 

f ac i l i t a t e  this,  circles have been put on the curves in Figure 5 to indicate the 

values of ~ where the frequency of the corresponding mode crosses Nml. When~2 is 

significantly smaller than N~I, all modes evidently belong to the same class, with ~2 

increasing at about the same rate and with a rather slowly varying~ ~ E. For~2 > N~I, 

however, one clearly distinguishes in Figure 2 the local g~lj mode for which ~2 

increases more slowly with t than the remaining modes which are trapped in the 

interior. The global classification of the gl 1) mode is changed progressively from 

g17(t = 23) to g21(~ = 40) in a sequence of avoided crossings between this mode and 

the interior g modes. This is also evident from Figure 5. Here the bottom envelope 

of the curves corresponds to the energy of the gl 1) mode, indicated by a dashed line, 

and increases slowly with t. In contrast, the energy of the modes trapped in the 

in ter ior  grows very rapidly with t. This is caused by the rapid increase in the 

width of the evanescent region below M 1 as ~2 increases above N~I; see equation (2.6) 

and Figure 1. At the points of avoided crossing of the frequencies, where in Figure 

5 the log E curves cross, there is an exchange of physical nature between the two 

modes involved. 

Figure 6 shows ~r(X) for a few of the modes included in Figure 5. At ~ = 20 

the behavior Of~r is qual i ta t ive ly  very simi lar for the three modes shown, since 

these modes all have frequencies below Nm1. At t = 30, on the other hand, there is a 

clear distinction among the modes between interior g modes and modes associated with 

MI; this value of t is close to the avoided crossing between g18 and g19" The latter 

mode has the characterof the gl 1) mode, whereas g18 is a mixture between this and 

the interior g modes. The g17 and g20 modes belong predominantly to the interior. 

5. A SEQUENCE OF ENVELOPE MODELS 

The preceding section demonstrated the di f f icul ty of explaining the 45 minute 

mode in terms of the contaminated model considered there. No plausible (in the sense 

of having a reasonably small pulsational energy) ident i f icat ion of this mode was 

found for values of t above 20. While i t  was argued that the structure of the 

interior of the model could possibly be modified sufficiently to accommodate the 45 

minute mode as one trapped in the peak in N 2 designated M 2 on Figure 1, i t  is clearly 

more attract ive to look for a model where the mode could be trapped in a peak 
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Figure 5. The dependence of log10E on ~, for modes in the neighborhood of ~2h~ I = 
6.4, in Model C. The circles ind3cate the values of ~ where the frequencieg~c~r'p~s 
the local minimum Nml in N. The dashed l ine shows the energy of the local g]~J 
mode, computed in an L~nvelope model extending down to x = 0.68. 
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Figure 6. ~r(X) for selected modes in Model C; see caption to Figure 3. 
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corresponding to M 1, close to the bottom of the convection zone. This would require 

the maximum value N~, of N 2 in this peak to be above 13,8. 

In an attemp~ to investigate this we have computed a sequence of chemically 

homogeneous solar envelope models, varying the ratio ~ of mixing length to pressure 

scale height and hence the depth of the convection zone. In Figure 7 the fu l l y  drawn 

curves show the behavior of N 2 in these models, each curve being labeled with the 

corresponding value of ~. For comparison the dashed curve shows N 2 in Model C, 

discussed in §§ 3 and 4; as usual the dot-dashed horizontal l ines indicate the 

observed modes. 

Clearly the main effect of increasing ~ is to truncate at progressively 

greater depth the otherwise rapid increase of N 2 towards the surface. But there is 

also a general change in the behavior of N 2 beneath the convection zone, due to 

changes in the structure of the model. For a > 0.6, N 2 no longer has a s ign i f icant  

local maximum in the region considered. 

When ~ ~ 0.6 we can adopt the notation of§ 4, by designating the peak in N 2 

as M 1. With this is then associated a spectrum of local g(1) modes with frequencies 

above the minimum Nml of N beneath the peak, and tending towards the maximum N M as 

tends to in f in i ty .  These modes can be calculated with considerable accuracy i~ the 

envelope models by applying a condition at the inner boundary which isolates the 

solution growing exponentially towards the surface; clearly the inner boundary must 

be in the evanescent region (see e.g. Dziembowski 1977). However, i t  should be 

in al l  the envelopes. Thus the 66 noticed that ~2 = 6.4 is below or close to N I 

minute mode cannot be discussed on the basis of the envelope models alone. Like 

Model C, complete models based on these envelopes would predict a rich spectrum at 

l ong periods. 

Using the technique sketched above we have computed the g~1) and g~l)modes 

in the envelopes with m = 0.001, 0.4, 0.45 and 0.5, for values of ~ up to 100; the 

results are presented in Figures 8 and 9, the curves being labeled by the value of a 

and the classification. The observed value of ~2 = 13.8 is shown in both figures as 

a dot-dashed l ine. For ~ = 0.001 and 0.4 i t  is possible to f ind a mode with ~2 = 

13.8, but only for values of ~ close to or considerably in excess of 100, whereas 

when ~ z 0.45 the maximum of N 2, and hence the squared frequencies of the g(1) modes, 

are below 13.8. 

On the other hand the envelope models considered here are probably not 

realistic outer regions of complete solar models. Any solar model with a very thin 

outer convection zone must presumably have abnormally low opacities in the interior 

(otherwise the nuclear energy generation rate would not balance the observed 

luminosity). Excluding the possibil ity of gross errors in the opacity tables this 

would then imply a model with • structure s imi lar  to that of Model C. I t  is 

obviously impossible to predict the detailed behavior of N2 below the convection zone 
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in such a model without an evolution calculation for the whole model, but some 

indication of the effect of low Z in the in te r io r  can be seen by comparing Model C 

with the envelope computed with ~= 0.5, whose convection zone has approximately the 

same depth. As seen from Figure 7 there is a general increase in N 2, caused by the 

decrease in the opacity and the corresponding increase in Vad - v; consequently the 

maximum in N 2 is both higher and considerably wider. The effect on the frequencies 

can be seen on Figure 9, where the dashed curves show o 2 in Model C. These 

frequencies are considerably greater than those of the homogeneous envelope with the 

same depth of convection zone, and for given 4, o 2 is also significantly larger than 

the value for the envelope with m = 0.45 (where the maximum value of N 2 is about the 

same as in Model C); this is due to the increased width of the trapping region. 

Thus i t  appears possible that a solar model with a su f f i c i en t l y  shallow 

convection zone may have a g(1) mode with o 2 = 13.8, particularly i f  the interior of 

the model is very def ic ient in heavy elements. But i t  should be noticed that the 

g~) mode would almost certainly have a fa i r ly  higho2, thus raising the problem of 

why this mode is not observed. 

6. DISCUSSION AND CONCLUSION 

Hi l l  and Caudell (1979) concluded that two of the observed solar modes of 

osc i l la t ion ,  with periods of 45 and 66 minutes, had values of ~ in excess of 20. 

This interpretation of the observations almost certainly cannot be reconciled with 

standard models of solar structure, which predict an unacceptably large ratio between 

the maximum and surface displacement for modes corresponding to the observed periods. 

The main reason for this is the re la t i ve ly  deep outer convection zones of such 

models. We have thus been led to study solar models whose convection zones are 

shallow. 

The present work has analyzed the oscillations 

sun, o r ig ina l l y  computed by Christensen-Dalsgaard, 

attempt to produce a model with a low neutrino flux; 

was also examined. In no case was there d i f f i c u l t y  

mode; indeed al l  the models considered have a large 

larger than about 60 minutes and with relatively small 

of one such model of the whole 

Gough and Morgan (1979) in an 

a sequence of envelope models 

in reproducing the 66 minute 

number of modes with periods 

pulsational energies. 

The 45 minute mode could not be ident i f ied in the complete solar model 

studied in§ 4. However, i t  appeared l i ke l y  that a s imi lar  model could be made to 

trap such a mode at the principal maximum of N 2 for reasonably small values of 4, 

after only a relatively modest modification to i ts structure. The maximum relative 

displacement would s t i l l  be rather large, of the order of a few hundred times the 

surface displacement, but not so large as to rule out such an ident i f i ca t ion  a 

priori. Alternatively, as was shown in § 5, this mode could be trapped close to the 

surface of a chemically homogeneous envelope, but only for values of ~ above 100 and 
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only i f  the depth of  the convect ion zone were less than 1 percent of the so la r  

rad ius.  Taking i n t o  account the fac t  t ha t  a complete model w i t h  a very t h i n  

convect ion zone probably has a h i g h l y  Z - d e f i c i e n t  i n t e r i o r ,  the depth of  the 

convection zone in a model reproducing the observed mode can perhaps be increased to 

0.02 - 0.03 r s, but the requ i red values o f  ~ are probably s t i l l  c lose to I00. The 

s e n s i t i v i t y  of  the observa t iona l  techn ique to o s c i l l a t i o n s  w i th  such high ~ is 

r e l a t i v e l y  low,  however (cf .  H i l l  1978; H i l l  and Caudell 1979), and i t  is  not c l ea r  

that  they would be detectable. 

We have so f a r  t r i e d  on ly  to match the observed per iods and ignored the 

question of the exc i ta t ion  of the modes. I t  appears rather un l i ke ly  that the modes 

considered here are se l f -exc i ted.  This is cer ta in ly  true i f  the modes are trapped in 

the deep i n t e r i o r  of the model, as considered above for  the 45 minute mode; in th i s  

case the rad ia t ive damping is very strong, due to the short hor izontal  wavelength of 

the mode. I f  the modes are trapped near the base of  a very t h i n  convect ion zone 

there remains a s l i gh t  p o s s i b i l i t y  that  they may be destabi l ized by the K- mechanism 

opera t ing  in the hydrogen i o n i z a t i o n  zone, though convect ive  damping is  l i k e l y  to 

dominate (cf .  Berthomieu et a l .  1980). In any case t h i s  p o s s i b i l i t y  is  u n l i k e l y  to 

be real ized fo r  the 66 minute mode, which has comparable amplitudes throughout the 

e n t i r e  model and is  t he re fo re  presumably qu i te  heav i l y  damped in  the r a d i a t i v e  

i n te r i o r .  The issue deserves fu r ther  study, even though th is  would be beset by the 

inev i tab le  problems encountered in t rea t ing  the convective f luxes. 

I f  the l i n e a r  modes are not s e l f - e x c i t e d ,  they must be dr iven by some 

nonl inear mechanism. Gravity modes trapped close to the base of a th in  convection 

zone might  be exc i ted  s t o c h a s t i c a l l y  by the tu rbu lence.  The i r  ampl i tudes are 

r e l a t i v e l y  la rge throughout  the e n t i r e  convect ion zone, and can t he re fo re  be 

reasonably expected to i n t e r a c t  w i t h  convect ive  motions having tu rnover  t imes 

comparable wi th t he i r  periods. However, i t  would be hard to explain why only modes 

w i th  per iods c lose to 45 and 66 minutes are exc i ted .  To be sure, there may be 

several modes cont r ibut ing to H i l l  and Caudell's data, especia l ly  near or above the 

66 minute period where many low frequency modes may be present, but i t  is apparent 

that  the range of frequencies of 'possible' modes is greater than that  observed. 

A more promising p o s s i b i l i t y  in th i s  respect, perhaps, is resonant exc i ta t ion  

by the f i ve  minute osc i l l a t i ons ,  ar is ing p r i n c i p a l l y  from three-mode interact ions.  

For modes trapped c lose to the sur face t h i s  kind of  e x c i t a t i o n  appears to  be 

energet ica l ly  possible, and might explain why only selected modes are observed. But 

i t  does not seem p l a u s i b l e  f o r  modes trapped beneath the p r i n i c i p a l  maximum of N 2 

because of the la rge energy of  such modes, unless phase is  mainta ined w i th  the 

e x c i t i n g  modes f o r  very long per iods of  t ime.  In t h i s  connect ion i t  is  of  some 

in terest  that Severny, Kotov and Tsap (1978) point out that the structure of the 160 

minute so la r  o s c i l l a t i o n  changes on a t ime scale of a year ,  p o i n t i n g  s t r o n g l y  to  
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nonlinear effects: the linear time scale for the growth or decay of a low degree g 

mode with such a period is probably in excess of 100 years. 

Quite apart from the obvious d i f f icu l t ies in explaining the observed modes, 

the models considered here face other problems. From the contributions of Berthomieu 

et al. (1980) and Lubow, Rhodes and Ulrich (1980) to these proceedings i t  is clear 

that the thin convection zones of those models would ruin the impressive agreement 

betweentheory and observation for the five minute oscillations (see also Gough 1977; 

Ulrich and Rhodes 1977); however, Rosenwald and Hi l l  (1980) suggest that the 

result ing discrepancy might be removed by a modification of the outer boundary 

conditions possibly due to nonlinear effects. Furthermore, i t  might be pointed out 

that the discovery by Claverie et al. (1980) of discrete frequencies in the whole- 

disk Doppler data close to a period of f ive minutes seems to favor models with 

convection zones that are somewhat thinner than in a standard model, although perhaps 

not as shallow as in the models considered here (cf. Christensen-Dalsgaard and Gough 

1980). An objection which is unrelated to solar osci l la t ions comes from the fact 

that the proposed models need convection zones rich in heavy elements overlying 

inter iors with very low Z. Such a configuration is l iab le  to be destroyed by the 

f ingering i n s t a b i l i t y  (e.g. Turner 1973), which is known to occur in s imi lar  

oceanographic and laboratory circumstances. This would cause mixin~ of heavy 

elements into the interior of the model, thus modifying its structure and increasing 

the amount of i n te rs te l l a r  material which must be accreted to account for the 

observed surface Z. Accepting a model with a thin convection zone also aggravates 

the problem of explaining the photospheric l i th ium abundance. F inal ly ,  the 

cal ibrat ion of the model discussed in §§ 3 and 4 requires a helium abundance Y = 

0.16, which is somewhat below estimates of the cosmic abundance (Danziger 1970), and 

below the abundances fashionable in current cosmological theories. 

I t  is obvious from the discussion above that interpreting the observations as 

having resulted from g modes'with large ~ gives rise to serious theoretical problems. 

I t  is not easy to f ind models that exhibi t  the observed modes. Furthermore the 

models proposed here may contain internal inconsistencies, and they depart 

considerably from those computed with the standard theories of s te l la r  evolution, 

implying perhaps a need for revision of th is theory. Although such theoretical 

d i f f i c u l t i e s  cannot by themselves f a l s i f y  the interpretat ion by Hi l l  and Caudell 

(1979), they would seem to indicate that a close look for possible al ternat ive 

explanations is needed, as well as much more extensive observational material. On 

the theoretical side there is an evident need to understand the excitat ion of the 

proposed modes; i t  may also be of some interest to synthesize theoretical power 

spectra at d i f ferent scan amplitudes on the basis of a given solar model and some 

reasonable hypothesis regarding the excitation mechanism, to try to understand why 

only two modes (or groups of modes) at large ~ appear to be observed. There is a 
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similar need to understand the isolated 160 minute oscil lation discovered by Severny, 

Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976). 

I f  the observations of g modes with large ~ are confirmed, they would be 

highly valuable as a probe of the solar in te r io r .  Indeed, the discussion in § 3 of 

the behavior of the buoyancy frequency shows this to be very sensitive to details of 

the structure of the sun's radiative interior. Section 2 then shows the same to be 

the case for  the spectrum of g modes. On the other hand, p modes depend 

predominantly on only the outer layers. Therefore g modes can provide data that is 

superior to those from the p modes for diagnosing the deep inter ior of the sun. 
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NONRAJ)IAL OSCILLATIONS OF SOLAR MODELS WITH AN INITIAL 

DISCONTINUITY IN HYDROGEN ABUNDANCE 

A. Boury, R. Scuf la i re ,  A. Noels, and M. Gabriel 
I n s t i t u t  d'Astrophysique 
Universite de Liege, Belgium 

ABSTRACT 

Solar models are calculated with low central hydrogen abundance. The 

s t a b i l i t y  of these models is investigated. The eigenspectrum is computed and 

compared with the SCLERA observations of solar osci l lat ion. 

1. INTRODUCTION 

In an attempt to solve the solar neutrino problem, Faulkner, Da Costa and 

Prentice (1975) followed a suggestion of Prentice (1973) and constructed models of 

the sun in which the i n i t i a l  hydrogen content in a small central region was much 

smaller than that in the rest of the star. Although the models which give the 

observed solar luminosity at the present solar age yield neutrino fluxes that are too 

large, they are interesting because they exhibit osci l latory modes connected with the 

d iscon t inu i ty  in density that is associated with the d iscon t inu i ty  in chemical 

composition. Moreover, the possible observations of the osci l lat ion spectrum of the 

sun by the SCLERA group (Brown, Stebbins and Hi l l  1976, 1978) could permit comparison 

between various solar models (Scuflaire et al. 1976; Christensen-Dalsgaard and Gough 

1976; Hi l l  and Caudell 1979). 

2. MODELS AND OSCILLATION PERIODS 

Following Faulkner, Da Costa and Prentice (1975), an evolutionary sequence 

was computed by the Henyey method of a 1 M e star of heavy element abundance Z = 0.02 

and of i n i t i a l  hydrogen abundance X = X c = 0.1 in the region m(r)/Me ~ 0.03 and X = 

X s elsewhere. The value of X s necessary to f i t  the luminosi ty  at evolut ionary age 

4.7 x lO 9 years to the present solar luminosi ty was found to be 0.7813. The 

evolut ionary sequence was constructed with a ra t io  of mixing length ~/H to the 

pressure scale height equal to 1.5; this ratio had to be adjusted to 2.15 in order to 

match the present value of the solar radius to within less than I percent. A second 

sequence with X c = 0 for m(r)/MQ ~ 0.03 and X s = 0.794 elsewhere was also calculated. 

The behavior of the models of this second sequence being qual i tat ively the same as 

that of the models with X c = 0.1, no precise adjustments of X s and ~/H were made to 
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achieve a precise f i t  with the present sun. 

The properties of the models tested for vibrational instabil ity are listed in 

Table 2 where x D, XDi and XDO respectively represent the non-dimensional distance of 

the discontinuity to the center of the star and the hydrogen abundance on the inner 

and outer sides of the discontinuity. Models I, 2, 3, 7, and 8 correspond to the 

approach to the main sequence; Model 6 corresponds to the present sun. 

The integration of the fourth order d i f ferent ia l  system of nonradial 

adiabatic oscillations was then performed following the scheme given in Boury et al. 

(1975). The fourth column of Table 2 gives the periods of the modes gl through g5 

for the horizontal wavenumber ~ = 1. In the fourth column of Table 3, we l i s t  for 

= 1 to 10 the periods of the modes associated with the discontinuity in density. 

These modes have a very large amplitude in a narrow layer centered on the 

discontinuity. With respect to solar seismology, Table 4 provides a l i s t  of periods 

of Model 6 corresponding to the present sun; this allows for a comparison with the 

SCLERA periods. I t  is immediately seen that the predicted spectrum is much more 

compact than the observed spectrum. This compactness comes from the high central 

condensation of the star due to the very low central abundance of hydrogen. In the 

present state of observations, models with the assumed distribution of hydrogen do 

not pass the test of solar seismology. 

3. VIBRATIONAL STABILITY 

The damping coefficient O'k, ~ relative to the k mode associated with the ~th 

harmonic is written, as usual, in the following form (Boury et al. 1975): 

I 

~k,C 
= 

li ma ~ a~dm-IMa (aT~ 61! div -~)dm + I~a It3 - 35-)~ a (~2 + ~V'Vp)dml k,~ 
o \ Ik,  Jo \P 

02 I~ I-~r'2 dm 

- I EN- EF + E2 I (1) 

where all the terms are expressed in terms of the adiabatic solution. The third 

integral in equation (1) expresses the influence of the mechanical effects of 

convection. ~ is the mean velocity of turbulence and ~2 stands for the rate per unit 

mass of dissipation of turbulent kinetic energy into heat (Ledoux and Walraven 1958; 

Gabriel et al. 1975). All other symbols have their usual meaning. Table 2 gives the 
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Table 2. Periods of Adiabatic Oscillation and Vibrational Stabi l i ty Results: 

g-modes of c = 1 

Mode Model m2 P(s) E N E F E o ' - I  years* 
E2 

a) Sequence X c = 0.1, X s = 0.7813 

gl i 7 .8780 3.222(3) 6.621(33) 2.005(37) 6.702(36) 3.617(5) 
2 7.8665 3.217(3) 7.055(33) 1.845(37) 6.676(36) 1.728(5) 
3 7.8640 3.230(3) 7.551(33) 1.839(37) 6.132(36) 1.655(5) 
4 7.9046 3.360(3) 1.425(34) 2.267(37) 7.793(36) 1.627(5) 
5 12.696 3.144(3) 5.622(35) 4.512(36) 9.943(35) 9.657(5) 
6 10.425 3.133(3) 5.143(35) 3.720(36) 7.724(35) 1.031(6) 

92 i 3.2561 5.012(3) 4.805(35) 1.260(36) 1.414(31) 1.080(6) 
2 3.5710 4.774(3) 4.082(35) 1.222(36) 1,278(31) 1.139(6) 
3 3.9404 4.562(3) 3.436(35) 1.204(36) 1.412(31) 1.185(6) 
4 5.8776 3.912(3) 1.818(35) 1.246(36) 5.114(32) 1.289(6) 
5 10.754 3.416(3) 5.943(35) 6.990(36) 2.263(36) 4.350(5) 
6 8 .9907 3.374(3) 4.383(35) 8.810(36) 2.953(36) 3.979(5) 

93 1 2.1934 6.107(3) 2.070(35) 2.123(35) 1.497(33) 1.129(9) 
2 2.2158 6.061(3) 2.243(35) 2.205(35) 4.203(33) -6.698(7) 
3 2.2795 5.998(3) 2.466(35) 2.311(35) 3.963(33) -3.576(7) 
4 3.3686 5.167(3) 4.163(35) 3.769(35) 8.044(33) -1.719(7) 
5 7.9828 3.965(3) 4.918(34) 3.789(37) 1.202(37) 6.913(4) 
6 7.5896 3.672(3) 1.267(35) 1.708(37) 6.405(36) 1.726(5) 

g4 I 1 .3049 7.917(3) 2.148(35) 2.775(35) 1.497(33) 5.712(6) 
2 1.3302 7.823(3) 2.022(35) 2,912(35) 1.523(33) 4.067(6) 
3 1.3971 7.662(3) 1.563(35) 8.474(35) 5.851(32) 5.277(5) 
4 2.0993 6.545(3) 7.504(34) 1.308(36) 1,104(32) 4.267(5) 
5 5.0533 4.984(3) 3.404(35) 1.077(36) 9.896(34) 1.791(6) 
6 4 .1532 4.964(3) 3.044(35) 7.788(35) 3.196(34) 2.274(6) 

gs i 1.1075 8.594(3) 1.913(35) 1.175(36) 1.008(31) 2.912(5) 
2 1.2376 8.110(3) 1.553(35) 1.154(36) 4.795(31) 3.214(6) 
3 1.3607 7.764(3) 1.674(35) 5.898(35) 9.837(32) 8.492(5) 
4 1.9029 6.875(3) 1.419(36) 2.713(35) 3.585(33) 3.791(6) 
5 4.4616 5.3040(3) 1.615(35) 2.424(36) 4.345(33) 4.431(5) 
6 3.6414 5.301(3) 1.424(35) 2.147(36) 1.499(33) 4.363(5) 

* A negative signs means instabi l i ty .  
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Table 2. Cont. 

Mode Model ~2 P(s) E N E F Ec2 0 '-I years* 

gi 

g2 

g3 

g~ 

gs 

7 12.016 
8 11,501 
9 13.506 

,10 16.174 

7 
8 
9 

10 

7 
8 
9 

10 

7.8233 
7.8062 
7.8625 
8.1235 

4.6159 
4.3704 
5.1462 
6.9676 

7 2.4960 
8 3.0155 
9 4.3921 

10 6.1229 

7 2.3755 
8 2.2827 
9 2.6827 

10 3.3025 

b) Sequence X c = O, X s = 0.794 

2.645(3) 8.246(33) 1.420(33) 1.120(33) 2.179(6) 
2.700(3) 9.665(33) 1.587(37) 6.319(32) 1.876(6) 
2.602(3) 1.229(34) 1.850(36) 4.443(33) 1.840(6) 
2.522(3) 2.259(34) 2.024(36) 7.014(34) 2.009(5) 

3.280(3) 9,341(33) 1.125(37) 6,111(36) 3.772(5) 
3.278(3) 1.022(34) 1.739(37) 5.568(36) 1.690(5) 
3.411(3) 2.077(34) 1.775(37) 6.621(36) 3.131(5) 
3.559(3) 1.738(35) 2.059(37) 6,793(36) 1.436(5) 

4.272(3) 2.205(33) 1.600(36) 2.180(31) 7.385(5) 
4.380(3) 2,927(33) 1.652(36) 3.393(31) 6.805(5) 
4.216(3) 1.169(34) 2.061(36) 6.063(32) 6.271(5) 
3.843(3). 5.438(35) 3.287(36) 9.102(35) 9.375(5) 

5.808(3) 4.135(33) 4.497(35) 3.301(33) 2.040(7) 
5.273(3) 5.231(35) 4.776(35) 2.856(33) -1.617(7) 
4.564(3) 5.694(35) 5.628(35) 1.355(34) -4.828(7) 
4.100(3) 1.723(34) 1.897(36) 4.739(33) 4.449(5) 

5.953(3) 2.503(33) 1.536(36) 2,708(33) 4.021(5) 
6.063(3) 8.904(32) 1.813(36) 1.128(31) 3.232(5) 
5.839(3) 8.637(32) 2.203(36) 2.045(31) 3.037(5) 
5.582(3) 2.358(35) 6.273(35) 9.362(33) 4.030(5) 

* A negative signs means instabi l i ty .  
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Periods of Adiabatic Oscillations and Vibrational Stabil i ty : 

Discontinuity Modes 

a) Model I 

1 Mode 2 P(s) E N E F E~(D) E 2 ~-1 years 

i 

2 
3 
4 
5 
6 
7 
8 
9 

I0 

1 
2 
4 

8 

Pl 18.605 2.097(3) 6.094(34) 2.289(38) 8.775(34) 7.990(37) 4.901(4) 
P2 21.825 1.936(3) 5.488(34) 3.998(38) 1,270(35) 1.462(38) 3.008(4) 
P4 69.615 1.084(3) 6.168(35) 9.731(37) 1.390(36) 3.886(37) 3.117(5) 
P5 113,65 8.483(2) 1.002(36) 1,788(38) 3.554(36) 7.882(37) 2.958(5) 
P6 156.63 7.227(2) 1.228(36) 7.506(37) 6.573(36) 2.386(37) 6.099(5) 
P7 198.64 6.417(2) 1.389(36) 8.889(37) 1.058(37) 1.830(37) 8.939(5) 
P7 240.26 5.835(2) 1.506(36) 1.726(37) 1.556(37) 5.971(35) 4.209(6) 
P8 282.13 5.384(2) 1.651(36) 2.006(37) 2.099(37) 1.187(34) 4.097(6) 
P9 323.45 5.029(2) 1.732(36) 2.949(37) 2.762(37) 4.970(35) 3.195(6) 
P9 364.68 4.736(2) 1.800(36) 3.431(37) 3.513(37) 1.800(31) 3.022(6) 
PlO 405.86 4.489(2) 1.858(36) 4.427(37) 4.352(37) 1.435(35) 2.601(6) 

b) Model 8 

P2 260.54 1.794(3) 1.013(35) 3.035(38) 2.280(33) 1.179(38) 3'.150(4) 
P5 119.35 8.382(2) 6.820(35) 6.243(39) 3.190(35) 2.313(39) 7.852(3) 
P9 277.24 5.500(2) 1.714(36) 5.922(39) 3.121(36) 1.714(39) 1.781(4) 
P13 573.71 3.823(2) 2.729(36) 2.801(39) 1.774(37) 7.096(34) 6.342(6) 
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Table 4. 

1=0 1=2 I=4 1=6 1=8 Observed 

70.7 (gG) 71.1 

65.9 61.2 (95) 67.3 (g11) 67.4 (g16) 66.25 
64.7 ( ) 65.2 (g15) 
62.9 61.3 (914) 

59.4 (g4) 56.2 (g8) 58.9 (g13) 59.1 (g17) 
51.3 (g3) 53.0 (g7) 57.6 (g12) 55.2 (g16) 

56.5 (g11) 55.0 (g15) 
51.8 (glo) 52.9 (g14) 
51.1 (99) 51.1 (g13) 

41.7 44.8 (g2) 49.6 (g6) 46.3 (gB) 49.6 (gl2) 44.66 
43.8 (gs) 42.8 (g;) 48.5 (g l l )  
41.5 (g~) 42.0 (g6) 45.5 (glo) 

44.2 (99 
42,0 (g8 

31.4 39.1 (gi) 38.4 (g3) 37.1 (gs) 38.0 (g? 
35.5 (f) 36.6 (g2) 34.9 (g4) 37.6 (g6 
32.7 (pl) 34.3 (g3)D 33.1 (gs 

31.3 (g2) 31.4 (g~) 
31.3 (93) 

39.00 
32.1 

24.7 25.4 (P2) 29.9 (gl) 26.5 (gi) 28.3 (g2) 28.7 
20.8 (P3) 28.1 (f) 25.3 (f) 24.7 (91) 24.8 

27.9 (pl) 24.7 (pl) 23.3.(f) 21.0 
22.3 (p2) 20.3 (p2) 23.2 (pl) 

17.6 (p4) 18.5 (p3) 17.1 (p3) 18.8 (p2) 19.5 
16.3 (ps)D 15.9 (p4) 14.8 !p4) 16.0 (p3) 13.3 
15.3 (p6) 14.0 (ps) 13.1 (ps) 13.9 (p4) 12.1 
13.5 (p7) 12.8 (p6) 12.4 (ps) 11.4 
12.1 (pB) 11.4 (p7)D I I . I  (p~! 10.7 
11.0 (p9) 11.3 (ps) 10.2 (p7) 
10.1 (plo) 10.3 (p9) 

9.53(p10) 9 . 4 6 ( p 9 )  9.40(pB) 9.9 

17.4 
15.0 
13.3 
12.0 

Periods (in minutes) of model 6 ("present sun") for radial (1=0) and 
non-radial (1=2,4,6,8) modes. The identification of the modes is 
given in parentheses: D indicates a discontinuity mode. Last 
column gives solar periods observed by Brown et al. (1978) in the 
range 10m-7Om. 
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values of EN, EF, E2, and the e-folding time i /a '  for the low order g modes 

corresponding to ~ = 1. A negative sign for 1/a' means instabi l i ty and growth of the 

oscillation amplitude. For the models with X c = 0.1, the g3 mode becomes unstable in 

the approach to the main sequence in Model 2 close to the temporary minimum in the 

ratio pc/p , due to the slight expansion of the central regions accompanying the onset 

of nuclear reactions. The i ns tab i l i t y  subsists more than 109 years, unti l  the 

central condensation has reincreased enough to produce a corresponding increase in 

amplitude in the envelope which is large enough to damp the osci l lat ion. The 

"present sun" is stable. The differences in the results for Models 5 and 6 are due 

to the difference in radii of the two models, the large difference in their ratios of 

~c/p, and from the high sensitivity of the eigenvalues and eigenfunctions to pc/p. 

In the sequence X c = O, the i ns tab i l i t y  appears in the g4 mode. Let us 

recall here that in the standard solar evolution of models less condensed than the 

present ones, a phase of instabil i ty towards the g2 and g3 modes occurs (Boury et al. 

1975). The modes associated with the discontinuity turn out to be very stable (Table 

3). The destabilizing effect of the nuclear energy term is largely overcome by the 

large perturbation of the temperature gradient, which appears as the radial part~m L 
1 

of the term 6(~div~). The seventh columnaT of Table 3 shows the pontribution E~(D) 

of the discontinuity to the integral f~LdaL. A steep change in density would have 

the same stabilizing effect as a str ict discontinuity. 

In conclusion, the evolution of the sun when starting with a small (or zero) 

hydrogen abundance in a small central region presents the same i ns tab i l i t y  as the 

standard evolution towards low-order g nonradial modes for ~ = 1; however, the 

spectrum of the model corresponding to the present solar age is not compatible with 

the observations. 
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NONRADIAL OSCILLATIONS WITH HIGH ~-VALUES 

C.A. Rouse 
General Atomic Company 
San Diego, California 

ABSTRACT 

A few eigenfunctions with high ~-values for nonradial osc i l la t ions of the 

1968 nonstandard solar model (Rouse 1977, 1979 and references therein) are discussed. 

Part icular attention is given to eigenfunctions for periods near 45.5 and 67.2 

minutes (Brown, Stebbins and Hill 1978). The Unno theory of stabi l i ty  of the solar 

core (Unno 1975) is used to delineate the regions where the waves propagate as 

acoustic waves, gravity waves, or are evanescent. Of particular interest is that the 

eigenfunction with ~ = 20 indicates that a relative displacement at the solar surface 

of 10 -7 is consistent with a relative displacement of about 2 x 10 -2 in the gravity 

wave propagation region of the solar interior for this mode of oscillation. 

1. INTRODUCTION 

The fundamental interest in the calculation of a few eigenfunctions with high 

~-values for nonradial modes of osc i l la t ion  of the 1968 nonstandard solar model 

(Rouse 1977, 1979 and references therein) is that i t  provides yet another test of the 

limitations of that model. 

By way of a br ief  background to the 1968 solar model, i t  was developed as a 

part of a project at the Naval Research Lab, Washington, D.C., to study the 

determination of the helium abundance of the solar photosphere by the theoretical 

prediction of l ine and continuum radiation from a solar-model photosphere where the 

envelope and photosphere were calculated with an assumed abundance of helium (Rouse 

1968b, 1969, 1971). This project i tse l f  was one phase of a program for calculating 

an accurate model of the solar interior that I formulated in 1963-64, after I came to 

the conclusion in the fa l l  of 1963 that the in te r io r  structure of the sun was not 

understood (Rouse 1964, 1968a, 1972). By this approach, the abundance of helium in 

the solar photosphere is removed as a free parameter in solar evolution calculations. 

The next phase, had the work been funded from 1969 on, was to look into the 

problem of the temperature gradient in the convection region of the sun (four 

unpublished proposals). In 1976, after I heard of the SCLERA observations of solar 

osc i l la t ions,  I realized that the prediction of his observed spectrum and the 

comparison of my predictions with those based upon the standard model of the sun 
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could be a test of the 1968 model as i t  stood. The results for  radial osc i l l a t i ons  

are reported in Rouse (1977) and the results for nonradial osci l lat ions with ~ ~ 11 

are reported in Rouse (1979). Except for  the PO and P1 periods of the radial modes 

of o s c i l l a t i o n ,  the agreements of the other radial periods and of the nonradial p- 

mode periods with those predicted with the standard model indicates that ,  since I 

used a real-gas adiabatic temperature gradient in the envelope and photosphere, an 

accurate mixing length theory is only needed to approximate second-order effects in 

the solar convective region. 

2. RESULTS 

Now we have the exciting possibi l i ty  that the SCLERA program may be able to 

determine the h-index of some of their  observed periods of solar osci l lat ion (Hil l 

and Caudell 1979; Brown, Stebbins and H i l l  1978). In order to determine the 

consistency of the 1968 model predict ions with t he i r  in te rpre ta t ion  of possible 

observations of nonradial modes with ~ between about 20 and 25 or so, a few 

eigenfunctions were calculated with high h-values. The results for  ~ = 8, 11, 20, 

24, and 28 are given in Figures 1 through 5, respectively. A few calculations were 

also performed with 28 < ~ ~ 100. The results with ~ = 100 wi l l  be described later. 

. In  the f igures are shown the ~, gk, period ~ in  minutes, ~ in mHz, the peaks 
~r 

of the--~-eigenfunctions, nodes, and values at x = 1.0, regions where A~ O, and the 

regions where the waves can propagate as acoustic waves (a), grav i ty  waves (g), or 

are evanescent (e) (Unno 1975). For ~ values to 24, eigenvalues to 18 d ig i t s  were 

required. For ~ = 28 in Figure 5, an eigenvalue to 18 digits was not quite accurate 

enough to sat is fy  the boundary condit ions at x = 1.0, doing so at x = 0.986. 

However, for nonradial osc i l la t ions with periods near 45.5 minutes, an f or g l  mode 

is possible for ~ = 100. To 18 d ig i t s  with ~ ~ 46.6957 minutes, e i ther  mode is 

possible. A computer with more digits in double or quadruple precision is needed. 

Of par t i cu la r  in terest  is the ~ = 20, g3 eigenfunction shown in Figure 3. 

Regarding the relative displacement, ar / r ,  at x = 1.0 and the three peaks between x = 

0.345 and x = 0.520, a re la t i ve  displacement at the solar surface of 10 -7 , a value 

consistent with observations, would imply relative displacements of about 2 x 10 -2 or 

less in the g-propagation region of th is  solar model. This supports the H i l l  and 

Caudell (1979) interpretation of two oscil lations found in the 1973 observations as 

possible g-modes of osc i l l a t i on  with ~ in the range 20 to 25 in that the i n t e r i o r  

amplitude is not unphysical as with other models. 

As a test of the l im i t a t i ons  of the 1968 model o r  any solar model, as the 

SCLERA observations are narrowed to specific h-modes of osci l lat ion, an agreement in 

osci l lat ion period with an eigenfunction such as in Figure 3, would indicate that the 

structure of that solar model in the g-propagation zone would be close to physical 

r ea l i t y .  I f  true in the present case, the structure of the 1968 solar model from 
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I 
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<01 (unstable) 

i 

o'., 0.2 0:3 
.~ =8, gz 
G 2= 1.435499 x I0  -6 

f7 = 87, 403 '  
'f =0.19069 mHz 
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A<O 
(stable) 

0:4 o'.~ 0:6 0:7 
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A>O 
(unstable) 

0:8 0:9 

2.14 -3 
- - Y " ~ ' I . . .  x = 0.880 + 

1.80 -3 

I g I e a 

x=0.325 ÷ x=0.54 ÷ 

AgO 

3 

Figure 1. Eigenfunction calculated for the 1968 nonstandard solar model with ~ = 8. 

gr 
r 

1968 

A i A>O 
<0 i (unstable) 

o:~ 0.2 o:3 
.l~ = l l , g l  
d '2=3.576382 x I0 -6 
TT = 55. 374 '  
Y= .3010 mHz 

NONSTANDARD 

A<O 
(stable) 

0:4 o:s 

2 .50  .4 

SOLAR MODEL 

A>O 
(unstable) 

0:6 o:7 0:8 0:9 

e e 

x=0.375 + x=0.48 ÷ 

A~O 

0 

x=0.845 + 

1.40-6- 

I° e 

x=0"90+ I 

I I 

Figure 2. Eigenfunction calculated for the 1968 nonstandard solar model with ~ = 11. 
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1968 

A i A>O 
<0 i (unstable) 

o:l o:2 0.3 
1-=20, g3 
d" = 1.9795. . .x  10 -6 
17 = 74 .450 '  
Y =0.2259 mHz 
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A<O A>O 
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[ 

0.4 0'.~ 0:6 0.7 0.8 0:9 

4 2 8  .9 5,89 -9 
, , , . , . . , / ' ~ / ~ ' ~ ~  x = .960 ÷ 

3.20-9 2.05 -14--- 

e I q r e I° 
x=.545"  x=.520 + x=.975 

A~O 

1.0 

Figure 3. Eigenfunction calculated for the 1968 nonstandard solar model with ~ = 20. 
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Figure 4. Eigenfunction calculated for the 1968 nonstandard model with ~ = 24. 
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Figure 5. Eigenfunction calculated for the 1968 nonstandard model with ~ : 28. 
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about x = 0.34 to the photosphere would be supported by the above as well as by other 

observational results. This would put another constraint on the model of the solar 

core: i t  must not only be consistent with a positive solar neutrino measurement, but 

must also be consistent with the basic aspects of the model of the envelope and 

photosphere derived in the 1968 solar model, photospheric helium abundance study. 

Now, what is given up by my 1963-64 approach to solar model calculation? The 

answer is that nothin 9 basic is 9iven up at al l .  What is retained is the principle 

of the scienti f ic method. My use of real-gas physics from the start (in 1962) (see 

Rouse 1964), my e f fo r t  to remove the photospheric helium abundance as a free 

parameter, and my test calculations of periods of solar oscil lation to demonstrate 

the accuracy of my 1968 envelope and photosphere calculations--they all were designed 

to put these aspects of solar model calculation on a firm physical and mathematical 

footing. In this way, attention can be focused on the problems of the solar curve-- 

which is precisely how I viewed the solar problem in 1963, a view strongly supported 

by the subsequent solar neutrino experiment results. 
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TIME-VARYING GPJ~VITATIONAL MULTIPOLE MOMENTS CORRESPONDING 

TO NONRADIAL SOL~J~ OSCILLATIONS 
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University of Rochester 
Rochester, New York 

ABSTRACT 

Hi l l  (1978) and Severny, Kotov and Tsap (1976) and others have reported 

osci l la t ions in the apparent radius of the sun of amplitude 6R e which have been 

interpreted as arising from mechanical vibrations of various normal modes. A future 

space mission is being discussed whereby a probe w i l l  pass within 4 R e of the sun. 

This probe would have s u f f i c i e n t  s e n s i t i v i t y  to measure an o s c i l l a t i n g  

(dimensionless) quadrupole moment J2' at the 10 -7 level. In this paper we consider 

the relationship between various multipoles and ~Re/R e. We calculate the multipole 

moments for the Cowling polytropic model and an approximate solar model. We find 

J2'/~Re/Re) to be ~ 10 -3 for both models. 

1. INTRODUCTION 

Hi l l  and co-workers and others, (Hi l l  1978; Severny, Kotov and Tsap 1976) 

have published observations which they have interpreted in terms of oscillations of 

the sun. One of us has recently proposed using a satel l i te to measure any associated 

osc i l la t ing  gravitational multipole moments (Douglass 1978)~ NASA currently has 

under consideration a proposal to f l y  such a "Solar Probe" satel l i te to within about 

4R e sometime in the 1980's (see Bender 1978 and Roxburgh 1978). The purpose of this 

paper is to report preliminary calculations of the time-varying multipole moments 

associated with several of the nonradial modes of solar osc i l la t ion.  Such 

calculations are necessary in order to assess the f e a s i b i l i t y  of spacecraft 

measurements of the oscillating multipoles. 

The importance of direct measurements of the gravitational moments associated 

with solar oscillations derives from the fact that they provide direct probes of the 

solar in te r io r ,  somewhat analogous to seismic measurements on the earth. The 

continuing i n a b i l i t y  of theory to achieve a generally accepted resolution of the 

solar neutrino problem (cf. Fowler 1974, Bahcall 1978) is a clear demonstration that 

the interior of the sun is more mysterious than had been recognized previously. In 
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these circumstances, addit ional information is essential to improve our 

understanding, and space probe measurements of the time-dependent gravitational 

potential provide one of the few ways of obtaining such information. 

The plan of this paper is as follows. In § 2 we f i r s t  define the multipole 

moments of the gravitational potential, and we relate our definit ions of the 

multipole moments to other conventions (especially for the static quadrupole). We 

also outline briefly the elements of nonradial stellar oscillaton theory and relate 

them to the gravitational multipoles. In § 3 we describe the approximate solar 

models used for these calculations, and we give a brief description of the numerical 

techniques used to solve the eigenvalue problem for the oscillations. The results of 

our calculations for several of the nonradial oscillation modes are tabulated, and 

graphs of some quantities of interest are presented. A discussion of the results, in 

§ 4, concludes the paper. 

2. FORMULATION OF THE PROBLEM 

2.1. Gravitational Multipole Moments 

The gravitational potential @(r,t) external to a given time varying density 

distribution p(r,t) is given by the usual integral 

~(~,t) = -G[ P(r-h't)d3r' (i) 

With the aid of the Legendre polynomial expansion for I~-~'I-1 and the spherical 

harmonics addition theorem, (1) may be rewritten in the form 

~(r,e,¢,t) - GMe £ [Re\~ 
F ~ ~ Y-m(e'¢)~-~) J~m (t) (2) 

where the instantaneous dimensionless multipole moment is defined by 

1 47 I w ' ' J~m (t) • Y~m (e ,¢ MeRe ~ ~ ( r ' ) 2d r '~ ' p ( r ' ,B ' ,~ ' , t ) ( r ' )  g ) . (3) 

Here we have specialized to the sun, with M e and R e being the solar mass and radius, 

respectively, d~' the d i f ferent ia l  element of solar angle, and we have used the 

definition of the spherical harmonics given by Messiah (1958 pp. 492ff). Note that 

with these definitions, Joo(t) = (47) -1/2. 

As a special case, we must have Jim ~ O, because i t  is proportional to the 

location of the center of mass of the sta~ 

For infinitesimal oscillations, we take 

~ ( ~ , t )  = ,~Co) (~  + ~ , 'C~, t )  , 
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and for an eigenmode of given (~,m), we write 

! 

~m (~, t )  ~ ~am(r) Y~m(e,¢) e i~ t  , (4) 

where ~ is the osc i l l a t i on  eigenfrequency. 
Simi lar  re lat ions hold for the density perturbations. When these re la t ions 

are inserted in (2) and (3) and the angular in tegra ls  are evaluated, we obtain 

£ 
~(~,t) : a~O ~ m=~-~=- ~am(r) Vam(B'¢) eiat 

GMB (~ )a  A V~m(e,@)e i°t 
= ~E] ~ T Jam (5) 
aaO m=-a 

where 

r J Re p~m ( ) ( r '  (6) 
A 1 . 4~ ~ r '  )a+2dr' 
Jam MeRe a ~ o 

The orthogonality of the spherical harmonics requires that all contributions 
to J~m come only from oscillations with the same (a,m). Further, in this expansion 
= 0 corresponds to the unperturbed state. 

Other definitions of the dimensionless quadrupole moment are also in use (cf. 
Kaula 1968, especially p. 67). For example if  the potential is expanded as 

, = .  r + G M e  [ CR~)2(3c°s~B - 1)] 
L 1 J2' - -  

then our moment is related to the J2' by 

I ~ l  I/2 
J2' = J20 ~ 0"63J20 

2.2 Nonradial Stellar Oscillations 
Nonradial spheroidal oscillations of stars are described by a fourth-order 

system of linear differential equations, which may be written in the form (cf. Osaki 
and Hansen 1973) 

r 21 d-~Ir2 ~Frd~)- a(~ +r 21)~ = _4~G~r dP~_r+A) (7a) 
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r l P ~ = ~  $ + ^  ldP 
P - ~r p dr (7b) 

rlP 
~2~ r = ~ -  A p (7c) 

A 
~2~ : X_ (7d) 

t r 

A_ 1 d (r2~r) ~(~ + 1) 
r 2 dr - r ~t (7e) 

Here ~ is the r-dependent part of the gravitational potential perturbation, as in 

(4); { r  and ~t are the radial and transverse amplitudes of the displacement 

eigenvector ~ (related to the velocity perturbation by ~' = i~-~); & is the r- 

dependent part of div {; and X is defined by 

A 

p , (8) 

where ~ is the pressure perturbation. All quantities in these equations that are not 

distinguished by a supernumerary carat refer to the unperturbed equilibrium model. 

Other quantities we shall find convenient to have at our disposal are the 

definition of the density perturbation 

and 

dp _ p~ (9) 

d~np 1 d~nP 
A~ T -  r I dr (10) 

Note that N 2z -Ag defines the Brunt-Wis}l~ frequency N; i t  becomes imaginary in 

regions of convective instabi l i ty (A > 0). 

Specification of the nonradial eigenvalue problem is completed by giving the 

four spatial boundary conditions, two each at the center and at the surface of the 

star (cf. 0saki and Hansen 1973). 

For purposes of numerical computation i t  is convenient to rewrite the 
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eigenvalue problem (7) in terms of the dimensionless Dziembowski (1971) variables: 

A 
Yl ~ { r / r  (11a) 

Y2 ~ ~Igr : (~ + ~Ip)/gr (l ib) 

Y3 ~ ~/gr (11c) 

and 

Y4 ~ (d~Idr)/g , 

where g ~ GMr/r2 is the local acceleration due to gravity. 

reader to Osaki and Hansen (1973) and to Dziembowski (1971) for the forms of the 

equations in terms of these variables. For our present purposes i t  is suf f ic ient  

merely to give the results in terms of these quantities; for example: 

A 
{r = rYl (12a) 

and 

(11d) 

We refer the interested 

= .rAy I + pgr (Y2 " Y3 ) (12c) P rlP 

Although the osci l lat ion variables are defined only in the in ter ior  of a 

star, the gravitational potential must be continuous across the stellar surface. We 

can therefore express the dimensionless multipole moments of the potential in terms 

of these pulsation variables. In particular, at the solar surface, (5) and (11) 

yield 

Y3(r=Re)= ¢~m(Re)/-~-~ = L R, tR-ee) J mj/Re = -J~m (13) 

Thus, the gravitational multipole moments are obtained as a tr iv ial  byproduct of the 

nonradial osci l lat ion calculations. Alternatively, of course, one may use (6) to 

evaluate the J~m directly. 

We shall express the amplitude of the oscillation (and hence the actual value 

of J~m) in terms of the fractional radial displacement amplitude ~r(r = Re)/R e 

~Re/R e. 

~t : -~2 = gY2 (12b) 
r~ a 
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3. THIS CALCULATION 

To solve the nonradial osc i l l a t i on  eigenvalue problem, one must begin with a 

detai led numerical model for  the unperturbed star. We have employed two such models: 

a polytrope with n = 3 and a model from an evolut ionary sequence for  the sun. 

The f i r s t  model we used was the p o l y t r o p i c  (n : 3, N =3~) model, f o l l o w i n g  

Cowling (1941). The most important v i r tue  of th is  model is that a few eigenfunctions 

are tabu la ted  (Cowl ing 1941 and Kopal 1949), so tha t  the moments can be evaluated 

immedia te ly  by equat ion (6)~ The r e s u l t s  fo r  t h i s  model are presented in Tables I 

and 2. 

The second, evolut ionary model was taken from a sequence constructed to study 

the deep so la r  i n t e r i o r .  The parameters of  t h i s  model are given in  Table 3. Note 

that the radius of the model d i f fe rs  s i g n i f i c a n t l y  from that of the sun. This is a 

consequence of our use of very crude, pure ly  r a d i a t i v e  envelope models in the 

computation of th i s  evolut ionary sequence. In fact ,  although the outermost ~ 10 -7 M e 

of the sun are ac tua l ly  convective, we have forced th i s  region to be radiat ive.  This 

has l i t t l e  e f f e c t  on the deep i n t e r i o r  of the model because of the wel l -known 

convergence of s t e l l a r  models to the r a d i a t i v e  s o l u t i o n  at la rge depths (cf .  

Schwarzsch i ld  1958). However, use of the i n c o r r e c t  temperature g rad ien t  in  the 

surface layers does lead to the incorrect  s t e l l a r  rad i i  and thus af fects the pressure 

and temperature in the outer parts of the model. 

Apart from t h i s  one aspect, however, the model provides a reasonable 

approx imat ion  of  the present sun. In p a r t i c u l a r ,  the model c a l c u l a t i o n s  have 

employed a standard Newton-Raphson evolut ionary program, and the physics employed to 

descr ibe the mater ia l  p roper t ies  of the s t e l l a r  mat ter  are the usual ones. The 

equation of state corresponds to a mixture of ideal gases plus radiat ion (electron 

degeneracy is  inc luded,  a l though i t  is  never very impor tan t ) .  Opac i t ies  are 

i n t e r p o l a t e d  in  Los Alamos tab les  having Z : 0.02 (cf .  Cox and Stewart  1970), and 

nuclear reaction rates for  both the P-P chain and the CNO cycle are included as given 

by Clayton (1968), wi th the fast reactions a l l  taken to be in equi l ibr ium. 

To employ the approximate solar model as a basis for  nonradial osc i l l a t i on  

c a l c u l a t i o n s ,  i t  is  necessary to compute de ta i l ed  d i s t r i b u t i o n s  of a v a r i e t y  of  

s t r u c t u r a l  and thermodynamic parameters throughout  the s ta r .  Most of these 

quant i t ies are already avai lable from the evolut ionary calculat ions. Because of the 

crude approx imat ion employed fo r  the so la r  envelope, however, i t  was necessary to 

reconstruct separately the run of parameters appropriate to the outer layers of the 

model. This was done with a separate program, and care was taken to ensure that the 

s t r u c t u r e  v a r i a b l e s  were as mono ton ic  and smooth as p o s s i b l e  across the  

enve lope / in te r io r  interface. 

This model was then used as input to the Osaki-Hansen nonradial osc i l l a t i on  

code (see Osaki and Hansen 1973 fo r  d e t a i l s  of the numerical  methods used). This 
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Table 1. The Polytrope Model 

Parameter Value 

n 3 

N 312 

M/M e I 

R/R e 1 

log pc(gm/cm 3) 1.88 

Table 2. Results (~ = 2) 

Iben (1976) 

Mode Period(min) Period(min) Freq(Hz) ^ ~r 
Jcm/~ 

f 

gl 

g2 

56.6 49.19 3.39 -4 0.91 -3 

76.9 56.00 2.98 -4 2.04 -3 

105.4 65.21 2.56 -4 2.19 -3 
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Table 3. Parameters of the Approximate Solar Model 

Parameter Value 

M/M e 1.000 

L/L® 1.074 

R/R e 1.38 

age (yrs) 4.201 x 109 

log Pc(dynes cm -2) 17.387 

log T c (OK) 7.193 

log Pc (g cm-3) 2.189 

X 0.71 

Z 0.02 
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code employs Newton-Raphson i terat ions to relax an approximate solution of the 

eigenvalue problem to a converged solution. Our convergence criterion was that the 

sum of the absolute values of the corrections to the eigenfunction be less than 10 -9 

times the sum of the absolute values of the eigenfunction i tself .  

The results of our calculations are given in Tables 4 and 5 for nonradial p-, 

f-, and g-modes corresponding to ~ = 2 and 3. In addition to the actual eigenperiods 

obtained for our approximate model, we have listed eigenperiods scaled to the correct 

solar radius according to 

~scaled = ~model(Rmodel/Re)-3/2 ; (14) 

this scaling would be exact for the p- and f-modes, i f  the structure of the pulsation 

eigenfunctions were invariant. Of course they are not, and we have accordingly 

included also the solar eigenperiods calculated by Iben (1976) to provide an estimate 
^ 

of the accuracy of these results. The dimensionless multipole moments J~m and the 

ra t ios  ~ t /~ r  at the s t e l l a r  surface are also given in these tables;  these 

dimensionless quant i t ies  are expected to be approximately invar ian t  under the 

scaling, They should thus be correct to about the same degree that the scaled 

eigenperiods reproduce Iben's results. 

4. DISCUSSION 

The most obvious advantage of the proposed gravitational measurement is that 

i t  is a real whole-body measurement. Only whole-body oscillations could conceivably 

cause perturbations in the potential,  and since a "drag-free" sa te l l i t e  w i l l  

fa i th fu l ly  follow these perturbations, the only serious impediment to the experiment 

comes from the Doppler tracking system. For example, no sophisticated knowledge of 

the time-dependent brightness d is t r ibut ion in the photosphere is necessary to 

interpret the results. Thus a positive result is l ikely to be uncontroversial. 

A major disadvantage of the method is the l imi ted data col lect ion time 

available for the proposed mission (10-20 hours up close). 

We have presented above the formalism that determines the rat io of two 

quantities that can, in principle, be measured separately for a solar oscillation, 

the radial displacement and the gravitational moment. I f  ground based measurements 

of the radial displacement were rel iable enough and well understood, then the i r  

comparison to a moment measurement would provide additional information. This is 

another way of saying that the i r  rat io is model dependent, as can be seen by 

comparison of our two calculations. Our f i r s t  look at th is suggests that a major 

effect is caused by the degree of central condensation: when i t  is larger, the 

moment/displacement ratio is smaller. Perhaps other information of this kind can be 

discovered by further study of different models. 

We would like to suggest that in future calculations of solar oscillations i t  



Table 4. 

3 6  

Non-Radial Oscillation Moments of the Approximate Solar Model 

= 2 

Mode Period(min) 

Iben (1976) 
Scaled ^ ~r 

Period(min) Period(min) Frequency(Hz) J ~ / ~  ~t/~r 

P12 

P11 

PlO 

P9 

P8 

P7 

P6 

P5 

P4 

P3 

P2 

Pl 

f 

gl 

g2 

g3 

g4 

g5 

g6 

g7 

g8 

g9 

glO 

15.04 

16.26 

17.70 

19.39 

21.42 

23.89 

26.90 

30.68 

35.50 

41.60 

48.72 

56.36 

65.53 

75.65 

89.76 

108.36 

128.78 

150.8 

172.8 

217.9 

241.0 

264.8 

9.28 8.77 1.88 -3 1.00 -6 

10,03 9.44 1.77 -3 -2.24 -6 

10.92 10.21 1.63 -3 1.81 -6 

11.96 11.18 1.49 -3 -3.42 -6 

13.21 12.33 1.35 -3 3.58 -6 

14.74 13.74 1.213 -3 -5.98 -6 

16.59 15.54 1.073 -3 7.73 -6 

18.93 17.88 9.32 -4 -1.30 -5 

21.90 21.10 7.90 -4 2.26 -5 

25.66 25.60 6.51 -4 -5.15 -5 

30.06 32.61 5.11 -4 1.14 -4 

34.77 43.75 3.81 -4 -8.36 -5 

40.43 49.19 3.39 -4 -2.75 -4 

46.67 56.00 2.98 -4 3.67 -4 

55.37 65.21 2.56 -4 2.02 -3 

66.85 77.16 2.16 -4 3.67 -3 

79.44 90.85 1.835 -4 4.23 -3 

93.03 104.7 1.592 -4 4.01 -3 

106,6 118.6 1.405 -4 3.45 -3 

132.6 1.257 -4 

134.4 146.7 1,136 -4 2,25 -3 

148.7 160.9 1.036 -4 1.75 -3 

163.3 174.9 9.53 -5 1.33 -3 

0.00215 

0.00267 

0.00325 

0.O0419 

0.00531 

0.00683 

0.00892 

0.01188 

0.0162 

0.0226 

0.0314 

0.0423 

0.0575 

0.0769 

0.I085 

0.1590 

0.224 

0.308 

0.405 

0.645 

0.791 

0.956 
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Non-Radial Osci l la t ion Moments of the Approximate Solar Model 

: 3 

Iben (1976) 
Scaled ^ 

Mode Period(min) Period(min) Period(min) Frequency(Hz) Jcm/D~ - 
% ~t/~r 

P12 14,61 9.01 8.53 1.95 -3 2.24 -7 

Pl l  15.77 9.73 9.17 1.82 -3 -9.63 -7 

PlO 17.13 10.57 9.90 1.68 -3 5.06 -7 

P9 18.72 11.55 10.76 1.55 -3 -1.43 -6 

P8 20.62 12.72 11.82 1.41 -3 1.18 -6 

P7 22.92 14.14 13.11 1.27 -3 -2.33 -6 

P6 25.73 15.87 14.76 1.129 -3 2.56 -6 

P5 29.25 18.04 16.94 9.84 -4 -4.58 -6 

P4 33.69 20.78 19.72 8.45 -4 6.69 -6 

P3 39.47 24.35 23.91 6.97 -4 -1.34 -5 

P2 46.81 28.88 29.95 5.56 -4 2.69 -5 

PI* 51.58 31.82 40.45 4.12 -4 5.22 -6 

f *  59.54 36.73 44.67 3.73 -4 -7.21 -5 

gl*  67.29 41.51 51.92 3.21 -4 -2.17 -5 

g2 76.97 47.48 57.21 2.91 -4 2.83 -4 

93 87.29 53.85 63.33 2.63 -4 6.13 -4 

94 100.46 61.97 72.17 2.31 -4 9 .81-4  

g5 115.49 71.25 81.59 2.04 -4 1.18 -3 

0.00198 

0.00246 

0.00306 

0.00384 

0.00486 

0.00622 

0.00808 

0.01071 

0.01451 

0.0203 

0.0289 

0.0353 

0.0473 

0.0607 

0.0819 

0.1028 

0.1364 

0.1806 

*Note that the Pl and gl modes for  ~ = 3 have 3 nodes while the f mode has 2; 

see Dziembowski (1971) and Robe (1968) for  fur ther  discussion. 
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would be useful to include a calculation of the moments for possible later comparison 

to satel l i te data. 

The next step is to repeat our calculations for a more real ist ic solar model. 

These results wil l  be reported in another paper. It is these moments that Would be 

most appropriate for evaluating the feasibi l i ty  of the satel l i te experiment. 

This research supported in part by the National Science Foundation. 
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ABSTRACT 

The re la t ion  between the amplitudes of the gravitational potential 

perturbation and the displacement eigenfunctions of adiabatic oscillations of a solar 

model is discussed, and numerical results are tabulated for a selection of modes of 

low degree. In particular, a solar quadrupole oscillation with period 160 m and rms 

surface velocity of 1 ms -1 would induce a perturbation in the external gravitational 

potential with an oscillating quadrupole moment of amplitude about one-third that of 

the static moment that would be produced by a uniform interior rotation of the sun 

with angular velocity comparable with that observed on the surface. I t  is concluded 

that quadrupole oscillations might be detectable gravitationally. 

I. INTRODUCTION 

The announcement of the detection of global osci l lat ions of the sun (H i l l ,  

Stebbins and Brown 1976; Severny, Kotov and Tsap 1976; Brookes, Isaak and van der 

Raay 1976) immediately raised the question of whether the associated gravitational 

radiation could be measured. In particular, J. Hough (private communication) and J. 

Weber (private communication) enquired whether the amplitudes of the variations in 

the solar quadrupole moment associated with modes that might be responsible for the 

data are large enough to be detected by ground-based observations. The conclusion at 

that time was that the amplitudes were too low. 

At this workshop, Johnson et al. (1980) have addressed themselves to the 

issue of whether the quadrupole var ia t ions  might be detected by future 

extraterrestr ia l  probes. Their discussion is based on modes of osci l la t ion of a 

polytrope: they have asked how well their modes approximate those of more realist ic 

solar models and, in part icular, whether the la t te r  predict substantial ly larger 

fluctuations in the external gravitational potential. We are in a position to give 

an immediate answer to that question, since the perturbation to thegravi tat ional 
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potential is one of the eigenfunctions of our normal mode computations (Christensen- 
Dalsgaard, Dilke and Gough 1974). Here we present a selection of our results, some 
of which may be compared with those of Johnson et al. (1980). We find that for most 

modes of the solar model the gravitational potential perturbations are indeed larger 

than those of their polytropic counterparts, but by how much is dependent on the 
criterion for comparison. 

2. 

coordinates (r, e, @), the displacement eigenfunction ~n£m 
n may be written 

~ m c O sin 
i~n~(X)P~( os )cos m, I 

-~ I "  d m sin I ~n~m = R nnj~(x) a-e P~(c°S°)cos m@ sinmn~t 

\+. • , m pm, c o "c°s m@ _nn~X) ~ ~ os )sin 

RELATION BETWEEN DISPLACEMENT AND THE PERTURBATION IN THE GRAVITATIONAL POTENTIAL 

After the usual separation of variables with respect to spherical polar 

of a normal mode of order 

, ( 1 )  

where x = r/R, R is the radius of the sun, mn£ is the oscillation eigenfrequency and 

P~ is the associated Legendre function of degree £. The corresponding Eulerian 

perturbations to density p and gravitational potential @ are 

, - ~ m sin 
P n~m = PPnj~(x)P~(c°SO)cos m@ sinmnj~t , (2) 

~ m sin 
~'n~m =-~n~(X)P~(c°Se)cos m~ sin~n~t , (3) 

where M is the solar mass, G is the gravitational constant and E= 3M/(4xR 3) is the 

mean density of the sun. Since there is a neglible amount of matter in the 

chromosphere, corona and the solar wind, the perturbation to the gravitational 

potential outside the sun is determined uniquely by that in the photosphere. Thus i t  

is sufficient to determine ~n~(1). 
The perturbations o' and p' are related by a Poisson equation. This may be 

solved to yield the gravitational potential perturbation in the photosphere (e.g. 
Christensen-Dalsgaard 1976; cf. Cowling 1941): 

~n~(1) : ~ 3  Po(1)~n~(1) + 0 x~+2~n~(X)dx ' (4) 

wherePo(X) is the unperturbed density measured in units of~-. Elimination of Pn~ 

using the continuity equation 
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~ -2 d (X2po~n~) l )x ,  lponn~ Pn~ = -x ~ + ~(~ + (5) 

yields a direct relation between ~n~ and the displacement amplitudes: 

~ 3~ 11 x~+lpo(X) [~n~(X) + (~ + 1)~n~(X)]d x 
Cn~ = ~ 0 

= K~(x) [~n~(X) + (~ + 1)T1n~(X)]dx , (6) 

The kernel K~ is displayed in Figure 1 for several values of ~. For r > R the 

perturbed potential is given by equation (3) with 

~n~(r/R) = ~n~(l)(R/r) ~+I (7) 

When computing eigenfunctions i t  is most convenient to specify some amplitude 

at a fixed point in space. Current observations measure conditions at the surface, 

and usually our normalization is ~n~(1) = I. From a physical point of view this is 
not necessarily a good choice, since surface amplitudes can be poor reflections of 

the eigenfunctions in the interior (e.g. Christensen-Dalsgaard, Dziembowski and Gough 
1980). I t  is sometimes more instructive to consider an L 2 norm of the displacement 

such as In,m, defined by 

In~m 4 ~  Po ~n~m'~n~m x2sinedxded@ = In~m sin2~n~ t ; (8) 

in~m = ½(1+6mo) ~3~ ~ I I0 P°[~2n~ + ~(~+ l)~2n~] x2dx ' (9) 

where aik is the Kronecker delta. This quantity is related to the total energy En~ m 

of the oscillations through the equation 

~ 2 ( I 0 )  En~m = ½1n~m MR2 mnc 

3. ASYMPTOTIC PROPERTIES OF MODES OF HIGH ORDER OR HIGH DEGREE 

We f i r s t  estimate the gravitat ional potential perburbation when n or ~ is 
large. Not only does this provide us with the asymptotic properties of these extreme 

modes, but also i t  should indicate the trends in all but perhaps the modes of lowest 

order or degree. 
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Relative to the mean displacement amplitude, l@n~ I decreases as n, or ~, 

increases, at least when n, or ~, is large: As n increases at constant ~, JWKB 

analysis shows that in the regions of the star where the displacement is significant, 

the displacement eigenfunctions of both the p and the g modes osci l la te spat ia l ly  

with a characteristic wavelength that is inversely proportional to n (e.g., 

Christensen-Dalsgaard, Dziembowski and Gough 1980). Thus according to Riemann's 

lemma applied to equation (6) one must expect that for modes normalized with In~ m = 

1, ~n~(1) s O(n-1) as n ÷ ®, and Papaloizou (private communication) has shown that 

@n~(1) S O(n-2). To determine the actual behavior requires a more careful asymptotic 

analysis (cf. Zahn, 1970). 

The behavior of ~n~(1) as ~ increases requires separate discussions for the p 

and g modes. For the global g modes the dominant factor is the decrease with ~ of 

the kernel K~(x) when x < 1. When ~ is large g modes are confined beneath the 

convection zone, and when ~ is sufficiently large they are trapped near the maxima of 

the buoyancy frequency. Thus the displacement amplitudes are significant only when x 

< x c < 1, for some x c that is at or beneath the bottom of the convection zone. 

Taking the axisymmetrical mode as an example, one can see from equations (6) and (9) 

that at fixed ~n~o, l@n~(1)l ~ 0(~I/2x~ ) as ~ ÷ ®" 

different. As ~ increases these modes become more 

surface layers of the star, where the density is 

The behavior of the p modes is 

and more severely confined to the 

low. Consequently they induce 

smaller and smaller absolute density perturbations. As ~ ÷ ®, the penetration depth 

is 0(~ IR). I f  the s t ra t i f i ca t ion  of the upper envelope is approximated by a 

polytrope of index ~, the mass involved in the oscillation decreases as ~-~-1. Hence 

for the axisymmetrical mode at constant~n~o,~n~ increases as 1+~/2 and @n~(1) = 
0(~'~12). 

I t  may be more natural to consider the behavior of @n£(1) at constant E n~m. 

As n ÷ ®, mn£ = O(n-1) for the g modes, whence ~n£(i) = 0(~ I ) ,  whereas for the p 

modes mn£ = O(n) and ~ n (1) ~ O(n-3). As ~ increases the g mode frequencies approach 

the maxima of the buoyancy frequency and the behavior of @n£(1) is the same as when 

the normalizationS., m = 1 is applied; for the p modes mn£ = 0(~1/2) as ~ ÷®, and 
@n~(1) : 0(~-(~+1)/2~ 

4. GRAVITATIONAL POTENTIAL PERTURBATIONS ASSOCIATED WITH MODES OF LOW ORDER AND 

DEGREE 

Surface amplitudes of the perturbations to the gravitational potential are 

presented in Table 1 for a selection of the modes of lowest degree. The equilibrium 

solar model is Model A of Christensen-Dalsgaard, Gough and Morgan (1979), whose 

properties are summarized in these proceedings by Christensen-Dalsgaard, Dziembowski 

and Gough (1980). The normal mode analysis was performed in the adiabatic 

approximation, in a manner similar to that described by Christensen-Dalsgaard, Dilke 
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and Gough (1974). 

The modes of lowest degree that perturb the gravitational potential outside a 

star are the quadrupole modes. Monopole perturbations in the gravitational potential 

are not possible because the mass of the star is conserved; osci l latory dipole 

perturbations are not possible because the external f ield would be precisely that of 

a spherically symmetrical mass distr ibut ion whose center of mass is moving with 

respect to the frame of the equilibrium model. Dipole perturbations to ~ are induced 

inside the star, however. One can see formally from the perturbation equations that 

the measure of the dipole moment ~n1(1) is zero, since when ~ = 1 the integral in 

equation (6) is proportional to the coefficient Cl of Christensen-Dalsgaard (1976), 

whose vanishing is equivalent to the stationarity of the center of mass. The essence 

of an alternative demonstration is given by Zahn (1970). Note however that had 

Cowling's approximation, which ignores ~ ' in the computation of~,  been used, the 

center of mass would have been predicted to move under dipole osci l lat ions. I f  @' 

were to have been computed subsequently from ~ using equation (6), i t  would have been 

found not to vanish when r > R. 

Inspection of Table i reveals that the decrease of I~n~(1)l with n and ~ at 
~ 

fixed In~ m discussed in the previous section is evident even when n and ~ are quite 

low. This is as one might expect, since when the density perturbation oscil lates 

on a shorter and shorter length scale, cancellat ion amongst i t s  

ons to the gravitational potential from different regions in the star 

spat ia l ly  

contributi 

increases. 

In trying to gain further insight into the nature of these modes, and to 

understand the differences between the results presented in Table 1 and those for a 

polytrope of index 3, one can be guided by JWKB analysis. Though str ic t ly  valid only 

for modes of large order, the results do correctly indicate the qualitative behavior 

of a l l  but the few lowest order modes. The asymptotic formula for~ is given, for 

example, by Christensen-Dalsgaard, Dziembowski and Gough (1980); we omit subscripts 

on eigenfunctions and eigenvalues from here on. I t  is evident that the spatial 

structure of ~ depends crucia l ly  on the value of ~ compared with the buoyancy 

frequency N and the acoustic frequency S~; i f  m is either'greater than or less than 

both N and S ~ the eigenfunctions are osci l latory in space, and i f  m l ies between N 

and S ~ they are evanescent. The p modes have frequencies that exceed appropriate 

averages of S ~, and g mode frequencies are less than appropriate averages of N. 

In Figure 2, N 2 and S~ are plotted for the solar model and the polytrope. 

The major differences between the two models are in the forms of N 2. When x ~ 0.64, 

N 2 is greater for the solar model, a result of the spatial variation in chemical 

composition produced by nuclear reactions. In the envelope, N 2 changes sign at the 

base of the convection zone of the solar model, whereas in the polytrope i t  remains 

positive and diverges towards the surface where the scale height fal ls to zero. 
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Table 1. 

~ ~ ~½ 

Mode Period(min) Inco ~n~ (1) @n~ ( I ) / I  n~o Jn~o 

2 P5 17.5 i . 8 x  10 -6 -3.8 x I0 -5 -2.8x I0 -2 -2 .1x  10 -11 

2 P2 32.4 4.5 x 10 -5 9.1x 10 -4 1.3x 10 -1 9.0 x i0 -I0 

2 Pl 43.4 3.1x 10 -4 -4.7 x 10 -3 -2.6x 10 -I  -6.3 x 10 -9 

2 f 48.2 1.3x 10 -3 -2.7 x 10 -3 -7.4x 10 -2 -4.0 x 10 -9 

2 gl 57.3 i . l x  10 -3 4.7 x 10 -3 1.4 x 10 - I  8.4 x 10 -9 

2 g2 65.6 3.8 x I0 -2 1.1x i0 -2 1.8 x 10 -1 2.2 x I0 -9 

2 g5 102 5.7 x i0 - I  1.7 x 10 -2 7.0 x 10 -2 5.4 x 10 -8 

2 g9 157 4 .1x lO -1 1.2 x I0 -2 1.8 x I0 -2 5.7 x 10 -8 

3 P5 16.6 9.5 x I0 -7 -1.6 x I0 -5 -I .6 x 10 -2 -9.5 x 10 -12 

3 P2 29.6 2.0 x 10 -5 3.3 x 10 -4 7.2 x 10 -2 3.5 x 10 -10 

3 Pl 39.8 9.5 x 10 -5 -1.3 x I0 -3 -1.2 x 10 -1 -1.8 x 10 -9 

3 f 43.5 2.0 x 10 -3 -9.3 x 10 -4 -2.0 x 10 -2 -1.5 x 10 -9 

3 gl 50.8 1.7 x i0 -3 1.1x 10 -3 2.6 x 10 -2 2.0 x 10 -9 

3 g2 57.4 1.5 x 10 -3 3.2 x 10 -3 8.0 x 10 -2 6.7 x 10 -9 

3 g5 79.4 l . l  x 10 -2 7.0 x 10 -3 6.6 x 10 -2 2.0 x 10 -8 

3 g13 158 8.1 x lO -1 5.2 x 10 -3 5.8 x I0 -3 3.0 x 10 -8 

4 P5 15.9 5.7 x 10 -7 -5.9 x 10 -6 -7.8 x 10 -3 -3.9 x 10 -12 

4 P2 27.8 1.1 x 10 -5 1.3 x 10 -4 3.8 x 10 -2 1.5 x 10 -10 

4 Pl 37.6 4.8 x 10 -5 -5.0 x 10 -4 -7.0 x 10 -2 -7.7 x 10 -10 

4 f 41.5 7.6 x 10 -3 -2.7 x 10 -4 -3.0 x 10 -3 -4.6 x 10 -10 

4 gl 46.9 3.3 x 10 -3 5.1 x 10 -4 8.8 x 10 -3 1.0 x 10 -9 

4 g2 52.3 2.9 x 10 -3 1.5 x 10 -3 2.8 x 10 -2 3.2 x 10 -9` 

4 g5 67.9 2.2 x 10 -3 3.5 x 10 -3 7.2 x 10 -2 9.9 x 10 -9 

4 g17 159 1.9 3.1 x 10 -3 2.2 x 10 -3 2.0 x 10 -8 

Photospheric amplitudes ~n~(1) of the perturbed gravitational potential for a selec- 

tion of modes of low degree. Included are the g modes with periods close to 160 m. 

The amplitudes ~n~(1) and the norms Into for the axisymmetrical modes correspond to 

the normalization ~n~(1) = 1. The quantity Jn~o is the value of $n~(1) for the 

axisymmetrical mode with rms radial velocity amplitude V, averaged over the photo- 

sphere, of 1 ms -1. To obtain the corresponding values Jn~m for values of m greater 

than zero, multiply Jn~o by [2(~-m)~/(~+m)~] ½. Jn~m scales l inear ly with V. For 

comparison, the corresponding measure J2 of the static gravitational quadrupole 

moment induced by a uniform rotation of the sun with period 25~4 would be 1.8 x 10 -7 . 
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Figure 2. Squares of the buoyancy frequency N and the acoustic frequencies Sp and S 4 
as functions of the fractional radius x. The ordinate scale on the le f t  corfesponds 

f R 3 i /2 to measuring the frequencies in units o (GM/ ) , the ordinate scale on the right 
indicates the corresponding periods in minutes. Continuous lines are for the solar 
model, dashed lines for the polytrope of index 3; for the lat~er i t  was assumed that 
the polytrope is composed of a perfect gas with y= 5/3. The cusp in N2 for  the 
solar model at x ~ 0.17 is an a r t i f a c t  which has probably resulted from having 
interpolated opacity tables l inearly.  
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Consider f i r s t  the p modes, whose motion is  almost r ad ia l .  These are 

evanescent in the cores of both models and osc i l l a to ry  in  the envelopes, except in a 

t h i n  l aye r  near the surface of the poly t rope.  The greatest  con t r i bu t i on  to the 

perturbed gravi tat ional  potential associated with such modes comes from near the base 

of the osc i l l a to ry  region. This is par t ly  because the sound speed c s increases with 

depth, and the wavelength of the spa t ia l  o s c i l l a t i o n s  does l i k e w i s e .  Thus the 

largest coherently moving mass of f l u id  is that ly ing beneath the innermost node in 

~. One might wonder, of course, whether the decrease with depth of the osc i l l a t i on  

amplitude outweighs th is  factor,  but i t  is not the case. In the JWKB approximation 
x - l~c  )- I /2 C:d varies approximately as s sin (mr x) in the osc i l l a to ry  region, so the 

equation (6) is approximately proportional to xZ(P/Cs)i/2 sin (m~ I dx). integrand in 

Provided ~ is not too large, the rapid var ia t ion of p/c s causes the amplitude of the 

sinusoid to increase with depth. 

I t  is  evident f rom t h i s  argument that  at x : I the phase of the p-mode 

gravi tat ional  potential perturbation is determined by the displacement beneath i t s  

innermost node. Thus ~(1) is  negat ive f o r  odd order modes and p o s i t i v e  fo r  even 

modes, i r r e s p e c t i v e  of degree. I t  is  also evident tha t  because the dens i t i es  and 

sound speeds in the solar model and polytrope are roughly s im i la r  throughout most of 

t he i r  i n te r io rs ,  as can be seen from Figures i and 2, so must be the eigenfunctions. 

Consequently the amplitudes~(1) predicted by the two models should be very s im i la r ,  

provided the eigenmodes are normalized to have constant energy; th is  is indeed the 

case. There is  some d i f f e rence ,  however, when the normal iza t ion  is  a constant 

surface displacement. Because in the polytrope density f a l l s  the more steeply with 

radius near the surface,  the displacement e igenfunct ion r i ses  the more rap id l y .  

Hence at f ixed surface amplitude, the polytropic p modes have the lower energy, and 

perturb @ less. 

The differences between g modes of the solar model and the polytrope are more 

complicated, and here we shall concentrate on the major aspects that concern ~. One 

can see from Figure 2 that in the solar model g-mode eigenfunctions are osc i l l a to ry  
2 < 2  2 2 

in the i n t e r i o r ,  where ~ N and m < So and the modes behave l o c a l l y  as g modes, 
2 > ~2 2 > S~ and the modes behave l oca l l y  and also in the outer regions where m N and 

as p modes. There is a th in evanescent region between. On the other hand polytropic 

g modes are osc i l l a to ry  only in the in te r io r .  A second notable dif ference between 

the models is  that  the v a r i a t i o n  of N 2 in the region where the kernels  K ~ are 

substantial is  less in the polytrope than i t  is in the solar model. 

The JWKB approximation to the radial displacement for  g modes is (x3pN) - I / 2  

s in [m - I  v ~  I x " INdx ] .  Because in the so la r  model N decreases wi th  x in the 

region where K ~ is r e l a t i v e l y  large, the wavelengths of the g modes increase with x. 

In the o s c i l l a t o r y  region above x : 0.3, the ampl i tude of the s inusoid in ~he 

asymptotic approximation increases with x, almost exact ly compensating the decline in 
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K~(x) in the in tegrand in  equat ion (6) when ~ : 2, and overcompensating when ~ • 2. 

Moreover, except f o r  the modes of  lowest  order ,  the o s c i l l a t o r y  region in the 

convect ion zone is  too weak to produce a node in  the d isp lacement  e igen func t i ons .  

Thus one would expect the dominant cont r ibut ion to~ (1 )  to come from the region above 

the outermost node, and t h i s  is  indeed the case f o r  a l l  the g modes l i s t e d  in Table 

I ,  even though the amplitudes of the osc i l l a t i ons  in t he i r  eigenfunctions increase 

with x more slowly than (x3pN) 1/2. In this outer region n •0, being m-2~ at x = I 

i f  m is measured in units of (GM/R3) 1/2, and consequently ~(I) • O. 

Except for the modes of lowest order, n is equal to the number of nodes in~. 

Because the variation of N causes the relative spacing of those nodes to vary with x 

more widely in the solar model, the uppermost node is deeper in the sun than i t  is 

for a mode with the same n and ~ in a polytrope of index 3. Thus there is a larger 

mass osci l lat ing in phase where the contribution to @(1) is greatest, and the 

potential perturbation at constant I is greater for the solar model than for the 

polytrope. For the g5(~ = 2) mode, for example, ~ ( I ) / I  I/2 for the solar model is 

five times that for the polytrope. This difference is reduced, but not removed, i f  

the comparison is made at constant amplitude of the displacement at the surface, 

since the larger evanescent region in the polytrope produces a greater reduction in 

the surface amplitude relat ive to the amplitude in the inter ior .  The rat io of the 

potential perturbations in the two models due to g5(~ = 2) osci l lat ions with l ike 

surface amplitudes is only 2.5. Note, however, that this compensating factor 

decreases as the period increases above about 140 m, since the evanescent region then 

increases for the solar model and decreases for the polytrope. 

We should remark that i f  instead comparison between the solar model and the 

polytrope is made at constant surface amplitude for g modes of the same degree but 

with about the same frequency, the differences are reduced s t i l l  further, because in 

the oscillatory regions N2is lower for the polytrope and therefore n is lower for a 

given frequency. The values of~(1) for quadrupole modes in the solar model with 

periods near 160 m are only about 30 percent greater than those of polytropic modes 

with s imi lar periods. We should also note that a solar model with a deeper 

convection zone, and hence a larger evanescent region at low frequencies, produces 

higher values of ~(1) at fixed surface amplitude. For example, a model with heavy 

element abundance Z = 0.02 computed with the stellar evolution program described by 

Christensen-Dalsgaard (1980) has a convection zone 2.0 x 10 5 km deep, in agreement 

with conclusions drawn from analyses of the five minute oscillations by Berthomieu et 

al. (1980) and Lubow (1980). This model supports a glO(~ = 2) mode (whose period of 

166 m is the closest amongst the quadrupole modes to 160 m) which for a given surface 

amplitude has an associated$(1) some 50 percent greater than that quoted in Table 1 

for g9(~ = 2). 

The discussion above describes all but the solar f, gl and g2 modes. In the 
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polytrope the gl and g2 modes follow the trends of the g modes of higher order and 

the f mode is a genuine surface mode; but in the solar model the surface oscillatory 

region imparts a strong p-mode character to these oscillations, and the f mode has g- 

mode character in the deep interior where i ts frequency is below N. Consequently the 

solar modes tend to have more nodes than their  polytropic counterparts, which 

produces substantial cancellations in the integral in equation (6), reduces $(1) 

below the polytropic values and, in the case of the f mode, even changes its sign. 

5. DISCUSSION 

Of the modes of low degree, quadrupole osci l lat ions generate the greatest 

perturbations to the gravitational potential when normalized to constant photospheric 

velocity amplitude. Moreover, i t  is the quadrupole perturbations that decline most 

gradually with distance from the sun.  Therefore the o s c i l l a t i o n s  that 

extraterrestrial probes are most l ikely to detect are those with ~ = 2. 

I t  is straightforward to show that a solar quadrupole oscillation with rms 

photospheric radial velocity amplitude V would perturb the velocity of a body in 

orbit a distance d from the center of the sun by an amount whose component along the 

line of sight to the earth is about 

i 
v= ~Jn2m "-'~I 2 GM 

dm-~n2m V sin(~n2mt + ~) ( I I )  

Here ~ is a factor of order unity and the values of ~ and ~ depend on the elements of 

the orbit and m. An electromagnetic signal to the earth of frequency ~emitted by 

such a body would be Doppler shifted by an amount A~ = ~v/c, where c is the speed of 

l ight .  In the period range 102 - 104s, according to Estabrook et al. (1979), i t  

should be possible to detect osci l lat ions in the Doppler sh i f t  of signals from 

extraterrestrial probes i f  the amplitudes a~/v are no less than a few parts in 1Q 15, 

and one such probe is planned to pass within about 3 solar radii of the sun. 

Suppose, for example, we regard the solar g9(~ = 2) osci l la t ion as a 

contender for the cause of the 160 m spectral line shift oscillations discovered by 

Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976). This mode 

would induce in a signal from a probe an osci l latory Doppler sh i f t  with amplitude 
-1 

av/v : 1~ IOv(R/d) 4, where V is measured in ms Though i t  would be naive to 

believe that the solar l ine shif ts measured by Brookes, Isaak and van der Raay 

(1976); and Severny, Kotov and Tsap (1976) are simply the result of a pure Doppler 

shift from the large scale oscillation velocity of the mode, i t  is not unreasonable 
-1 

to suspect that the quoted sh i f t s  of about 1 ms might not be wholly 

unrepresentative of the oscillation amplitude V. I f  that were indeed the case, the 

gravitational f ie ld  perturbations of at least the 160 m osci l lat ions should be 



380 

detectable' Moreover, the amplitude of the osc i l la tory  gravitat ional quadrupole 

moment would be only a factor 3 or so less than the stat ic  component J2 induced by 

centrifugal forces i f  the solar rotation were approximately uniform. 

We are grateful to G.W. Gibbons, J. Hough, J. Papaloizou, J.E. Pringle, R. 

Scuflaire and J. Weber for interesting conversations on this subject. 
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ABSTRACT 

An improved observing technique has been used to look for long period 

oscillations in the brightness of the extreme solar limb. This technique provides a 

means for analyzing power spectra to secure a signature characteristic of the 

signal's origin. Results show significant improvement in the discrimination between 

solar oscillations, other signals, and noise. Long period intensity oscillations can 

be seen at the extreme solar limb. 

1. INTRODUCTION 

In the last few years, interest in s te l lar  and solar pulsation has been 

growing. Knowledge of solar pulsations in particular has expanded greatly with the 

ident i f icat ion of the f ive minute osci l lat ion as the superposition of many low 

amplitude p-modes (Deubner 1975) and the discovery of longer period (up to 1 hour) 

osci l lat ions (Hill and Stebbins 1975; Brown, Stebbins and Hil l  1978), a very long 

period (2 hr 40 min) osci l lat ion (Severny, Kotov and Tsap 1976), and short period 

osci l lat ions (e.g., Deubner 1976). With the exception of the f i r s t ,  all of the 

others are exceedingly d i f f i c u l t  to detect by any method. Naturally, researchers 

sought stronger confirmation through intercomparison of di f ferent observational 

methods. Such intercomparison (see Hill 1978 for a summary) based on the theory of 

solar pulsation, did not confirm the d i f f i c u l t  observations. Further, the 

1Operated by the Association of Universities for Research in Astronomy, Inc. 
under co~tract AST 78-17292 with the National Science Foundation. 

~Summer Research Assistant 1979, Sacramento Peak Observatory 
~Summer Research Assistant 1977, Sacramento Peak Observatory 
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intercomparison revealed contradictions in the easy observations, namely the robust 

f ive minute osci l lat ion. This has prompted, in some circles, reexamination of 

pulsation theory as applied to the solar envelope. The program reported here 

attempts to provide empirical answers to questions about the theory. 

The theory of pulsation begins with the conservation laws, conservation of 

mass, conservation of momentum, and conservation of energy from which a wave equation 

can be derived. Sink and source terms must be f i l led in expl ici t ly; most notably the 

radiative dissipation is represented by the Eddington approximation. Assuming small 

amplitudes, the equations are linearized. The particular solutions are computed with 

the aid of a model atmosphere and physical parameters such as the pressure and 

temperature derivatives of the opacity. The solutions predict the eigenfunctions, 

both amplitude and phase, versus height for displacement, velocity, temperature, 

pressure, etc. In order to arrive at a general solution, some assumption must be 

made about the boundary conditions so that some linear combination of solutions can 

be computed. In this paper, nature's solution is examined for insight into the 

theoretical approach. 

The solar f ive minute osci l lat ion is the most easily observable s te l la r  

pulsation known. I t  is robust. I t  can be spat ia l ly  resolved on the sun's surface. 

I t  can be resolved, to so~e extent, in height throughout the photosphere and low 

chromosphere. The varying superposition of p-modes naturally generates a range of 

amplitudes from 25 m/sec (lower amplitudes are very uncommon) to 1000 m/sec. Theory 

(H i l l ,  Caudell and Rosenwald 1979) predicts these modes should have s imi lar  

eigenfunctions (< 10% maximum, point-to-point variation between displacement 

eigenfunctions below the temperature minimum). This is important since the changing 

superposition might otherwise result in a changing solution. One dif f icul ty,  common 

to all observations of spectral lines, is separating line formation effects from the 

global pulsation effects. This problem wil l be addressed in future work; the focus 

in this paper is the observed velocity response, i ts form and linearity. 

2. METHOD 

The method used to analyze the velocity response is somewhat intricate. To 

prepare the reader, i t  is summarized beforehand. A high resolution spectral l ine 

profile is acquired every few seconds for about forty minutes. This time sequence of 

l ine profi les is reduced to nine velocity time series by determining the Doppler 

shift at nine depths in the line. From each velocity time series, a time series of 

velocity amplitude is then extracted, the collection of which characterize the 

velocity eigenfunction. A relative eigenfunction is obtained by selecting one string 

as a reference and computing the rat io of the amplitude at each of the other l ine 

depths to the reference depth. An average, relat ive eigenfunction is obtained by 

averaging the eight ratios over al l  time steps and al l  time strings. Standard 
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deviations are similarly compiled. The final result is an average velocity amplitude 

at eight photospheric heights in the units of the amplitude at the reference height. 

Each average is accompanied by i ts standard deviation. 

In a parallel analysis of the amplitude time series the l i near i t y  of the 

photosphere's response to an oscillation can be tested by comparing the response at 

each l ine depth with the response at the reference depth as the amplitude of 

oscillation changes. To this end, the amplitudes are discretized into 25 m/s ranges, 

the time strings are searched, and the occurrences of a part icular amplitude and 

associated reference amplitude are counted for each line depth. The result is eight 

two-dimensional histograms showing the frequency of occurrence of an amplitude at one 

depth when a given amplitude is found at the reference depth. The ridges in these 

functions are straight in the event of linear response, and curved in the presence of 

non-linearities. So much for the summary. 

An Fe I spectral l ine, 5434A, was chosen for the work reported here; three 

pther Fe I lines were also used, but w i l l  be reported elsewhere. This l ine is 

distinguished by being the g = 0 l ine formed at the greatest height (530 km above 

T5000 = 1, Altrock et al. 1975); i t  is also unblemished by blends and blessed by a 

mul t i - level ,  non-LTE calculation. The data were acquired using the Vacuum Tower 

Telescope, the Echelle spectrograph and the Diode Array at Sacramento Peak 

Observatory. The spectrograph sampled a small patch 1" x 4" at disk center; the line 

profile and surrounding continuum were digitized into 64samples, each 14.6 ~ wide. In 

8.55 seconds the prof i le was sampled 512 times, averaged and recorded. This 

procedure was repeated 256 times to form a sequence approximately 37 minutes long. 

The data used here, 57 sequences, have been selected to exclude those 

affected by clouds, instrumental problems, and other non-solar idiosyncrasies--about 

35 hours of data. These data were gathered in two observing runs, 7-8 November 1978 

and 8-12 February 1979. 

Data reduction was begun by interpolating the line profiles on a four-times 

denser grid using Fourier bandwidth limited interpolation (the Fourier methods used 

in this study follow the work of Brault and White 1971). High spectral frequencies 

were suppressed to reduce ringing between original data points. The interpolation 

was performed in anticipation of determining the bisector of the l ine between 

original data points. Fourier interpolation followed by linear interpolation On the 

denser grid improves the accuracy of bisector determination over simple l inear 

interpolation on the original grid. 

Before proceeding with the velocity derivation, i t  is wise to careful ly 

define the measurement leading to velocity. Generally, an oscillation wil l  affect 

the spectral l ine position through the Doppler sh i f t  and the spectral l ine shape 

through induced, frequency dependent, intensity variations. Ideally, one would l ike 

to follow the velocity of one gas element on the sun by tracing the changes at one 
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depth in a spectral l ine. However, opacity perturbations may well cause l ight  

forming a particular part of a spectral line to emanate from slightly different parts 

of the solar atmosphere during an osci l lat ion. Rigorous ident i f icat ion of the 

Doppler shi f t  would require better knowledge of l ine formation than is presently 

available, and a very detailed description of the pulsation. Progress can be made, 

though, through empirical definition of a "velocity-like" signal. 

The grid of l ine depth points is defined by a preselected series of l ine 

widths, the f i r s t  width being the spectral sample size and successive widths being 

two sample sizes larger than the previous. In this manner, nine depth points are 

defined which correspond to independent spectral samples. The velocity associated 

with a preselected width is determined by locating the bisector of the line at that 

point where the line has that width. Thus the reduction proceeds by analyzing each 

line profile for a bisector at nine different line widths and forming time strings of 

these nine quantities. Figure 1 shows a sample line profi]e and the line depths at 

which the velocities are determined. Quantities pertaining to the depth points wil l  

be referred to by the numbers 1 to 9 ranging from the deepest to the shallowest point 

in the line, or from the highest to the lowest point in the solar atmosphere. 

The nine time strings (see Figure 2) are bandpassed using Fourier methods. 

Processing removes the average and a linear trend, applies a 10% cosine bell to the 

end points, Fourier transforms the signals into the frequency domain, and bandpasses 

the transform. The bandpass f i l t e r  tapers the transform from zero at 1.125 mHz to 

i ts  fu l l  value at 2.475 mHz and from fu l l  value at 4.725 mHz to zero again at 6.075 

mHz, the fu l l  width at half maximum is 3.60 mHz, centered at 3.60 mHz. The f i l t e r  

parameters were chosen to include all power in the five minute band as manifested in 

an average of 30 power spectra. The bandpassed transforms are used to generate the 

oscillatory amplitude as a function of time. 

The amplitude A(t) of a time series x(t) can be computed from a complex 

function called the analytic signal z(t), 

z(t) = A(t) exp ( i~[ t ] )  = x(t) + i~(t) , (1) 

where @(t) is the phase and ~(t) is the quadrature function associated with x(t), the 

signal under analysis. The signal and its quadrature form a Hilbert transform pair, 

defined by 

~(t) ~ principal value of I ~ ;  = x(T)d~} 
T - t  (2) 

The amplitude is the magnitude of the analytic function which can be easily computed 

from the discrete Fourier transform. For further information on the analytic signal 

and Hilbert transforms, see White and Cha (1973), being leery of sign errors, 
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Middleton (1960), and Bracewell (1965). By these means, the velocity amplitudes at 

nine different heights in the solar atmosphere are obtained at each time step (see 

Figure 3). Because of the slowly decaying kernel in equation (2), the f i r s t  and last 

10% of the time strings are excluded from the accumulations of averages described 

below. 

The time series are examined time-step-by-time-step wherein the ratios of the 

velocity amplitude at the comparison depth points to that at the reference depth are 

computed and accumulated in a running sum for each comparison depth. The squares of 

the eight ratios are s imi la r ly  accumulated for later  calculation of a standard 

deviation. Time steps where the reference velocity amplitude is less than 125 m/s 

were excluded from the accumulations because of the ratio's susceptibility to noise 

in a small denominator. After al l  time series have been scanned, the mean and the 

standard deviation of the mean are computed for each l ine depth. In a l l ,  9,755 

points contributed to the averages. 

The result of this procedure is the mean variation of velocity amplitude as a 

function of height in the solar atmosphere. Velocity amplitude appears in the units 

of the amplitude at the reference height, i.e., amplitudes are normalized to 1.0 at 

height #6. The height in the atmosphere is implied through l ine width. In short, 

the result is a normalized velocity eigenfunction presented as a peculiar height 

scale. 

The amplitude time series are easily reduced to show the l inear i t y  of the 

photosphere's response to an oscillation. As the time steps are scanned, each line 

depth, including the reference, is categorized as fa l l i ng  into a 25 m/s amplitude 

interval. For each line depth, the occurrences of a particular velocity amplitude 

and corresponding reference amplitude are counted. The result is eight two- 

dimensional histograms whose independent variables are reference amplitude and 

amplitude at a particular line depth. When plotted, this function shows the velocity 

amplitudes occurring at one height in the solar atmosphere for a given reference 

amplitude. 

3. THE EIGENFUNCTION 

The normalized velocity eigenfunction derived by the method described above 

is shown in Figure 4. The function plotted there monotonically decreases from line 

depth #1 to a minimum near depth #8 followed by a faint  upturn at depth#9. The 

standard deviation of the mean at each depth is equal to or less than .0044, less 

than the width of the l ine. By this measure, the means are al l  systematically and 

significantly different. Note that the standard deviation need not be due to noise 

alone, but rather may be due in part to a systematic variance in the signal, as wi l l  

be discussed in the next section. Using the standard deviation as an indicator of 

significance is graciously conservative. 
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What can be deduced from this figure? In i t ia l l y ,  one might question whether 

anything at al l  can be learned from a d i f ferent ia l  investigation of veloci t ies 

determined at several points within one spectral line. The spectral sampling relates 

to an atmospheric height sampling through a contribution function. The contribution 

functions for the different line depths are not well known, probably overlap, and are 

l i ke l y  influenced by the presence of an osci l lat ion. Figure 4 clearly shows that 

systematic and unique height samples can be obtained. Ultimately, one would like to 

know what height range was being sampled by a Doppler measurement at one depth in a 

l ine. But for the purposes of this paper, this clear demonstration of height 

resolution wil l  suffice. 

The more enlightening feature of Figure 4 comes from a comparison to 

theoretical eigenfunctions. To do this completely requires associating each l ine 

depth with a physical height in the photosphere, via line formation theory. However, 

the essential deduction can be gotten by noting that the depth samples span the 

photosphere and comparing the observed and predicted photospheric variation in the 

eigenfunction. Based on a multi-level, non-LTE model, Altrock et al. (1975) find Fe 

I 5434 A l ine center formed at 530 km above T5000 = 1; the same locates the 

temperature minimum at 555 km. Ninety percent of the contribution function comes 

between 420 km and 730 km. For al l  practical purposes, l ine formation theory 

predicts that depth point #9 is formed at the bottom. Between these two points, the 

observed eigenfunction, shown in Figure 4, changes by a factor of 1.62 from minimum 

to maximum. 

There appears to be only two theoretical calculations of photospheric, 5 min 

eigenfunctions in the literature. The f i r s t  (Ando and Osaki 1975) is not ideal for 

this comparison, but f a i l s  to show a minimum in the low photosphere and has a 

minimum-to-maximum change of a factor of 1.2. The second (Hi l l  1978, Figure 6.1) 

qual i ta t ive ly  has a very simi lar form, most notably the minimum in the low 

photosphere. Though this calculation extends only to T5000 = .002 (about 380 km in 

the model above), the minimum-to-maximum variation is 2.54. I f  the theoretical 

eigenfunction continues to rise beyond ~5000 = .002 as the empirical eigenfunction 

does in i ts upper reaches, the theoretical variation wi l l  be 2-3 ~imes the observed 

variation. Clearly, either this l ine is not formed where l ine formation theory 

predicts, or pulsation theory is lacking something. 

NONLINEARITY 

Three of the eight two-dimensional histograms are shown in Figure 5. One 

notices f i r s t l y  that each plot has a dominant ridge running from lower le f t  to upper 

r ight,  but that otherwise the plots are dif ferent. The histograms for l ine depth 

points #1, 4 and 9 vary in width, subordinate ridges and peaks, and s l igh t l y  in the 

orientation of the dominant ridge. The f i r s t  and last have a very complex 
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topography. 

The primary concern is whether the ridges are generally straight or not. I f  

the relat ive velocity amplitudes between, say, l ine depth #1 and l ine depth #6 are 

constant for al l  size osci l lat ions, then the ridge should be straight, and the 

oscillating system is linear. Said another way, the relative eigenfunction does not 

change with wave amplitude. To test this l inearity, a straight line has been f i t  by 

eye to the ridge section encircled by the highest contour. [Numerical averaging 

and/or f i t t i n g  tends to get confused by the subordinate ridges and peaks. The 

straight line shown happens to agree with the averages in Figure 4.] I f  the system 

is linear, the ridge line extrapolated from low velocities should coincide with the 

ridge line at high velocities. 

These three contour plots show that ~he dominant ridges have roughly the 

correct slope and the slope decreases from l ine depth #I to l ine depth #9 as 

expected. The differences between the plots demonstrate height resolution once 

again. 

The most important deduction from these histograms is the nonlinearity 

indicated by the straight l ine. Above 500-600 m/s reference amplitude, the ridge 

l ine extrapolated from low amplitudes is systematically below the apparent ridge 

line. This is most apparent for l ine depth #1, as expected where the greatest 

altitude difference lies. This nonlinearity occurs at velocities more than an order 

of magnitude below the sound speed. 

The last observation to be made from these plots is the complex topography in 

Figures 5a and 5c. The peaks connected to the dominant ridge by low ridges are not 

l ikely random noise by virtue of the number and concentration of occurrences of these 

velocit ies. They suggest an eigenfunction that is altered occasionally by a 

recurring change in physical conditions. This variance in the signal contributes to 

the standard deviation mentioned in the previous section. 

5. CONCLUSIONS 

The solar five minute oscillation can be a useful diagnostic of pulsations in 

a stellar atmosphere. The five minute oscillation is readily detectable over a wide 

amplitude range and, as shown here, the height dependence can be resolved. Further, 

i t  is important to solar physics to understand pulsation in this most observed 

region. 

The empirical eigenfunction provides a valuable test of pulsation theories. 

Of the two theories examined one differs qualitatively in functional form but more 

closely predicts the quantitative minimum-to-maximum variation. The other agrees 

well in functional form, but predicts 2-3 times the minimum-to-maximum variation 

observed. The latter theory incorporates a different approach to boundary conditions 

which mixes in a solution giving the observed functional form. However, unless the 
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line formation theory is grossly in error, the calculated eigenfunction is not nearly 

as f lat  as the observed eigenfunction. A limitation in the treatment of pulsations 

seems to be indicated. 

The evidence for nonlinearity also reveals complications for pulsation 

theory. The velocity response at mid-altitudes seems to be depressed relat ive to 

other heights for velocities greater than 500 m/s. This may be the manifestation of 

amplitude dependence in line formation processes. This point wil l  be addressed in a 

later  report. I f  the nonlinearity is t ru ly  in the atmosphere's response, then i ts  

cause needs to be uncovered and accounted for by the theory. 

The complex behavior seen in two of the histograms complicates the picture. 

The eigenfunction appears to vary in time. Understanding the physics of waves in the 

solar atmosphere wil l  require understanding this temporal behavior. 

We wish to thank Horst Mauter, Dick Mann and Gary Phil l is for their observing 

support on this project. Jacques Beckers, Timothy Brown, Dick White and Lawrence 

Cram have made helpful comments during the course of this work. Ms. Christy Ott 

prepared the manuscript and revisions. 
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ON THE STUDY OF GLOBAL OSCILLATIONS OF THE SUN VIA 

FLUCTUATIONS IN THE SOLAR LIMB DARKENING FUNCTION 

J. Knapp, H.A. Hi l l  and T.P. Caudell 
Department of Physics 
University of Arizona 

ABSTRACT 

Global solar oscillations have been shown to be primarily observable through 

changes in the solar limb darkening function. The observational search for these 

changes is hampered by problems associated with changes in the earth's atmosphere. 

Attempts by several investigators to deal with these problems are reviewed and the 

results are reproduced from the most successful of these. The pros and cons of the 

various techniques used in these observations are brought into focus by an analysis 

of their individual abi l i ty to deal with the earth's atmosphere. 

1. INTRODUCTION 

One of the more surprising results to come from the study of global solar 

osci l lat ions with periods between ~ one hour and f ive minutes is the ab i l i t y  to 

detect their presence primarily through changes in the solar limb darkening function, 

I ( r )  (H i l l  and Caudell 1979). This property c lea r l y  points to a lack of 

understanding of the processes influencing the photospheric portion of the 

eigenfunctions of these oscillations (Hil l , Rosenwald and Caudell 1978; Keeley 1977). 

Directly observing the spatial properties of the Eulerian perturbation in radiation 

intensity, I ' ,  near the solar limb, insight germane to the c la r i f i ca t ion  of this 

problem may be gained. In addition to obtaining a better understanding of the 

physics in the solar envelope, determination of the spatial properties of a given 

normal mode could be helpful in ascertaining its modal classification, in designing 

forthcoming observing programs, and in planning second generation telescopes for the 

study of solar oscillations. 

Identifying the component of I' associated with the global osci l lat ions 

requires the establishment of an appropriate inertial coordinate system in which to 

make measurements of I. A means of discriminating against the numerous non-periodic 

solar phenomena (Keil and Worden 1980) and against the non-periodic fluctuations in 

the earth's atmospheric column density along the line of sight (Fossat et al. 1977; 

KenKnight et al. 1977) is also necessary. The need for this iner t ia l  coordinate 

system and the techniques available to address this class of problems are both 
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generally overlooked. I t  is with this in mind that in the following we review the 

origin of these problems and the techniques that can be used to overcome the 

l imi ta t ions they pose. In the last section the results from the successful 

application of these techniques by Hi l l ,  Knapp and Caudell (1980) to study the global 

oscillatory component of I' are summarized. Also presented are the results of their 

work on the isolat ion of the atmospheric d i f fe rent ia l  refraction contribution to 

solar diameter measurements. 

2. EULERIAN PERTURBATIONS AND REFERENCE FRAMES 

For some time the need has been appreciated for care in theoretical 

studies of perturbations in, for example, hydrodynamic systems wherein two types of 

perturbations are commonly used; the Lagrangian and the Eulerian. However, only 

recently has i t  become necessary to exercise similar care in theoretically predicting 

from the eigenfunctions the properties of observed quantit ies (see Appendix A of 

H i l l ,  Rosenwald and Caudell 1978). This has consequently required caution in the 

planning and interpretation of observations on global oscillations of the sun. I t  is 

this latter point that we wish to examine here. 

Many types of solar observations require no part icular  care in making the 

observations relat ive to, for example, the center of mass of the sun. However, i f  

observations of solar oscillations are being made near the solar limb with reference 

to a loca l ly  defined edge of the solar disk, as is the case in many instances, the 

fluctuations observed in I are generally being measured in a moving reference frame. 

The correction term encountered in the transformation back to a coordinate system 

fixed with respect to the center of mass of the sun is simply the f i r s t  spatial 

derivative of the limb darkening function over the region of observation multiplied 

by the physical displacement of the local coordinate system relative to the center of 

mass of the sun. This correction term is typically the same size as the fluctuations 

in I measured in the moving frame. Should the motion of the reference frame not be 

measured, i t  is subsequently d i f f i c u l t  i f  not impossible to compare theory and 

observations of changes in the limb darkening function. 

Two examples of this type of d i f f i cu l ty  may be found in the solar limbedge 

work of Brown (1979)and Stebbins (1980). For both cases, measurements were made 

only on one limb yielding no knowledge of the moving coordinate system with respect 

to the center of mass of the sun. In the case of the work by Stebbins (1980) wherein 

the problems arising from the earth's atmosphere (see §§ 1.3 and 1.4) have been 

overcome, i t  was possible to ident i fy  an important feature of I ' but not able to 

recover I' completely. 

An appropriate reference frame may be established in order to study I' by 

making distance measurements (simultaneous with those of I) from the edge of the sun 

under study to the diametrically opposite limb of the sun. For the lower values of 
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~, the principle order number in the spherical harmonic describing the spatial 

properties of a global mode, the diameter obtained using the f in i te Fourier transform 

def ini t ion (FFTD) of an edge on the solar limb (H i l l ,  Stebbins and Oleson 1975) is 

primari ly sensitive to even values of ~. Thus for even ~, the centroid of the 

measured diameter is expected to coincide with the center of mass of the sun and the 

amplitude of the diameter changes is twice the displacement of the local coordinate 

system of measurement. The even ~ components of I can be projected out by averaging 

the observed I from the two diametrical ly opposite limbs. Thus i t  is possible to 

establish an appropriate coordinate system for the study of the spatial properties of 

a global osci l latory component in I',providing the values of ~ are low. This 

technique has been used by H i l l ,  Knapp and Caudell (1980) to study I' (this work is 

reviewed in §6). 

I t  should be emphasized that the simultaneous measurements of I at 

diametrically opposite limbs and the associated diameter w i l l  permit the 

establishment of an appropriate coordinate system, but, in itsel~ does not allow for 

the removal of seeing effects or fluctuations in the column density of the earth's 

atmosphere. Other techniques are required for this, as are described in the following 

sections (§§ 4 and 5). 

3. GLOBAL OSCILLATORY COMPONENT OF I': IDENTIFICATION 

The spectrum of global osci l lat ions of the sun appears to be quite rich in 

the spectral range between ~ one hour and five minutes (cf. Brown, Stebbins and Hill 

1978). This fact coupled with the small size of the signals associated with the 

global oscillations makes the process of adequate noise discrimination, as well as the 

determination of their spatial and temporal properties, quite di f f icul t .  There is at 

this time one technique which far exceeds all the others in i ts potential to identify 

a particular global oscillation. This technique exploits the long "lifetime" of the 

global oscillations as embodied in the phase coherence of the oscillations; i t  has 

been used by Hi l l  and Caudell (1979); Caudell and Hi l l  (1980); and Caudell et al. 

(1980) with particularly impressive results in the latter of these. 

4. ATMOSPHERIC SEEING 

Efforts to remove the effect of seeing in the study of solar oblateness has 

led to the development of the f in i te Fourier transform definition (FFTD) of an edge 

of the solar limb, mentioned ear l ier ,  which is quite insensitive to atmospheric 

seeing effects (Hi l l ,  Stebbins and Oleson 1975). The FFTD can also be used to 

minimize seeing effects in the study of I '. An example of where the FFTD has been 

applied to such a study is found in the work of Stebbins (1980); he studied the 

location of the edge given by the FFTD as a function of the fraction of the limb used 

in the FFTD. In this manner Stebbins was able to obtain the f in i te Fourier transform 
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f ree of  seeing e f f ec t s  of the I '  (cf .  H i l l ,  Stebbins and Oleson 1975) in an 

o s c i l l a t i n g  coordinate system. 

The observing program of Stebbins (1980) can be thought of as f i r s t  using the 

FFTD to establ ish a coordinate system not inf luenced by seeing and then fu r ther  using 

the FFTD to study the f i n i t e  Four ie r  t rans form of I '  in  t h i s  moving coord ina te  

system. This procedure requ i res  re la t ive ly  ex tens ive  computat ions and ra ises  the 

question: Is i t  feasib le to use the FFTD to only establ ish a coordinate system not 

inf luenced by seeing and then examine d i r ec t l y  in those moving coordinate systems the 

f luc tua t ions  in the rad ia t ive in tens i t y  I' m (the subscript m denotes I '  measured in 

the moving frame of reference)? An example of th is  technique is found in the work of 

Brown (1979). 
I I t  is  c l ea r  in t h i s  case tha t  the seeing c o n t r i b u t i o n  I s to I m should 

manifest i t s e l f  in the form of d21 ~2 
Is = ~ " (1) 

whereo2 is the variance of the seeing transfer function. The temporal properties of 

I s are essentially given by that of ~2 while the spatial properties are determined by 

d21/dr 2. A typical ~ obtained by the technique under discussion at 0.4 mHz is shown 

in Figure 1 and a sample of d21/dr 2 is shown in Figure 2. The signature of d21/dr 2 

is apparent in Figure 1 and unfortunately, i t  is not possible to correct the results 

in Figure 1for  seeing without additional information.fThis is in fact one of the 

unresolved problems found in the analysis of Brown and Harrison (1979, 1980). 

An alternative approach is available to remove the seeing contribution to 

fluctuations in I and simultaneously identify the global oscillatory component of I'. 

This approach taken by Hi l l ,  Knapp and Caudell (1980) uses the oscillatory components 

of the solar diameter (defined with the aid of the FFTD) exhibiting the long term 

phase stabil i ty as a reference Signal to "phase sensitive detect" the corresponding 

phase coherent osci l latory component of I ', This procedure strongly discriminates 

against the seeing contribution due to the lack of long term phase coherency in the 

seeing. The work of Hi l l ,  Knapp and Caudell (1980) does not show the characteristic 

seeing signature of Figure 2 and is summarized in § 6. 

The framework for a third approach has been constructed. In this work by 

Hill et al. (1979) a formalism has been developed where, in a systematic convergent 

procedure, a weighting function different from that used in the FFTD is assembled to 

define an edge of the sun which possesses a low sensitivity to seeing similar to that 

in the FFTD. However, the new edge definition wil l  in general exhibit a sensitivity 

to changes in the limb darkening function dif ferent from that of the FFTD. These 

dif ferent sens i t iv i t ies  may be used to infer information on I'. Although no 

application of this technique has been made to date beyond the preliminary work of 

Ballard (1978), i t  may prove quite useful in future work. 
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Figure 2. A typical second spatial derivative of the observed limb darkening 
function I(r) over the region of interest. 
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5. AIR MASS COLUMN DENSITY FLUCTUATIONS 

Fluctuations in the earth's atmospheric column density along the l ine of 

sight can introduce problems in two ways: fluctuations in the transparency and 

fluctuations in the d i f ferent ia l  refraction. The la t te r  of these two, the 

d i f ferent ia l  refraction, has been examined by various people (Fossat et al. 1977; 

KenKnight et al. 1977) while fluctuations in transparency have not been addressed in 

the l i terature per se. I t  is now possibleto address these two aspects of column 

density fluctuations rather d i rect ly  instead of by inference or s ta t i s t i ca l  

arguments, i.e., a sufficient condition type of study. 

The oscillatory power of the fluctuations in atmospheric transparency at the 

periods of interest (from ~ one hour to f ive minutes) w i l l  in general display a 

horizontal scale larger than 100 arc second, a typical length in applications of the 

FFTD. Thus the spatial signature of column density fluctuations wi l l  be simply the 

form of the limb darkening function i tse l f ,  instead of d21/dr 2 as for seeing. 

The FFTD is insensitive to simple scale changes. Consequently the column 

density fluctuations producing transparency changes do not present any complications 

in the establishment of a moving coordinate system using the FFTD as discussed in § 

2. However, observing programs which measure fluctuations in I without any 

particular precaution to discriminate against column density fluctuations in general 

are l i ke l y  to be severely compromised. The work of H i l l ,  Knapp and Caudell (1980) 

shows that a significant fraction of the I~ in Figure 1 is not correlated with the 

phase coherent component of the diameter fluctuations and that this fraction does 

indeed have the spatial character of the limb darkening function. Therefore this 

uncorrelated fraction is a prime candidate for the manifestation of column density 

fluctuations in the measured I'. Br~wn (1979) introduced a normalizing procedure in 

an attempt to correct for these effects. However, such a normalizing procedure does 

not completely remove the effects of column density fluctuations while considerably 

altering the observed properties of a global osci l latory component of I' and may 

contribute in part to the discrepancies between his findings and those of Hi l l ,  Knapp 

and Caudell (1980) and Stebbins (1980). Any technique with a spatial resolution < 

100 arc second that is not sensitive to scale changes in I w i l l  be equally 

insensitive to fluctuations in the atmospheric column density such as with the FFTD. 

Thus the third approach discussed in § 3 for discrimination against seeing should 

also exhibit a similar immunity to atmospheric column density fluctuations. 

The phase sensitive detection scheme of H i l l ,  Knapp and Caudell (1980) 

outlined in § 4 to discriminate against seeing can also be used to study column 

density fluctuations. I t  can also be used to discriminate against column density 

fluctuations just as i t  was used to discriminate against seeing. There is an 

exciting possibility to consider here. Instead of asking for the correlation of I~ 

with diameters, ask how the diameter fluctuations are correlated with fluctuation in 
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I~. For the f i r s t  t ime, we have the opportunity to make a quant i ta t ive  study of the 

r e l a t i o n s h i p  between d i f f e r e n t i a l  r e f r a c t i o n  v a r i a t i o n  and column d e n s i t y  

f luc tuat ions .  This approach has been pursued by H i l l ,  Knapp and Caudell (1980) which 

is also b r i e f l y  examined in § 6. 

6. THE GLOBAL OSCILLATORY COMPONENT OF I '  

There have been several observational studies of I '  with the goal to i den t i f y  

the p roper t ies  of  i t s  global  o s c i l l a t o r y  component. These works can be ordered 

according to the degree tha t  p rov i s i on  is  made fo r  the po in ts  addressed in §§2-5. 

The papers in p a r t i c u l a r  are by H i l l  and Caudell (1979); Brown and Harr ison (1979, 

1980); Stebbins (1980); and H i l l ,  Knapp and Caudell (1980). 

The work of Brown and Harr ison (1979, 1980) used the FFTD to es tab l i sh  a 

moving coord inate  system in which to make measurements of I. However, adequate 

techniques were not used to remove the remaining atmospheric seeing effects or the 

e f f e c t s  of  column dens i t y  f l u c t u a t i o n s  as noted in §§ 4 and 5. These e f f ec t s  are 

probably a major cont r ibu tor  to t h e i r  reported results.  Also, the amount of data was 

s u f f i c i e n t l y  l im i ted  as to render tests for  global character quite weak. 

Stebbins (1980) used the FFTD extensively and as discussed in @5 2 and 4, his 

program can be considered as one establ ishing a moving coordinate system and in th i s  

coord inate  system, ob ta in ing  a measure of  the spa t i a l  f i n i t e  Four ie r  t rans form 

spectrum of I '  not contaminated by seeing and column dens i t y  f l u c t u a t i o n  e f f ec t s .  

With regard to i den t i f i ca t i on  of the global character, he considered properties of 

the temporal power spectra in the s p i r i t  of Brown, Stebbins and H i l l  (1978). 

I n fo rma t ion  about the spa t i a l  f i n i t e  Four ie r  t rans form of I '  in  a f i x e d  

re ference frame ( v i s - a - v i s  § 2) is  a v a i l a b l e  from the work of  H i l l  and Caudell 

(1979). Here the FFTD was used to e s t a b l i s h  the moving coord ina te  system and to 

obtain measures of the f i n i t e  Fourier transform with reduced s e n s i t i v i t y  to seeing 

and column density f l uc tua t ion  effects. Diameters were also simultaneously measured 

wi th  observation of f luc tua t ions  in I permit t ing the transformation from the moving 

coordinate system to a coordinate system t ied  to the center of mass of the sun. The 

g lobal  charac ter  of  the observed I '  was examined v ia  tes ts  f o r  phase coherency 

(Caudell and H i l l  1980) wi th s t a t i s t i c a l l y  quite s i gn i f i can t  resul ts.  

A much more complete d e s c r i p t i o n  of the spa t i a l  p roper t i es  of I '  in  a 

reference frame f i x e d t o  the center of mass of the sun is now avai lable in the work 

of  H i l l ,  Knapp and Caudell (1980). In the observat ions of Caudell et a l .  (1980) 

which they analyzed, the FFTD was ( i )  used to establ ish a moving coordinate system 

free of seeing and column density f luc tua t ions  ef fects;  (2) diameters were measured 

simultaneously wi th measures of I a l lowing the transformation back to a reference 

frame f i x e d w i t h  respect to the center  of  mass of  the sun; (3) the r esu l t s  of  phase 

coherency tes ts  were used to i d e n t i f y  the g lobal  component of I ' ,  and (4) phase 
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sensitive detection was used to remove atmospheric seeing and to ident i fy  column 

density fluctuation effects on I~ (cf. §§ 4 and 5). These results for I ' ,  shown in 

Figure 3, further support the case that the osci l lat ions in the solar diameter are 

detected through changes in the limb darkening function, a result which questions the 

val idity of the generally expected photospheric eigenfunctions (see Hi l l ,  Rosenwald 

and Caudell 1978; Keeley 1979). 

The same techniques have also been used (H i l l ,  Knapp and Caudell 1980) to 

measure the contribution of fluctuations in differential refraction to solar diameter 

measurements. They found in the period range of 25 minutes and a band width of 30 

mHz, an amplitude in radius of 0.0005 ± 0.00015 arc second for the refract ive 

contribution. This is the f i r s t  direct measure of the relationship between column 

density fluctuations and fluctuations in differential refraction. These results bode 

well for future work on solar oscillations as well as opening up the opportunity for 

studies in the physics of the earth's atmosphere. 

The authors would l ike to acknowledge the help of Jerry Logan and Randa~ Bos 

in preparation of the data for this paper. This work was supported in part by the 

National Science Foundation and the Air Force Geophysical Laboratory. 
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Figure 3. The averaged oscillatory component of the observed limb darkening function 
I(r) from Figure 1 transformed into the solar center of mass coordinate system (Hil l ,  
Knapp and Caudell 1980). Phase sensitive detection based on the measured diameters 
was used by Hil l ,  Knapp and Caudell (1980) to project out the oscillatory component 
in phase with the observed global oscillations. 
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ABSTRACT 

The existence of an anomalous component in the outer solar boundary 

conditions may cause large deviations from the standard eigenfrequency spectrum. 

Relaxation of the standard boundary conditions introduces alterations in the 

eigenfrequencies; for a given mode defined by spherical harmonic of order ~ and 

radial number n, a range of frequencies is possible, with the eigenfrequency 

nonlinearly dependent on the complex ratio between the standard and anomalous 

solution components. The observed ridges of power in the diagnostic diagram (~ 

abscissa and mordinate) l i e  below the theoretical ridges, i.e., curves defined by 

constant n and standard boundary conditions. Using a linear nonadiabatic nonradial 

model for solar oscillations, anomalous boundary conditions were found to extend the 

standard theoretical ridges upward by roughly 1/3 ridge separation and downward by 

2/3 ridge separation, encompassing the location of the observed ridges. The growth 

rate of a given mode is extremely dependent on th~ ratio of the anomalous and 

standard solutions present in the mode. I f  linear theory is adequate, simultaneous 

~-m plots of intensity and velocity may be used to infer the ratio between standard 

and anomalous solution components. 

1. INTRODUCTION 

Observational and theoretical studies of the solar eigenfrequency spectrum 

with periods near five minutes have previously been undertaken. Theoretical studies 

(Ando and 0saki 1975; Iben and Mahaffy 1976) have assumed the adequacy of Ifnear 

theory and have imposed standard boundary conditions on the sun's surface. Several 

discrepancies and problems exist in comparing some theoret ical ly predicted solar 

properties, under these assumptions, with the observed measurements. An example of 
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th is is the relat ionship between temperature and displacement perturbations, 

addressed in H i l l ,  Rosenwald and Caudell (1978) and H i l l ,  Caudell and Rosenwald 

(1977). A second example, which this paper is concerned with, is the dispari ty in 

location of the predicted and observed power maxima in the spectrum of the solar 

velocity f ield, as indicated by the spectrum obtained by Deubner, Ulrich and Rhodes 

(1979). Recent work by Lubow, Rhodes and Ulrich (1980) claims to remove th is  

dispari ty while retaining standard boundary conditions. This paper addresses the 

fol lowing question: I f  l inear theory is assumed adequate, what effect does 

modification of the applied boundary conditions have on the solar eigenfrequency 

spectrum with periods near five minutes? 

2. METHOD OF APPROACH 

As background to analysis of th is question, two general properties of 

eigenvalue problems w i l l  be described, usng a simple harmonic osc i l la to r  as an 

example. These two properties also apply to the solar oscillation problem. 

The f i r s t  property is the fol lowing: for a given normalization and set of 

boundary conditions, a multitude of discrete eigenfrequencies may exist. The 

differential equation for a simple harmonic oscillator is 

(d2/dt 2 + 2 )  x ( t )  : 0 , ( i )  

Imposed on th is  equation are the fol lowing normalization and boundary conditions: 

x ( O )  : I , 

dxfo~ ~,,=S 
x(1) : 0 , (2) 

respectively. The general solution is known to be 

x(t) = A cos mt + B sin mt , (3) 

hence, the following set of equations is obtained: 

1 = A 

s = B m  

0 : A cos ~ + B sin ~ , (4) 

The constants of integration, A and B, and the eigenfrequency, m, are determined by 

the normalization and boundary conditions. Note that A is uniquely defined, but B 

and m may take on many values, so long as s = -mcotm and B = s/m. The d i f ferent  m's 

which satisfy equation (4) may be classi f ied by the number of zero crossings of x 

while t ranges from t = 0 to t = 1. 
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This mu l t i p l i c i t y  of eigenfrequencies also occurs in the sun. For a given 

spherical harmonic number 4, a set of eigenfrequencies may be obtained, indexed by 

the radial number n (which, for the sun, corresponds to the number of zero crossings 

ofthe l inear displacement, ~r/r ,  in the radial direction and by the type of mode: 

pressure, fundamental, or gravity. For some stars, such as Cepheids, the simple 

correspondence between radial number and zero crossings of ~ r / r  does not exist. 

Dziembowski (1971) was the f i r s t  to point out this situation. 

The second property is the following: relaxation of a boundary condition 

allows the "discrete" eigenfrequencies to become continuous, i.e., any chosen 

frequency is an eigenfrequency when an "unmatched" boundary condition is allowed to 

vary. This is best shown by returning to the example of the simple harmonic 

osci l lator.  Use the same frequency, mO, for  two d i f f e ren t  i n i t i a l  value 

integrations: 

dx 
(A): x(O) = 1 , ~(0) = S 1 , 

dx(o~ 
(B): x(O) = 1 ' d-t' ' : S2 (5) 

The desired second boundary condition is, for example, x(1) = O, but since mO is not, 

in general, an eigenfrequency for these two cases, one obtains for integration CA): 

x(1) = r I and for integration (B): x(1) = r 2. Since the system is l inear, a l inear 

combination of solutions (A) and (B) may be constructed which satisfies the boundary 

condition x(1) = O, namely: 

x ( O )  = 1 , 

~(o) - = (r2s I r ls2)/(r  2 - r  1) 

x (1 )  = 0 (6)  

Thus, with the freedom to select dx/dt(O), any choice of mO becomes an eigenfrequency 

and the solutions obtained by the above technique are eigenfunctions. 

3. RESULTS 

A similar procedure of relaxing an outer solar boundary condition was used to 

study a portion of the solar eigenfrequency spectrum. Two values of the spherical 

harmonic number, 4, were chosen (100 and 400), together with a range in the 

frequency, m, from 0.01 to 0.03 radians/sec; these parameters encompassed the 

spectral domain of investigation. To obtain information about some of the subtle 

factors, attention was focused on the P2 pressure modes with ~ = 400. 

The set of differential equations used for describing linear, nonadiabatic, 

nonradial solar osci l lat ions is given in Ando and Osaki (1975). Analogous to the 
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d i f fe ren t  i n i t i a l  slopes, s I and s2, of the simple harmonic o s c i l l a t o r  example, are 

the standard and anomalous outer  boundary c o n d i t i o n s ,  denoted by 8_ and 8+, 

r espec t i ve l y .  E igen func t ions  w i th  anomalous boundary cond i t i ons  tend to vary on 

distance scales which are smaller than corresponding eigenfunctions having standard 

boundary condit ions. Further de ta i l s  about the two types of boundary condit ions are 

found in H i l l ,  Rosenwald and Caudell (1978). 

Before the re laxat ion approach was employed, the popular i t e ra t i ve  technique 

of ad jus t i ng  m, wh i l e  keeping boundary cond i t i ons  f i x e d ,  was used to generate 

e igenf requenc ies  fo r  comparison purposes. Solar eigenfrequencies corresponding to 

both purely standard and purely anomalous outer boundary condit ions were computed for  

the P2, ~ = 400 mode. Using a t ime dependence of e imt and the r e l a t i o n  P = 2~/m, a 

per iod of  (325.5 + O. l i )  seconds was obta ined fo r  the standard boundary cond i t i ons  

(8_) and (313.2 - 1.05i) seconds was obtained for  the anomalous boundary condit ions 

(8+). The di f ference between these two "eigen-periods" is quite s ign i f i can t .  Aside 

from the i r  quant i ta t ive  di f ference in period of greater than 3%, a basic qua l i t a t i ve  

d i f f e r e n c e  ex i s t s :  the 8_ s o l u t i o n  is  d r iven and the 8+ s o l u t i o n  is  damped. This 

i l l u s t r a t e s  the ex t remely  c r i t i c a l  ro le  which the applied boundary condit ions can 

play in inf luencing solar properties. 

The " r e l a x a t i o n  of boundary cond i t i ons "  approach was used f o r  a range of 

real-valued frequencies, given above. Two i n i t i a l  value problems (wi th pure standard 

and pure anomalous outer boundary condit ions) were integrated and l i n e a r l y  combined 

to match the unsat is f ied inner boundary condit ion. Table 1 shows the amounts of the 

8+ and 8_ solut ions required to make the given frequency (period) an eigenfrequency. 

The amounts of 8+ and 8_ have been normal ized so tha t  they add to u n i t y  and the 

solut ions for  a r / r  have been normalized to un i ty  at the opt ical  depth ~ = 10 -3 • Note 

the strong non l inear i ty  in the amounts of 8+ and 8_ as funct ions of the period. 

For the same set of nine periods, Figure I shows the physical locat ion of the 

nodes (or zero crossings) in a r / r  for  the P2' ~ = 400 mode. There is some ambiguity 

involved in def in ing the extent of the period range where th i s  mode is possible. At 

per iods less than 305 seconds a t h i r d  node w i l l  develop at a sha l low depth. 

S im i la r l y ,  at periods greater than 368 seconds the shallow node w i l l  appear at too 

low an opt ical depth and not be counted as a node. 

Figure 2 shows the resul ts obtained for  a more extensive range of frequencies 

at two ~ values: 100 and 400. The numbers 1-7 indicate which order pressure mode is 

considered,  wh i l e  0 i nd i ca tes  the fundamental mode. The wedges i n d i c a t e  the 

Computa t iona l l y  v e r i f i e d  ex ten t  of the p a r t i c u l a r  modes. For the P2, ~ = 400 mode 

the real parts of the two "pure" solut ions are also indicated. 

For the P2, ~ = 400 modes given in  Table 1 i t  is  i n t e r e s t i n g  to note t ha t  at 

the lower end of the frequency range ( larger periods) the ra t io  of B+ to B_ solut ions 

(denoted by A+/A_) is approximately 2 or 4 to I ,  wi th small imaginary component. The 
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Table 1. 

P (sec) A+ A_ 

real imag real ima~ 

305 .8346 .0041 .1654 -.0041 
310 .9126 .0177 .0874 -.0177 

(+) 
315 1.0680 .0550 -.0680 -.0550 
320 1.7934 .3966 -.7934 -.3966 

(-) 325 -.1346 .0010 1.1346 -.0010 
330 .4369 -.0506 .5631 .0506 
350 .7080 -.0371 .2920 .0371 
362 .7653 -.0338 .2347 .0338 
368 .7959 -.0315 .2041 .0315 

This table shows the results of the "relaxation" approach for 
~B' ~ = 400 modes. Certain linear combinations of standard 

) and anomalous (B+) solutions allow the l isted periods, 
P,'to become "eigen-periods". A_ and A+ designate the 
required amounts of the standard and anomalous solutions, 
respectively, which must be present to generate this 
situation. The solutions for ar/r  have been normalized to 
unity at T = 10-3and the following constraint holds: 
(A÷) + (A.) = 1. The (+) and (-) under the period column 
indicate the approximate locations of the "pure" solutions. 
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LOCATION OF P2, .~.=400 
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Figure 1. The location of the nodes in ar/r for the P2' ~ = 400 mode. Z is the 
distance inward from the solar surface. 
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lower end of the frequency range was chosen because the observed power is at a lower 

frequency than that predicted by a pure B_ solution. A value of IA+/A_I for P , 300 

seconds and ~ - 250 has been published (H i l l ,  Rosenwald and Caudell 1978). 

Renormalizing the published value of 0.18 at • = 0.1 to a value at T = 10 -3 , one 

obtains [A+/A_[ : 3, not inconsistent with the above number taken from Table 1. 

The diagnostic diagram is a graph showing oscillatory power as a function of 

and m. Figure 1 of Lubow, Rhodes and Ulrich (1980) shows observed power ridges in 

velocity and the curves where they should theoretically l ie. The spherical harmonic 

number, ~, is related to k h by the following formula: k h = [~(~ + 1)]i/2/Ro • At the 

higher ~ values the observed ridges of power l ie significantly below the theoretical 

ridges (except for the ridge of fundamental modes). These theoretical ridges were 

computed using the standard (B_) outer boundary conditions. Results of the 

computations in this paper (see Figure 2) show that ridges defined by pure 

(standard) boundary conditions may be extended upward by roughly 1/3 ridge separation 

distance and downward by 2/3 ridge separation (easily encompassing the observed power 

ridges) i f  l inear combinations of both B+ and B. solutions are present. With this 

wide range of power ridges now theoretically available, i t  becomes more d i f f icu l t  to 

off-handedly dismiss "exotic" solar models, such as those in Christensen-Dalsgaard 

and Gough (1980), simply because they have the standard B_ power ridges removed from 

the observed ridges. Simi lar ly,  constraints placed by Rhodes, Ulrich and Simon 

(1977) on the highly correlated solar quantities of envelope mass, envelope entropy, 

mixing length parameter (~/H), and convection zone depth may be unnecessary, since 

modification of the applied boundary conditions alone may bring theoretical power 

spectra into agreement with observed power spectra. 

In conclusion, several important points may be made: 

1. The existence of an anomalous (B+) component in the eigenfunctions, 

corresponding to the existence of anomalous boundary conditions, may cause 

large deviations from the standard (B_) eigenfrequency spectrum. 

2. A previously published value of IA+/A_I is consistent with the observed power 

at five minutes. (A+ and A_ refer to the amounts of anomalous and standard 

solutions that are present.) 

3. Growth (or decay) rates are extremely dependent on A+/A_. When the real part 

of the eigenfrequency depends strongly on the boundary conditions, so also 

does the imaginary part. 

4. I f  linear theory is adequate, simultaneous ~ - m plots (diagnostic diagrams) 

of intensity and velocity perturbations may be used to infer the ratio A+/A_ 

as a function of ~ andm along the power ridges. Details of this inference 

procedure are given in H i l l ,  Rosenwald and Caudell (1978). This rat io has, 

to date, only been evaluated at sparse points in the diagnostic diagram. 
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ABSTRACT 

The "mean field" produced by the temperature and opacity fluctuations of the 

five minute modes in the sun is shown to change the temperature and density spatial 

structure of the l inear 25 minute mode near the top of the photosphere. The 

effective medium, measured by the coefficients in the differential equation for the 

l inear mode, can be altered by as much as 19 percent by the 5 minute mode "mean 

field," indicative of possible nontrivial nonlinear processes in the photosphere. 

1. INTRODUCTION 

Recent observations indicate the presence of nonlinear effects in solar 

oscillations (Stebbins et al. 1980). Since the observed displacement amplitude for 

the five minute mode is about 5 x 10 -5 of the solar radius at an optical depth of .1, 

one would reasonably consider nonlinear effects involving the products of such small 

amplitudes to be insignificant. However, Hill (1978) raised the possibility that the 

large value of the density and temperature perturbations and even larger value of the 

opacity perturbation allows nonlinear effects to be important when the collective rms 

temperature fluctuation is large and H i l l ,  Rosenwald and Caudell (1978a) discuss 

nonlinear effects appearing at third order as a possible origin of the anomalous 

boundary conditions implied by the detection of long period solar oscillations (Hil l ,  

Rosenwald and Caudell 1978b). 

The presence of the pressure and temperature fluctuations of the five minute 

modes must change the effective medium seen by the other modes. These fluctuations 

can be appropriately averaged to ascertain the pressure, temperature and opacity of 

the chosen solar equilibrium model. Each mode can be viewed as an independent linear 

mode sitting in a medium changed by the "mean field" caused by the existence of all 

the other modes. A defect in the usual l inear analysis woul~be demonstrated by a 
i 

significant difference between the computed solution for the linear mode with and 
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without the mean field. 

We ignore in this mean field calculation correlations between the modes and 
effectively homogenize the influence of the other modes, hence some possible 
important nonlinear effects (such as parametric resonance, self-excitation, etc.) are 
not included in this treatment. 

2. BASIC EQUATIONS 
The basic equations for nonadiabatic radial oscil lations in the radiative 

atmosphere with the radiative transfer treated by the Eddington approximation (as 
Formulated by Ando and Osaki 1975) are 

+ ~.(p~) : 0 (1) at 

a~ -~p + p~ (2) p~= 

Cpp dI~ t _ Va d pT_ d~) : -~.~ , (3) 

4 ~j , (4) 

ac T4 Cp (dT ~ d )  
J = ~ + 4~ ~ -  Vad (5) 

where Vad = (acnT/a~nP)ad, the adiabatic temperature gradient, and the other symbols 
have their usual meanings isee Ando and Osaki 1975). We will work exclusively with 

Eulerian perturbations which will be denoted by primes ('). 
We assume a real expansion of the physical quantity s of the form 

where 

s ' ( r ,e ,¢ , t )  : ~ s I _ ( r ) f^  (e,@)cos(o + n,~,m n,~,m ~,m n,~,m t m@ 

+ s~,~,m(r)fc,m(°,@)sinI°n,~,mt + m~ + ss ) n,c,m 

+ ~Sn,~,m) 

(6) 

.,m 12~ + 1 f~,m : (-I) V T  ~ P~(cose) , (7) 

and P~(cose) is an associated Legendre polynomial with the usual angular spherical 
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harmonic i n d i c e s  ~ and m, The s u b s c r i p t  n stands f o r  the over tone  number o f  the 

mode. ~s is a random phase associated with the mode (n,~,m) and physical n,Z,m 
quantity s. The superscripts 1 and 2 refer to the Eulerian perturbations associated 

with cos~t and sin~t respectively. We designate the sets (n,z,m) and (n',~',m') by k 
I 

and k' fo r  convenience. We def ine a nondimensional frequency m and f i v e  

nondimensional variables y, p, e, j and f by 

e k : T~IT , 

2 R 3 ~k = ( /GM)~ , 

Yk : - i v  ' / ok r  rk 

Pk : P ' k /pgr  

Jk : Jk ' / J  , 

! 

fk = Fk,r /Fs , (8) 

where F r is the total energy f lux,  F s is the f lux at the surface and i = ~ l h a s  been 

introduced as a bookkeeping device for the coupling between the cosot and the sin~t 

terms and to fac i l i t a te  comparison with the l inear theory. By l inearizing equations 

(1)-(5) and using only Eulerian perturbations for radial osci l lat ions we obtain 

df r~  

j = imc4(Vad - V)Vy - imc4VVad p + (4 + imc4)e 

= (~V - 3 - VVaT)y - ~Vp + 6Te 

= c12Y + (1 - u - VVaT) p + aTe 

= 4VV[~y- (~ + Kp)Vp + (a T - KT)e - f + j ]  

= -imc2(Vad - V)Vy + imC2VadV p - imc2e , 

C9) 

(10) 

, ( 1 1 )  

(12) 

, ( 1 3 )  

d~n(Vv) 
whe re¢  : d~nr + V(~ + Kp + VmT) + I - Vv(4 + a T ) ,  which is  i d e n t i c a l l y  zero 
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when the Eddington approximation is va l id  and was included into equation (11) to make 

i t  f o r m a l l y  i den t i ca l  to the expression given by Ando and Osaki (1975) when the 

va r iab les  are l i n e a r l y  t ransformed to t h e i r  system of va r iab les .  The other 

expressions appearing above are defined by 

d~nMr _ 4~r 3 d~nP par 
U - d~nr M r p , V : -d~nr : ~ -  ' 

'~ 
: ST = - V-T )p (z \I)znP/T 

(d~nT~ (r/R)3 
v : \d--~-~-)e q , Cl : Mr/M 

U Mr~T fGM~ I /2  (a~nT~ 
c 2 : Ls  \ ~ )  ' Vad : \B--~-F)ad 

c3 Lr,ra d Cp [GM~I/2 
= Ls ' c4 = ac~:T 3 \R 3) 

Kp \a~npj T , K T : : \~nT/p  

4~acrT 4 
c 5 = ~PLs  

and are evaluated using the so lar  equ i l i b r i um  model of Bahcall at a l .  ( i973). 

Turbulence, v i s c o s i t y ,  magnetic f i e l d s  and mod i f i ca t i ons  to the Eddington 

approximation (H i l l ,  Rosenwald and Robinson 1980) have been neglected. 

3. AVERAGING PROCEDURE 

We use an ensemble average 

<f> ÷ f(¢)p(¢)d¢ (15) 
= ~  

and assume random phases so that p(¢) = 2-~ Properly speaking we should have a sum 

over phases, but i t  is reasonable to replace the sum by an integral since the number 

of f i v e  minute modes is exceedingly large (Rhodes, U l r i ch  and Simon 1977). Also 

P(¢1,~2 ) = P(¢I) " P(¢2) and s i m i l a r l y  for  higher order probabi l i ty  d is t r ibu t ions  due 

to the assumed s ta t i s t i ca l  independence of the modes. 

Some useful averages are 
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1 
<cos(akt + m@ + ~k)COS(Ok,t + m'@ + ~k,)> = ~-ak, k, , 

<sin(~kt + m¢ + Sk)sin(~k,t + m'¢ + Sk,)> = 21-~k,k , , 

<sin(okt + m@ + ~k)COS(~k,t + m'¢ + ~k,)> = 0 , (16) 

as can be shown by trigonometric expansion and application of equation (15). All odd 

power combinations of cos~kt + m@+@k) and sin~kt + m@ + ~k) average to zero. 

We now take the Eulerian perturbation of equations (1) to (5) exploiting the 

relationship 

(ab)' = a'b + ab' + a'b' (17) 

and mult ip ly ing the result ing equation by cos~d t + m@+@d) and sin(~dt + m@ + ~d) 

respectively, where the subscript d denotes the selected osc i l l a t ion  of in terest ,  

mul t ip ly  by two and average. The average of three variables af ter  the above 

multiplication can be expressed as 
l l 

< = ½1? 
where 

and 

p (19) 

K' * T'  k'-Tf-n((K'T'~1 = Zf~(e,~)ReE(~L ) (~)] (20) 
K 

The variables p' and K' must be expanded in terms of our chosen variables. 

We assume both p and K are functions of T and P. The averages given by equation (20) 

are rapidly decreasing functions of depth and assume their largest values in the top 

of the photosphere where a linear expansion for p' wi l l  suffice 

p !  

P ~Vp - aT o (21) 

However, we need a more general expansion for <' 

I 
K S 

= KT0 s s 22 + KpVPs + mTT e + KTpVOsp s + KppV Ps + higher order , 

[a~n~l (a~nK~ T I T 2 @2K 
= \ ~ ) I p  ' Kp = \@~nP) ' KTT = 2 K aT 2 where KT 
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1 @2K 1 p2 ~2 
KTP = K aZnTa~nP , and mpp = ~TB--~- P 

We do not expand m to third order because the average of a third order quantity of 

a single mode is quite small since only the co l lec t i ve  sum is taken to be 

significant. 

Fifth order terms involve either a single sum over k of four variables or the 

product of two terms, each term involving one sum as in equation (20). The f i f t h  

order terms that have only one sum over k are smaller than the third order terms by a 

factor of the square root of the number of modes and the f i f t h  order terms involving 

products were found to contribute less than 1 percent of the dominant th i rd  order 

term in any particular coefficient. 

4. THE MEAN FIELD EQUATIONS 

The mean f ie ld  equations are (see Logan, 1980, for the fu l l  derivation of the 

equations), 

r • r  d = (~ - 1)y d - mVPd + aTOd , (23) 

dPd (ci, 
r-d~-r = + 

r-d-~-r = ÷ ÷ 

_ + T ,Td (Vad V((yp)) 
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÷ ~ad(1 - ~T)((Y°)I) + "3d(~((Ye)l- v(o+ I~C(~P)0)~ 

i mcC2 c 2 +I i~dc2vad ' VaT((e2)) ) ----~---i(~V ((po)) -~ (2v + (zV2((pe)) - + 

(Vad-2)+ wT((o2)) ÷ (2ovv~ - v(o+ ~)h2d + h6~Wa~)((~p)l 

+ (h2dCT - cN2Vad- VaTV2 + h6Vad(1- ~T))((yo)) - V((~+ i)~ 3 

+ (~VVadn6}}Pd + Ii=2d--C~C2+V~T((PB)) - (zV2((p2))) 

i~cC2/ +---~---~V6T~I- 2Vad)((PO)) + (zV2Vad((p2)) + ,  (26TVadV 

+ h5Vad(1 - 6T ) + hldST)((yO)) + (h5VadC+V - hldV(¢+ + 1) 

i~°cC2 
+ T h4d(+n7 - V( (yP) ) ) ( fd  c3J¢I) ' (25) 

dJ d 
= - ~  - p c 3 

((o,,I)) ÷ 
c 3 

126TKT\ 
÷ 

_ ~V2Kp((p2)))) + jd_ ~ (fd+CCVPd + ~Ted)] , 

(~VK T - KpV6T) 

- - c3 / -  ( ( e f ) )  

(26) 
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{~_~_ imcC4 
Jd = (2d4 + Vn2 - Vadn4) + T (Vh3d((YP)) - 

• i mcC4 
-Vadh7d((YO)))}yd + I ~  ( - 2 V V a d ) + T  (Vh2d((YP)) 

- Vadh6((ye)) + Vn3) + 4VZKp((po)) - KpVZ((pj)) + V(Zm T 

+ 3(i + Kp))((o2)) - ~-KTV((0j) ) Pd + 4 + imdc 4 

i mcC4 
" T (Vadn6 - Vhld((YP)) + h5Vad((Y°))) + (6 + 9KT)((02)) 

+ V(4K T + 6(Kp + 1))((pc)) + 2V2Kp((p2)) - 21-~T((pj))}ed 

+ I ~  Vc3h4d((YP))- ~V(mT((P0))+ KpV((p2)))}Jd 

imcC 4 
- T Vh4d((YP))fd + ~(4ed - Jd ) , 

with E : ~V - 2 - VVa T , 

d 4 = V(Vad - v) , 

I 1 4VV(aT - KT) + imc4VVaT " imK d--~-6~} hlK = VV + 4 + imKc 4 

1 I dc4 
h2m = 4 + imKc 4 imKVVad ~ +  i m K c 4 - -  

+ imC4VadV(1 - U - VVaT) 1 , 

d(VVad) 
d~nr + imKc4aVd4 

1 I (dd4 (l-e)d4) h3< : 4 + imKc 4 4VV~ + i~c 4 \d-C-nr + Clm2VVad + 

dc4 
- imKd4 d-'~"n-~} ' 

4VV 
h4~ = c3(4 + imc 4) 

h 5 = Va T , 

h 6 = 2V(I-U) - ~V 2 

h7K = cIV~K 2 , 



421 

n 1 

n 2 

n 3 

~4 

n5 : h5((eP)) + h6((p2))  + h lc( (YP))  

n6 : hs((eY)) + h6((PY)) + h7c ( (y2) )  

= hlc((e2)) + h2c((pe)) + h3c((ye)) + c3h4c((je)) - h4c((~e)) , 

= hlc((ep) ) + h2c((p2)) + h3c((yp)) + c3h4c((jp)) - hnc((~p) ) , 

= hlc((ey)) + h2c((py)) + h3c((y2)) + c3h4c((jy)) - h4c((~y)) , 

= h5((e2)) + hB((pe)) + h7c((ye)) , 

n 7 = aV((yp)) - aT((ye)) 

We could write equation (24) as 

r ~ r  d : Cl*md2y + (I-U-V*V~T)Pd + aT*e d , 

where the equilibrium constants have been changed by the presence of the mean field. 

Or we could write the system of equations as 

r d--~y i = TijY j 

and ask about the percentage change 

T.. 
lJmean field - TiJo 

T,. 
lJ o 

These percentage changes range from zero to 19 percent near the top of the 

photosphere. 

It should be noted that the second order kappa derivatives only come into the 

equations in the form 
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l KTT((02)) mppV2((p2)) : ~ + KTpV((ep)) + 

which equals 5.8 x 10 -2 at an optical depth of 10 -3 • The other dominant 

terms involve the temperature and f i rs t  order kappa fluctuations. 

5. EVALUATION OF THE AVERAGES 

The ensemble average has terms l i ke  Re(Pk. ek). This involves the solutions 

to the equations (23) to (27), which unfortunately contain the unknown averages. As 

a f i r s t  approximation we take the l inear  solutions of equations (9) to (13) to insert 

i n to  the averages. I f  the so lu t ions  to the new l i n e a r  equat ions do not d i f f e r  

substant ia l ly  from the or ig ina l  l inear  solut ions, th is procedure is consistent. I f  

the new solutions do d i f f e r  one can, of course, re i te ra te  the procedure. We assume 

the major contr ibut ion to the ensemble averages comes from the observed f ive  minute 

modes whose l i n e a r  va r iab les  are predominant ly  in the rad ia l  d i r e c t i o n  and hence 

f a i r l y  independent of ~ and m (H i l l ,  Rosenwald and Caudell 1978b). The sum can now 

be evaluated by invoking the addit ion theorem which for  t~is case is 

m 

and noting 

~E] (2c+ I )  : ~ i = N : number of modes , 
n,c n,c,m 

so that the ensemble average becomes 

((pe)) ÷ 4 !Re  (p5"05) , 

where e5, etc., is the root mean square of the f i ve  minute osc i l l a t i on .  The absolute 

value of ~ in the f i r s t  in tegrat ion zone at an opt ical depth of 10 -3 was chosen to 

be 6.86 x 10 -5 to g ive a value of i km/sec f o r  the f i v e  minute o s c i l l a t i o n s .  The 

solutions to our l inear  equations that are of in terest  are the two that correspond to 

the two independent solutions of the nonadiabatic wave equation. We denote these two 

so lu t i ons  as beta plus and beta minus. The general so l u t i on  can be w r i t t e n  as a 

combination of these two solutions. In order to match the two solut ions at the last  

zone of i n t e g r a t i o n  a r a t i o  of beta plus to beta minus of .93 at an angle of 7 ° was 

chosen. 

6. METHOD OF COMPUTATION 

The numerical i n t e g r a t i o n  of  the four th  order system of d i f f e r e n t i a l  

equations was treated by a Fehlberg Fourth-Fif th Order Runge-Kutta rout ine wr i t ten by 
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H.A. Watts and L.F. Shampine and u t i l i z i ng  the Godunov-Conte technique of paral lel  

shooting. The opacity derivatives, KT, Kp, m TT, m Tp andmpp were obtained through 

the use of the equation of state and bicubic spline interpolations (IMSL routines 

DBCEVU and IBCICU) within the King IVa mixture opacity tables of Cox and Tabor 

(1976). The imposed boundary conditions are identical to those in Hi l l ,  Rosenwald 

and Caudell (1978b). The computed solutions were not sensitive to the exact value 

chosen for the outer boundary condition on j. Because of the existence of nonlinear 

effects reported in this paper, the proper boundary conditions may be d i f f icu l t  to 

choose. 

7. DISCUSSION 

The l inear d i f ferent ia l  system of equations (23) - (27) was solved from a 

depth of T = 10 -3 , T = 4680 K to T = 3 x 1011 , T = 3 x 106 and a frequency at 

25 minutes. A comparison of Figure la to Figure lb depicting the spatial temperature 

structure of the beta minus 25 minute mode with and without the mean f ield terms has 

aqualitatively di f ferent shape near the top of the photosphere. The dimensionless 

displacement variable which can be related to the physical veloci ty of the 

osci l la t ion changes by a minuscule amount. Direct measurements of temperature 

fluctuations and velocities at a certain frequency may give different results. The 

difference in the mode with and without the mean f ield is plotted in Figure Ic. This 

difference has the same form as the beta plus solution for the 25 minute mode plotted 

in Figure Id. The col lect ive averaged nonlinear effect of the other modes thus 

appears to be describable as a change in the mixture of beta plus to beta minus. The 

effect shown in Figure lc can be ascribed to a 2 percent admixture of beta plus added 

to the original beta minus. The most important point to be made is that the change 

in the coefficients of the linear solutions by these considerations of 10 percent on 

the whole defaults the cavalier att i tude towards nonlinear effects in the solar 

photosphere. 

The authors wish to acknowledge helpful discussions with Wojciech Dziembowski 

and Thomas P. Caudell. 
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Figure la. Dimensionless Lagrangian temperature perturbation (normalized to unit 
dimensionless Lagrangian radial perturbation at optical depth .001) versus log 
optical depth for the linear 25 minute B minus mode. 
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Figure lb. Dimensionless Lagrangian temperature perturbation versus log optical 
depth for the nonlinear 25 minute B minus mode. 
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ABSTRACT 

An approximation is developed which more accurately "solves" the radiative 

transfer equation than does the standard Eddington approximation. The difference 

between the two approaches is greatest in the opt ical ly thin region of the 

photosphere, where the new approximation more accurately represents the physics. 

Solutions of the wave equations for photospheric oscillations in both of the above 

approximations were generated by a l inear, nonadiabatic, radial modeling program. 

Differences were found to exist between the sets of solutions obtained from the two 

transfer equation techniques. As to the effect on measurable quantities, such as the 

Eulerian perturbation in intensity and the radial displacement, the impact of varying 

the radiative transfer treatment was dependent on the outer solar boundary 

conditions. A solar model with standard outer boundary conditions produced 

observables which were less sensitive to the radiative transfer treatment than a 

solar model having anomalous outer boundary conditions (cf. H i l l ,  Rosenwald and 

Caudell 1978). Since several observations indicate that the la t te r  model is more 

realist ic, the new approximation may be important in accurately studying the solar 

photosphere. 

1. INTRODUCTION 

Various shortcomings and pi t fa l ls  exist in current theoretical approaches for 

studying linear, nonadiabatic, radial solar oscillations. Inadequacies exist in the 

macroscopic equations usually employed to describe the physical situation. The 

conservation equations for mass, momentum, and energy are certainly valid, but the 

Eddington approximation, almost universally used in simplifying the radiative heat 

equations, is demonstrably inaccurate in the opt ical ly  thin regions of the solar 

photosphere. 

This paper develops a new approximation for solving the radiative heat 
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equations. The development of th is  technique has i t s  foundation in the work of Unno 

and Spiegel  (1966). I t  takes i n t o  account d i r e c t l y  the dominant  s p a t i a l  

character is t ic  of a plane-paral lel  atmosphere in local thermodynamic equi l ibr ium (as 

in the Milne problem) and incorporates an approximation which, when appl ied to a 

near ly  i so t rop i c  rad ia t i on  f i e l d ,  leads to the Eddington approximat ion. I t  is  

subsequently referred to as the anisotropic radiat ion f i e ld  approximation. 

The equi l ibr ium solution obtained using th is  technique is more accurate in 

the o p t i c a l l y  t h in  region of the photosphere than the so lu t ion  der ived using the 

Eddington approximation. Section 4 and Table 1 document th is  higher accuracy in the 

th in  region and the comparable accuracy in the o p t i c a l l y  t h i ck  region. For 

comparison purposes, a l i n e a r ,  nonadiabat ic,  rad ia l  modeling program generated 

photospheric so lu t ions  of the wave equation using both of the above r a d i a t i v e  

t rans fe r  techniques. 

In add i t i on ,  fo r  each of these techniques both standard and anomalous 

boundary conditions were imposed on the solutions at the outer solar boundary. For a 

discussion of the anomalous boundary conditions, and how the i r  existence is implied 

by observat ions,  see H i l l ,  Rosenwald and Caudell (1978) and Rosenwald and H i l l  

(1980). The solutions with anomalous boundary conditions vary on a distance scale 

which is smaller than solutions having standard boundary conditions. 

The d i f fe rences  in the wave equation so lu t ions der ived from the two 

t reatments of r a d i a t i v e  t r a n s f e r  were subs tan t i a l ,  wi th the amount of d i f f e rence  

dependent on the appl ied so lar  boundary condi t ions.  A so la r  model wi th  anomalous 

outer boundary conditions produced observable effects which were more dependent on 

the choice of r a d i a t i v e  t r a n s f e r  t reatment  than did a so lar  model having standard 

outer boundary conditions. 

2. PROBLEMS ENCOUNTERED WITH THE EDDINGTON APPROXIMATION 

In th is  work the Eddington approximation is taken to be the equation J : 3K, 

where J and K are the usual zeroth and second moments of the rad ia t i on  i n t e n s i t y ,  

I (~) ,  and ~ is the cosine of the angle between the d i r e c t i o n  of propagation and the 

observer. Sometimes a p a r t i c u l a r  assumed form of l (u) is  re fe r red  to as the 

Eddington approximation. However, since many d i f fe rent  choices of I(~) imply J = 3K, 

the re lat ion i t s e l f  w i l l  be called the Eddington approximation. On comparison with 

the "exact" solution, defined below, i t  is found that as the optical depth approaches 

zero, JEdd is  15% la rger  than Jexact and that  Jexact is  less than 3Kexac t .  The 
subscr ip ts  "Edd" and "exact" r e fe r  to the values corresponding to the Eddington 

approximation and the exact treatment, respectively. 

Ex is t ing  t heo re t i ca l  t reatments of the so lar  atmosphere provide another 

i n d i c a t o r  of t roub le  in the o p t i c a l l y  th in  region. Various empi r ica l  r e l a t i o n s  

between the temperature, T, and the optical depth, T, have been derived for  the solar 
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atmosphere. The Harvard-Smithsonian reference atmosphere is one of several such 

examples, obtained from analyses of spectral l ine observations. For small values of 

(less than unity), these T - T relations d i f fe r  quite markedly from both the 

theoretical T - • relat ion implied by the Eddington approximation and the T - 

relation implied by the solution of the Milne problem (radiative transfer in a plane- 

parallel atmosphere in local thermodynamic equil ibrium), the so-called "exact" 

solution. 

Previous approaches (Ando and Osaki 1975) for studying linear, nonadiabatic 

osci l la t ions in the solar atmosphere with periods near f ive minutes have used the 

Eddington approximation as an acceptable assumption in the radiative heat equations; 

f lux  is related, using the Eddington approximation, to the divergence of J. 

Linearizing the equations, the size of the nonadiabatic portion of the energy 

equation is determined by the l inearized f lux  term, whose accuracy, in turn, is 

dependent on the accuracy of the Eddington approximation. Since the energy 

dissipation integral and the eigenfunctions for the five minute oscillation depend 

strongly on the nonadiabatic energy term near the sun's surface, the question of 

overall driving or damping and other oscillation properties depend sensitively on the 

accuracy of the l inearized f lux term, and hence on the accuracy of the Eddington 

approximation. This may be a serious weakness in current theories of solar 

o s c i l l a t i o n s  and may lead to s i g n i f i c a n t  errors in the interpretat ion of 

observations. In the quest to better understand this topic, the following question 

is raised: How does a more accurate treatment of the transfer equation affect 

predicted osci l la tory properties, such as eigenfunctions? The answer to th is  

question is pursued in Section 5. 

The d i f f i c u l t y  with the Eddington approximation may be seen from another 

viewpoint. Assuming local thermodynamic equil ibrium (LTE), which ident i f ies  the 

source function S with the Planck function B, S at an arbi t rary point may be 

expressed as a Taylor series expansion of B at a fixed reference point. Unno and 

Spiegel (1966), using this approach, developed formal solutions for J and K in terms 

of i n f i n i t e  series whose terms consist of weighting factors times powers of the 

photon mean free path length times spatial part ial derivatives of the Planck 

function. At places of high optical depth, the mean free path is small, the series 

converge rapidly, and the usual relat ion is obtained: J = 3K. For regions of low 

optical depth, however, the photon mean free path is large, the series are at best 

very slowly convergent, and large numbers of series terms are needed to evaluate J 

and K accurately. The same statement also holds for I and S. Unno and Spiegel 

(1966) formally manipulate the series for J and K, obtaining the usual Eddington 

approximation but with an additional in f in i te series of "off-diagonal" terms whose 

neglect, in their words, "seems closely related to the assumption of near isotropy of 

the radiation f ie ld" .  At locations in the solar atmosphere where T < 1, the 
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radiat ion f i e ld  is cer ta in ly  anisotropic-- looking out, the atmosphere is transparent 

while, looking in, i t  is opaque. Hence i t  appears that neglecting the "off-diagonal" 

terms (equ iva lent  to making the Eddington approximat ion an i d e n t i t y )  introduces 

c r i t i c a l  er rors in the o p t i c a l l y  t h in  region. A d i f f e r e n t  representa t ion of the 

radiat ion in tens i ty  used in the anisotropic radiat ion f i e l d  approximation is given in 

the next sect ion;  i t  has few terms and fas t  convergence p roper t ies ,  even in the 

op t i ca l l y  thin region; 

Before proceeding to i t ,  however, mention should be made of another approach 

to so lv ing the t r a n s f e r  equation, developed by Auer and Mihalas (1970), which is  

qu i te  independent of the approach described in the next sect ion. They introduce a 

va r i ab l e  Eddington f ac to r ,  f ,  def ined as the r a t i o  K/J. I t s  value is  pos i t i on  

dependent, tending to 1/3 in the i n t e r i o r  and to a l a rge r  number in the outer 

photosphere. In t h e i r  technique, the exact value of t h i s  r a t i o  at a point  is  

determined i t e r a t i v e l y .  Previous uses of t h i s  va r i ab le  Eddington f ac to r ,  f ,  have 

been independent of the an iso t rop ic  rad ia t i on  f i e l d  approximat ion,  wherein K is  

e x p l i c i t l y  expressed as a position dependent l inear  combination of the f lux  F, and 

mean in tens i ty  J. This expression for  K is l inear ized eas i ly  for  computer modeling 

purposes, unlike the i t e r a t i v e l y  obtained quantity f. The expression for K given by 

the anisotropic radiat ion f i e l d  approximation represents a more careful analysis of 

the relevant physical properties of the radiat ive transport than does that for f ,  a 

factor defined from the K/J ra t io  to provide internal consistency of the macroscopic 

equations. 

3. THE ANISOTROPIC RADIATION FIELD APPROXIMATION 

Development of th is  approximation starts with the equation of transfer:  

dl 
~ : I - S , (1) 

where T is the op t i ca l  depth and the sca t te r ing  has been neglected. 

which implies S : B, a solution may be developed i t e r a t i v e l y :  

Assuming LTE, 

dB 2 d2B 
I : B + ~ ~ - +  d--~+ . . . .  (2) 

(cf .  Unno and Speigel 1966; Mihalas 1978). This expansion is most useful in the 

op t i ca l l y  thick region, where the f i r s t  two terms dominate al l  others. High order 

der ivat ive terms contribute the most in the op t i ca l l y  thin region, where a d i f fe rent  

approach works better. 

The exact solution for  a plane paral le l  atmosphere is given by 
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I T e(T-t)/~ dt I(T,~) = - S(t) - -  , (3) 
o 

when looking in the o p t i c a l l y  th in  d i rec t i on  and with T the ve r t i ca l  opt ica l  

thickness in that direction. Since S = B, S at an arbi t rary point t may be expanded 

as a Taylor series in B, with the B terms evaluated at a f ixed point T: 

S(t) = B(T) + (t-T~ dB (t---~3-~d2B 
IdT + 2 dT--~ + " " " 

+ __n(t_t~T),, dnB + (4) 
n. dT n " • • 

Substituting this in equation (3), and integrating, we find 

dB r ] i = B ( l  - e T/p) + d-~-T ~ ( l -  e T/]J) + Te T/Ia 

+ d--~ d2B [ "2 ( l -e~ /~ )  + ~TeT/~ - T_~ eT/p] + . . .  (5) 

Using equation (2) fo r  p ~ 0 and equation (5) fo r  ~ < 0 and keeping only the f i r s t  

two terms, the moment equations are: 

J = - T  + + - -  (6) dT ' 

~ = H = B + - , (7) 

K = - B + + d--~- ' (8) 

where the symbol E i represents the " i - th"  type of exponential integral function with 

argument ~. Note that  when T + ®, E i ÷0 and the Eddington approximation is an 

i den t i t y .  When T +0, however, 3K # J. 

For a r b i t r a r y  values of T, K may be wr i t t en ,  using equations (6-8), as the 

fol lowing l inear combination: 

K(T) = g(~).F(~) + h(~).J(~) , (9) 

where 
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l _ .  / ] - ~ )  ('cE4+E5)- ( ~ - ~ )  (TE2÷E3) 
E 

h(T) = [ E2, F 4 2(TE3+E4)] E3(TE2+E3 ) 

, (10)  

(11) 

Note that g and h are exp l i c i t l y  known functions of T. The Eddington approximation 

corresponds to g(~) = 0 and h(~) = 1/3. Instead of starting with the f lux equation 

4 dJ (12) 
F = - 3Kp dr ' 

and deriving i ts  linearized counterpart, the following exact f lux equation is used: 

F : - 4 d_K_K (13) 
~p dr 

(m is the opacity and p is the density). Subst i tut ing equation (9) ' in to equation 

(13), this equation for f lux is linearized and manipulated to provide one of the four 

f i rst-order l inear di f ferent ia l  equations which describe the osci l lat ing system. 

4. COMPARISON OF SOLUTION METHODS FOR THE TRANSFER EQUATION 

The transfer equation and two of i ts  moment equations are: 

dl ~ - :  I -  S , (14) 

dH 
--aT = J - S (15) 

dK 
d-~- = H , (16) 

where H is the Eddington f lux. The Eddington approximation is: JEdd(T) = 3KEdd(T), 

for a l l  T. Under th is  assumption and the assumption of rad ia t ive  equi l ibr ium (J = 

S), equations (15-16) may be solved exact ly, but equation (14) is not sat is f ied.  

Using LTE, the following T - • relation is obtained: 
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T 4 = ¼ Teff4 (T + qEdd(~)) , 

where Tef f is the effective temperature. 
equations (14-16), is of the following form: 

T 4 Teff4 (~ + q(~)) , 

where q(T) is a known function of T, f i rs t  obtained by Mark (1947). 
are given by: 

Jexact(T) = ~ F o (T + q(~)) , 

Fexact(T) = F o , 

Kexact(~) = ¼ F o (~ + q(~)) , 

qEdd(~) z 213 , (17) 

The exact solution, which satisfies all of 

(18) 

The moments of I 

(19) 

(20) 

(21) 

where Fo, the f lux,  is a constant. When using the anisotropic radiation f ie ld 

approximation, the following definitions apply: 

Ja(T) = ~ Fo (~ + qa(T)) , (22) 

Fa(~) = F o , (23) 

Ka(T) : ~ F o (T + qa(~)) (24) 

Imposing equation 19), the following equation is obtained: 

T + qa(~) - 4g(~) 
qa (~) : 3h(T) - ~ (25) 

At in f in i te  optical depth, q(®) = qa(®) = .710466. The three sets of q values, 

qEdd(T), q(T), and qa(T), are given in Table 1. They represent the Eddington 

approximation, the exact solution, and the anisotropic radiation field approximation, 
respectively. The anisotropic radiation field approximation is much closer to the 

exact solution than is the Eddington approximation. 
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TABLE 1. Comparison of Eddington, Exact, and Anisotropic 

Radiation Field Solutions 

g(T)F(T) + h(~)J(~) J(~) 
K(~) 3K--K-(TT 

qEdd(~T) q(T) qa(T) : R(~) : S(~) 

0.00 2/3 .5773 .5790 1.0012 
0.01 2/3 .5882 * 1.0025 
0.02 2/3 .5954 * 1.0033 
0.03 2/3 .6012 * 1.0037 
0.05 2/3 .6107 * 1.0043 
0. i 2/3 .6279 * 1.0048 
0.2 2/3 .6495 .6416 1.0047 
0.3 2/3 .6633 .6568 1.0042 
0.4 2/3 .6731 .6672 1.0039 
0.5 2/3 .6803 .6750 1.0034 
0.6 2/3 .6858 .6809 1.0031 
0.7 2/3 .6901 .6857 1.0027 
0.8 2/3 .6935 .6894 1.0024 
0.9 2/3 .6963 .6925 1.0021 
1.0 2/3 .6985 .6951 1.0018 
1.2 2/3 .7019 .6990 1.0014 
1.5 2/3 .7051 .7028 1.0010 
2.0 2/3 .7079 .7064 1.0005 
2.5 2/3 .7092 .7083 1.0003 
3.0 2/3 .7098 .7092 1.0002 
3.5 2/3 .7101 .7096 1.0001 
4.0 2/3 .7102 .7102 1.0000 

2/3 .710466 .710466 i 

.8126 

.8303 

.8425 

.8524 

.8688 

.8981 

.9330 

.9533 

.9663 

.9751 

.9812 

.9855 

.9887 

.9912 

.9930 

.9955 

.9976 

.9990 

.9996 

.9998 

.9999 

.9999 
I 

* ind icates that h(~) ~ 0 and that q~(T), the ra t io  of two small 
quant i t ies ,  is numerical ly inaccurate. 
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In the range where T is small (0.01 to 0.1), h(T) is nearly zero and equation 

(25), which defines qa(~), is indeterminate. This is why asterisks appear in Table I 

in the column of qa(T) values. Because of t h i s ,  another comparison of the 

approximations to the exact solution is desirable, a comparison not susceptible to 

shortcomings such as the one above. 

Using values from the exact solut ion, the fol lowing quanti t ies are computed: 

R(~) = (g(~)-F(~) + h(T)-J(~)) /K(~) , (26) 

S(T) : J(~)/3K(T) (27) 

I f  the Eddington approximat ion is cor rec t ,  then S(T) z 1 and i f  the an iso t rop ic  

r ad ia t i on  f i e l d  approximat ion is cor rec t ,  then R(T) z I .  As is  ev ident  from the 

values for R(~) and S(T) in Table i ,  the anisotropic radiat ion f i e l d  approximation is 

super ior  to the Eddington approximation fo r  the en t i r e  range of  T. In f a c t ,  the 

widest  dev ia t ion  of the an iso t rop ic  rad ia t i on  f i e l d  approximat ion from the exact 

so lu t ion  is  less than 1/2% and occurs at T= 0.I. 

5. SOLUTION DEPENDENCE ON RADIATIVE TRANSFER TREATMENT AND OUTER BOUNDARY CONDITIONS 

Four sets of wave equation so lu t ions  were generated using the e q u i l i b r i u m  

model and method described in H i l l ,  Rosenwald and Caudell (1978). The two treatments 

of rad iat ive t ransfer  (Eddington and an iso t rop ic  r ad ia t i on  f i e l d  approx imat ions) ,  

combined with the two types of outer boundary conditions define theJfour sets. Al l  

of these sets had a period of 300 seconds, In Figures 1-4, B_ ind ica tes  tha t  

standard outer boundary conditions were applied and B+ indicates the use of anomalous 

outer  boundary condi t ions.  The presence of (E) and (A) ind ica tes  which r a d i a t i v e  

t r a n s f e r  t reatment  was used, the Eddington or an iso t rop ic  r ad ia t i on  f i e l d  

approximat ion,  respec t i ve l y .  Figures I and 2 show the magnitude and phase of the 

displacement a r / r ,  as a function of log • for the above four cases. The dif ference 

between the B_ (E) and B_ (A) curves fo r  a r / r  is  smaller than the d i f f e rence  

between the B+ (E) and B+ (A) curves. The d i f fe r ing  locations and sharpness of the B+ 

minima af fect  observables more than the d i f fe r ing  B_ slopes do. 

The method for computing I ' ,  the Eulerian perturbation of in tens i ty ,  is given 

in H i l l ,  Rosenwald and Caudell (1978). When standard outer boundary conditions are 

app l ied ,  the a r / r  term, not the aT/T term, is  the dominant term in computing the 

value of I ' .  Thus, even though aT/T d i f fe rs  substant ia l ly  between the B_ (E) and B_ 

(A) cases (see Figures 3 and 4), i t s  impact on I '  is  smal l .  For anomalous outer  

boundary conditions, however, the observables I '  and a r / r  are dependent on the method 

of t reat ing the rad iat ive transfer physics, and therefore require the more physical ly  

correct anisotropic radiat ion f i e l d  approximation to be used. 
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Figure 1. The magnitude of ar/r as a function of log T. B+ and B_ indicate the use 
of anomalous and standard outer boundary conditions. (E) and (A) indicate the 
radiative transfer treatment used: the Eddington or anisotropic radiation f ie ld  
approximation. The period used in the computation is 300 s. 
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THE OBSERVATIONAL PROPERTIES OF THE ZZ CETI STARS* 

E.L. Robinson 
Department of Astronomy 
University of Texas at Austin 

ABSTRACT 

The ZZ Ceti stars are the pulsating white dwarfs lying within an instabi l i ty 

strip on the white dwarf cooling sequence with edges at B-V colors of +0.16 and +0.29. 

A total of 13 confirmed ZZ Ceti stars have now been found, and al l  have DA spectral 

types, al l  have temperatures between 10500K and 13500K, and al l  have gravit ies 

between log g of 7.8 and 8.1. These properties, l ike al l  the properties of the ZZ 

Ceti stars, are normal for white dwarfs. Indeed, since both pulsating and non- 

pulsating white dwarfs can be found within the instabi l i ty  strip, at present there is 

no way to distinguish observationally a pulsator from a non-pulsator other than by the 

immediate fact of i ts variabi l i ty. All of the ZZ Ceti stars are ~tulti-periodic with, 

in the case of HL Tau-76, more than 20 periods being simultaneously present in the 

l ight curve. The periods are always very long, ranging from 100 to 1200 seconds. In 

at least one variable, R548, the pulsation periods are exceptionally stable, with the 

upper l im i t  on the rate of change of the periods being IPI < 10 -12 , but in other 

variables the periods appear to change on time scales as short as a few hours. All 

recent models for the v a r i a b i l i t y  of ZZ Ceti stars have invoked nonradial, g-mode 

pulsations. Qualitatively, the g-mode pulsations easily account for the length of the 

observed periods and for the occasional close spacing of the periods. While the g- 

mode interpretation is certainly at least partial ly correct, the l ight curve of the ZZ 

Ceti star GD 154 suggests that other complicating factors are at work. Although i t  

too is multi-periodic, GD 154 has only one strong period, 1186 seconds. This period 

is so long that i f  i t  is ag-mode, i t  must be a high overtone, k ~ 20-30. Thus, GD 

154 seems to have been excited in a single high overtone. I t  has not been clear ly 

demonstrated that a white dwarf can be excited in such a high overtone without 

exciting other overtones as well. 

* The ful l  text of this paper wi l l  appear in the proceedings of IAU Symposium No. 53. 



THEORETICAL ASPECTS OF NONRADIAL OSCILLATIONS 

IN WHITE DWARFS: A SUt~IARY 
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ABSTRACT 

The present status of nonradial oscillation theory as applied to the ZZ Ceti 

variables is briefly reviewed as are the author's concerns about what might be the 

modes of oscillation of these stars. 

1. INTRODUCTION 

This review shall concentrate on recent theoretical developments concerning 

nonradial osci l lat ions in otherwise normal white dwarfs; namely, the ZZ Ceti 

variables. Because the excellent and comprehensive summary by Van H6rn (1978) is 

generally available, this summary shall, for the most part, be restricted to some 

special topics and issues which appear to be worthy of future consideration. 

The observational aspects of the ZZ Ceti variables as a d ist inct  class of 

variable star have been most f u l l y  put forth in the eminently readable thesis of 

McGraw (1977); the paper by Robinson (1980) in these proceedings may also be referred 

to. In Table 1 are listed the photometric properties of the known ZZ Ceti variables 

(adapted from McGraw 1977 and Nather 1978) in rough order of increasing period of 

variabil i ty. The column labeled "harmonics" indicates whether the power spectrum for 

that star contains harmonics of a basic frequency. The presence of these is a 

measure of departures from sinusoidality of the light curve for that basic frequency 

and is most probably due to nonlinear effects in the pulsing mechanism. Cross 

coupling, which is the appearance of frequencies corresponding to sums or differences 

of major frequencies in the spectra, has been interpreted as arising from nonlinear 

coupling of pulsation modes. The last column, which describes whether major 

frequencies in the spectra do or do not dr i f t  in frequency, is fa i r ly  well correlated 

with the presence of harmonics, cross coupling, and mean pulsation amplitude; in 

other words, large amplitude and complex, longer period, variable spectra seem to go 

1Operated joint ly by the National Bureau of Standards and the University of 
Col orado. 
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together. 

Aside from their variability, the ZZ Ceti stars appear to be perfectly normal 

DA white dwarfs. However, their  location on the HR diagram, as shown in Figure 1 

(from van Horn 1978), is highly enlightening. We find that they l ie in the linearly 

extended path of the well known Cepheid ins tab i l i t y  str ip in just the temperature 

range where envelope hydrogen convection (and ionization) zones begin to operate 

actively in white dwarfs as they cool down from higher temperatures. Thus, the 

suggestion of Robinson and McGraw (1976) that the usual K- and y- mechanisms, which 

give rise to var iab i l i t y  in the Cepheid str ip,  are also operative in ZZ Ceti stars 

has prompted investigations along the lines taken for the normal variables (of which 

more will be said later). 

Because of the long periods of the ZZ Ceti stars, i t  is generally believed 

that their  variable l ight  output is caused by nonradial, gravity (g) mode 

oscillations. This association comes about as follows. (Two good general references 

are the reviews of Ledoux 1974 and Cox 1976.) For small amplitude, nonradial 

oscillations, there are two characteristic frequencies: 

1. The Brunt-V~is~l~ (or buoyancy) frequency ~g is given by: 

2 N2 o = = -Ag g 

where g is the local gravity and A, which is one measure of convective stability (A< 

0), is: 

[X~Tp T x~ d gn ~]H~ I 
A = (V-Vad) + -  Xp d ~n P 

Here, ~ is the mean molecular weight, Hp is the pressure scale height and [ for  P = 

P(p,p,T)] 

(d 
×p = ~d---~'-~p]~,T 

with the other×'s being defined by permuting p, ~, and T. Other symbols have their 

usual meanings. In the simple case of a chemically homogeneous star 

2 = X T (V_Vad) Hp 1 
~g - Xp 

An important property of white dwarfs is that ×T and v are very small in the interior 

except for the thin nondegenerate envelope. 

2. The acoustic frequency is simply related to the sound speed v 2 = rlP/p by 
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2 2 c(~÷l)v~ 
a a = Sc = 2 

r 

where ~ is the multipole order of spherical harmonic Y~. 

For simple stellar models, there are two types of modes which may be easily 

distinguished by whether buoyancy or pressure constitute the primary restoring force 

against displacements in the stellar fluid. These are, respectively, the gravity (g) 

modes and pressure (p) modes. (The f or Kelvin mode does not concern us here.) They 

have the following properties: 

1. A gravity mode actively propagates (has a sinusoidal behavior for i ts  

radial and transverse displacements in a localized region) i f  i t s  frequency, a, 

satisfies the local inequalities 

2 2 and 2 N 2 a < S~ < 

Otherwise, the displacements display evanescent (exponential) behavior. 2 I f  N 2 < O, 

implying convective instabil i ty, these g-modes are usually given the designation g-. 

A radiative region is capable of propagating the variety g+. Since we shall be 

concerned with the latter only, the superscript shall be dropped in what follows. 

2. Pressure modes propagate in regions where 

2 2 02 N 2 o > S~ and > 

Otherwise, they too are evanescent. 

A sample run of N 2 and S~ (for ~ = 2) is shown in Figure'2 for a 1M e , purely 

radiative white dwarf with log L/L~= -4.2, and log T e = 3.83. (This model is too 

cool to correspond to a ZZ Ceti variable but i t  i l lustrates the salient points. See 

also Osaki and Hansen 1973.) Note that the abscissa is log (1 - r/R), resulting in 

placement of the model center at the origin (to the right) and emphasis of the outer 

layers. The boundary of the degenerate core is indicated and i t  marks (on the well- 

spread logarithmic scale) that point where N 2 makes i ts  rapid descent into the 

inter ior.  By inspection, i t  is clear where p and g modes may propagate. For 

orientation, however, these are indicated by the positions of the nodes of the radial 

displacements of the p and g harmonics, Pl, P2, gl through g3 plotted against 

frequency for ~ = 2. As expected (although this is not s t r i c t l y  necessary), the 

nodes are confined within the regions of propagation. Also, to our well known 

chagrin, the g-mode frequencies (~ 10 -3 sec -2) are generally too high to account for 

21mportant exceptions to these statements arise when convection reaches out 
to the stellar surface. See Scuflaire (1974). 
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those of the ZZ Ceti variables (~2 ~ 10-5_10-4 sec-2) unless the harmonic (denoted by 

k in g~k) is large.  For example, in t h i s  (too cool) model the g-mode periods are 

given closely by 

= 285 [ i  +½ (k,1)] sec; ~,k:1,2 . . . .  
P(gck ) [~(C+i)]½ J 

(See also Brickhill 1975.) The observed periods require k ~ 10 for the longer period 

variables even with ~ = 1. For a hotter, less evolved model more appropriate to the 

ZZ Ceti stars the required harmonic is even higher. What about these higher 

harmonics ? 

Dziembowski (1977a) has analyzed two 0.6 M e white dwarf models with ef fect ive 

temperatures of  ~ 104 whose d i s t r i b u t i o n  of elements corresponds to Paczynski's 

(1971) p lanetary  nuclei  evo lu t i onary  sequence. Using a nonadiabatic treatment, he 

finds that low orders of ~ and k y ie ld  stable g-modes. A destabi l iz ing ef fect ,  due 

main ly  to the He I I  i o n i z a t i o n  zone, is noted but d i s s i p a t i o n  in more i n t e r i o r  

regions overwhelms the ef fect  of that zone. However, unstable modes are encountered 

fo r  high ~ and k (~ ~ 100-400, k ~ 15-20), but these y i e l d  periods of around I0 

seconds and are inappropr ia te  fo r  any of the ZZ Ceti s tars.  Thus, we have the 

dilemma that the shorter period variables have periods corresponding to low order, 

but stable, modes and unstable modes have periods which are far  too short for  any of 

the va r iab les .  A s i m i l a r  r e s u l t ,  although fo r  rad ia l  modes, has been reported in 

these proceedings by Cox, Hodson and Star r f ie ld  (1980). 

A resolution of our d i f f i c u l t i e s  has been suggested by Dziembowski (1977a) 

for  the ~ I000 second o s c i l l a t o r s  wherein resonant coupl ing of the short per iod 

unstable modes wi th low order modes causes the l a t t e r  to be exc i ted and thus be 

observed. Unfortunately, i t  has not yet been demonstrated in deta i l  how th is  might 

occur. This is an outstanding problem which impacts on those other variable stars 

considered at th is  conference. 

Dziembowski (1977b) has also investigated the luminosity amplitudes for  many 

modes and finds that combinations of low ~ and high k y ie ld  the largest  excursions in 

magnitude. Thus, we might expect that  longer period ZZ Ceti s tars  should e x h i b i t  

larger l i gh t  amplitudes. Indeed th is  is generally the case for  these stars (see the 

marvelous sequence of diagrams in Van Horn 1978) although, again, no e x c i t a t i o n  

mechanism seems su f f i c ien t  except through the coupling of modes. 

2. WHAT SHOULD BE DONE NEXT ? 

Areas which seem to deserve further theoretical attention wi l l  be outlined 

next. Some of these present extraordinary d i f f i c u l t i e s  for the theorist whereas 

others may remain fundamentally unresolved. 



451 

10 2 

. O N  
ATE ENVEL(  

. N 2 ~  

I I 
D E G E N E R A T E  

P 2 -  e -  

P1-  _ _  . . . . ~ H  

i 0  i -- ~ 

' \ "* 

in 
i o  o _  I 

>. I 

u I z 
" '  I 
o l o - -  I ,., f 

" I \ \ 
, \ -g, \ Y" - -  \ -g2 \ 

1 0 - 3 -  - - e - e  I - g s  \ 

0 .4  I I I , ,  I IF : .  I 
I i ¥ I t  t J 1 I ~1 

- 5  - 4  - 3  - 2  -1  o 
log (1- ~-) 

0 3 

o2~z 
LLJ 
:E 
bJ 
0 

i 0  ! . J  
(1. 
u l  
Q 

0"! 

10"2 

F i g u ~  2. Shown are the run of N 2 and S; as a function of log (1 - r/R) for  a cool, 
1M e ~UFe white dwarf. The location of radial nodes for g and p modes are indicated, 
as are the radial (V) and horizontal (H) relat ive displacements for g3" 



452 

2.1. Composition of the Outer 

I t  appears that the atmospheres of DA white dwarfs show abnormal deficiencies 

in the i r  helium content (Str i t tmatter and Wickramasinghe 1971, Shipman 1972, for 

example). I f  such an effect is due to gravitational settling, then the transition to 

the helium-rich (for example) in te r io r  should take place over roughly a pressure 

scale height (Baglin 1974, Koester 1976, and Vauclair and Reisse 1977). The depth of 

such a t ransi t ion zone is unknown, except that i t  cannot reach down so far as to 

ignite hydrogen, and i t  probably would vary from star to star, but i t  would have some 

interesting effects. F i rst ,  i t  would change the depth and character of the outer 

convection zones(s) (see Figure 7 of Fontaine and Van Horn 1976); this effect wi l l  be 

further considered shortly. Second, i t  introduces a relatively sharp composition 

discontinuity. The possible importance of the latter has been discussed by Ledoux 

(1974) who reported ca lcu la t ions  of nonradial modes for a heterogeneous 

incompressible sphere. (See also the paper by Gabriel and Scuflaire 1980, in these 

proceedings.) I t  was found that new spectra of g-modes marched out from a reservoir 

at zero frequency as new density discontinuities were introduced. The modes acted 

like surface waves with maximum amplitudes at the discontinuities. I f  these results 

apply to rea l i s t i c  compressible models, can such modes be found and are they 

important? This is not an easy task, especially when coupled with evolutionary 

calculations, since the time behavior of composition prof i les as affected by 

convection can be quitecomplicated, as shown by Koester (1976) and Vauclair and 

Reisse (1977). I t  is interesting to note that the structure of those investigators' 

model atmospheres changed dramatically as the ZZ Ceti effective temperatures of 

10,000 K were reached. 

2.2. Effects of Convection 

Convection obviously plays a variety of roles in pulsation analysis. I t  can 

determine g-mode frequencies as well as influence s tab i l i t y .  As a speculative 

example of the former, an ar t is t 's  conception of the run of S~ and N 2 in a 

hypothetical white dwarf (based on Figure 2) is shown in Figure 3. A convective zone 

is indicated by the well in N 2 in the envelope. Also shown is a "~-barrier" 

corresponding to a composition gradient. We can imagine normal g-modes propagating 

in the cross-hatched region to the right which is labeled "core modes" although we 

realize that most of the action takes place within a distance of about 10 -3 of the 

white dwarf surface. What about the hatched region to the left? Goossens and 

Smeyers (1974) (see also Tassoul and Tassoul 1968 among others) have ef fect ive ly  

shown that, for each in te r io r  convective zone (with N 2 < O) present in a s te l la r  

model, there are associated famil ies of g-modes which, for the most part, are 

containedor"trapped"within the surrounding radiative regions with the convective 
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region acting as a buffer zone. Is this also the case for the white dwarf of Figure 

3 or is the buffer zone too th in? I f  this is true, then we could naively expect to 

find g-modes which propagate in the very outermost surface layer of the star with a 

minute amount of mass being involved. By inspection of the figure, their frequencies 

would be less than~ 10 -5 sec -1, corresponding to periods greater than~ 2,000 sec. 

However, because nonadiabatic effects for such modes are expected to be very large, 

i t  wi l l  take much work to establish the relevance of these atmospheric modes to ZZ 

Ceti stars. 

As regards stabi l i ty,  we note from the work of Fontaine and Van Horn (1976, 

see their Figure 8), for example, that convection in white dwarf envelopes can carry 

up to al l  of the energy transported through those zones. In addition, the 

combination of convective eddy veloci t ies and typical mixing lengths may y ie ld 

turnover times on the order of seconds to many hundreds of seconds. There is thus 

the possibility that convective eddies may in some manner keep up with the stellar 

motion or, at the other extreme, be e f fec t ive ly  frozen in. I t  is not at al l  clear 

how these possibilities affect stabil i ty. In the calculations of Dziembowski (1977a) 

the effects of convection (on stabil i ty) were ignored, with the inferred meaning that 

the convective f lux  (or perhaps i ts  gradient) was held fixed. This would seem to 

introduce a large measure of uncertainty into those calculations but at the moment 

such uncertainties appear to be unavoidable. Simi lar ly ,  large values of ~ for g- 

modes imply transverse nodal structures which have dimensions only a few factors of 

ten larger than eddy sizes in extensive convection zones (assuming those sizes are 

comparable to local pressure scale heights). Thus, the interaction of pulsation and 

convection might very well be significant, especially since transverse displacements 

in g-modes tend to be large (see Figure 2). 

Now back to Figure 3, which is a b i t  of a swindle. The convection zone has 

been depicted as extending out to a radius fraction of 10 -5 of the "surface." 

However, in the temperature regime of the ZZ Ceti variables, the hydrogen convection 

zone may extend out to optical depths of less than unity (Fontaine and Van Horn 

1976). Thus we have the t ickl ish question of how to apply boundary conditions near 

or above the photosphere; the spectre may also be raised of B + modes, discussed in 

this conference in the context of solar osci l la t ions.  Since, at least in my view, 

the errat ic and complex spectra of l i gh t  variations in the longer period ZZ Ceti 

stars most probably arise from surface-like waves involving l i t t l e  total mass, the 

above questions should be addressed in the future studies. 

2.3. Rotation 

To my knowledge, no significant new material has appeared since the review of 

Van Horn (1978) although there are some problems outstanding. Slow rotation is most 

certainly present in at least some ZZ Ceti stars, as indicated by the extraordinarily 
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stable doublet pair of modes in R548 (Robinson, Nather and McGraw 1976). I t  is 

doubtful at this time whether rotational sp l i t t i ng  can serve as a real ly  useful 

diagnostic because of the wide variety of rotation laws which are, in pr inciple,  

physically acceptable. All that can be said for now is that R548 is slowly rotating. 

We may contrast this si tuat ion with that of the earth where a multitude of 

oscillation modes are seen, some rotationally spl i t ,  thus providing numerous cross 

checks on models. 

Rapid rotation, for some variables, has been proposed by Wolff (1977, 1980) 

in his model of nonlinear beating of rotationally spl i t  g-modes. I believe that this 

theory is s t i l l  undeveloped and may be contradicted by observations that white dwarfs 

tend to be slow rotators. 

2.4. Solid Core Effects 

Van Horn and Savedoff (see Van Horn 1978) have suggested that  the 

crystallized cores of evolved white dwarfs should affect oscillation periods. This 

may not be directly applicable to the ZZ Ceti variable since, for reasonable masses 

for these stars (~ 0.6 M e ) and compositions, c rys ta l l i za t ion  may not occur unt i l  

these stars have cooled down beyond the i r  observed temperatures. However, in a 

preliminary study, Van Horn and I have calculated low ~ and k modes for the cool, 1 

M e model mentioned previously. The crystalline core for this model is very extensive 

and comprises al l  but about 0.1% of the total mass and 5% ~f the radius. Note, 

however, that the model is not self-consistent because crystallization was not taken 

into account during the evolution and was added in only for the pulsation analysis. 

The modes calculated were the spheroidal P1,2, f and gl,2 for ~ = 1, 2, and 

3. To conform with geophysical usage, these are designated as 1,2S~, oS~ and _1,_2S~ 

respectively. Toroidal modes, having zero radial displacements and Eulerian pressure 

variations, were also considered and are denoted by kT~ where k counts the number of 

nodes in the transverse displacement. Our results are summarized in Figure 4. As 

can be seen, the effects of c rys ta l l i za t ion  on the p and f modes are very small. 

However, g-mode frequencies increase by nearly a factor of three above the i r  

corresponding f l u id  values, making i t  s t i l l  more d i f f i c u l t  to reach the low 

frequencies of the ZZ Ceti variables. Nevertheless, i f  i t  can be shown that 

crystallization does take place in these stars, then pulsation calculations must be 

modified to account for c rys ta l l i za t ion  effects. The toroidal modes, which have 

frequencies intermediate between the pressure and gravity modes, are pr imari ly of 

academic interest because the oscillations are confined to the solid core thus giving 

no observable surface variations. 

I would l ike to thank Professors J.P. Cox and H.M. Van Horn for numerous 
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ABSTRACT 

White dwarf pulsators (ZZ Ceti variables) occur in the extension of the 

radial pulsation envelope ionization instabi l i ty strip to the observed luminosities 

of 3 x 10 -3 Lg according to van Horn (1979). Investigations have been underway to 

see i f  the driving mechanisms of hydrogen and helium ionizat ion can cause radial 

pulsations as they do for the Cepheids, the RR Lyrae variables, and the a Scuti 

variables. Masses used in th is study are 0.60 and 0.75 Mg and the temperature T e 

used ranged between 10,000 K and 14,000 K, the observed range in T e. Helium rich 

surface compositions l ike Y : 0.78, Z = 0.02 as well as Y = 0.28, Z = 0.02 have been 

used in spite of observations showing only hydrogen lines in the spectrum. The deep 

layers are pure carbon, and several transition compositions are included. The models 

show radial pulsation instabi l i t ies for many overtone modes at periods between about 

0.3 and 3 seconds. The driving mechanism is mostly helium ionization at 40,000 and 

150,000 K. The blue edge at about 14,000 K is probably due to the driving region 

becoming too shallow, and the red edge at 10,000 K is due to so much convection in 

the pulsation driving region that no radiative luminosity is available for modulation 

by they and K effects. I t  is speculated that the very long observed periods (100- 

1000 sec) of ZZ Ceti variables are not due to nonradial pulsations, but are possibly 

aliases due to data undersampling. 

In a recent article on white dwarfs, van Horn (1979) noted that "theoretical 

calculations have yet to demonstrate the existence of the suspected Cepheid-variable- 

l ike driving mechanism for modes that are compatible with the observed pulsations." 

He notes that the ZZ Ceti variables, that is those pulsators that are single 

white dwarfs, occur in the same envelope ionizat ion radial pulsation i n s t a b i l i t y  

s t r ip  as the Cepheids and a Scuti variables of population I and the RR Lyrae 

variables and Cepheids of population II. The work reported here on radial pulsat~ion 

instabi l i t ies using the linear nonadiabatic theory wi l l  demonstrate that white dwarf 
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pulsations should occur in a hitherto unexplored frequency domain. We w i l l  not 

predict, unfortunately, the long observed periods of 100-1000 seconds, but only ones 

of the order of one second. 

Observed luminosit ies for our variables are about 3 x 10 -3 L e, and the 

observed T e range is 10,000 to 14,000 ~ The instabi l i ty  strip taken from a review by 

Nather (1978) who extended the Henden and Cox (1976) i n s t a b i l i t y  s t r ip  is in the 

Figure 1. These L and T e values give radi i  between 6.5 and 13 x 108 cm or between 

0.01-0.02 R e . Use of the electron degenerate star relation between mass and radius 

gives masses between 0.3 and 0.9 M e . We have used 0.6 for most of the results here, 

though some 0.75 M e cases wi l l  also be shown. 

During the course of this investigation our ideas about the composition of 

the outer layers of ZZ Ceti stars changed from Y = 0.78 to Y = 0.28, and both 

compositions wi l l  be considered here. Even though only hydrogen lines occur in the 

spectra of these stars, helium is often invisible and i t  would not be surprising i f  Y 

= 0.78 were indeed found to be correct. Metals which also are absent in the spectra 

have probably gravitationally settled to deep layers below any well mixed convection 

zones. In spite of this lack of metals, Z = 0.02 is used in the outer layers of al l  

of our models. 

Let'sconsider the surface layer helium. I t  appears that there could be an 

evolutionary set t l ing of helium to deep layers long before T e f a l l s  to 14,000 K. 

This prevents pulsation because helium really causes most of the driving in pulsating 

stars except for the cooler RR Lyrae variables and Cepheids where hydrogen ionization 

plays a small role in pulsation. Now in cooling white dwarfs of our masses, 

convection cannot mix to very deep layers of T ~ 105 K unt i l  the T e drops to about 

the T e of our blue edge. I t  may be that the onset of convection to dredge up helium 

causes the ZZ Ceti i n s t ab i l i t y  s t r ip  blue edge, though the normal effect of the 

driving regions becoming too shallow is also operating. 

Composition changes cause problems in our stabilityanalyses, the gamma and 

opacity derivative values have discontinuities at these places and give local damping 

and driving that does not always cancel to a zero effect. Therefore, our models have 

transition layers with some residual hydrogen between 1 and 2 mill ion Kelvin, just 

helium and the normal Z between 2 and 5 mil l ion Kelvin, mostly helium but 10 percent 

carbon to 10 million Kelvin and then half helium and half carbon to a density of 104 

g/cm 3. Interior to this point is pure carbon which comprises the central 99 percent 

of the mass. 

Our models allow convection by the normal mixing length theory with the 

rat io,  m, of the mixing length to scale height being either 1.0 or 1.5. This gives 

convection to a level between 105 and 106 Kelvin depending on this rat io  and other 

parameters such as T e. The larger ~ usually puts more mass in the convection zone 

and makes models more pulsationally unstable. Any spurious convection caused by the 
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deep composition transitions is suppressed by us below 106 K because the gradient is 

close to being adiabatic anyway. 

The luminosity flowing outward in the models is made proportional to the 

in te r io r  mass according to the behavior of models constructed by van Horn 

(unpublished). The growth rates of unstable models increase by about a factor of two 

when a constant surface luminosity is used throughout. 

Table 1 gives periods for radial pulsation modes for 0.6 Me, 3 x 10 -3 L e, T e 

between 10,000 and 14,000 K and for Ys = 0.28 down to 106 K. Hotter models are 

beyond the blue edge and cooler ones are probably stabi l ized by convection. The 

periods are in seconds and unstable modes are marked with U. These have periods from 

0.3 to 3 seconds, and the maximum growth rates marked range from 10 -9 to 4 x 10 -8 • 

These timescales are as short as a few years. 

Instabi l i ty is caused by helium ionization and the x and ~ effects. Consider 

the models at 12,000 K for 0.75 Me at our luminosity and Ys = 0.78. The internal T, 

p, and opacity are given in Figure 2, Composition variations at a level of 10 -6 of 

the mass from the outside at 2 and 5 mi l l i on  degrees show as sudden changes in the 

opacity. Pulsation eigenfunctions with 12, 14, and 16 nodes, i.e., K = 11, 13, and 

15, versus the fract ional radius are in Figure 3 where the internal damping is 

suppressed because of small amplitudes there and the helium driving regions in the 

outer 7 x 10 -4 of the radius can become operative. Thus one gets work plots with 

more driving than damping, and pulsation is predicted. The work calculated over a 

pulsation cycle is in Figure 4. The normal driving region at 20,000 K to 50,000 K 

and the deep region discussed recently by Stellingwerf (1979) at 100,000 K to 250,000 

K are shown. Note that al l  this driving is in the outer 10 -12 of the white dwarf 

mass. To what amplitude this driving can lead, is an unknown which awaits f u l l  

nonlinear calculations which can allow for the possible saturation of the driving and 

the possible increase of the damping at l imit ing amplitude. 

Let me now discuss the great disparity between the observed periods of 100- 

1000 seconds, commonly ascribed to g mode pulsation, and our predicted ones around 1 

second. Note that the 10,000 K low mode periods are l ike those for dwarf nova 

oscillations but the unstable periods are no more than 3 seconds. We suppose that g 

mode ident i f i ca t ion  for ZZ Ceti variables is correct and maybe our envelope 

ionization could make them unstable too, just as i t  does for our radial modes. The 

gl and g2 modes do have 6r/r  eigenfunctions s imi lar  to our high k radial modes. A 

search for our periods of about 1 second, now being planned by McGraw and Starrfield 

at K i t t  Peak and by Hildebrand from Chicago observing at Mount Lemmon is well 

just i f ied by our predictions. 
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White Dwarf Radial Pulsat ion Periods (Seconds) 

and Growth Rates (Per iod "1) 

0.6 M e 3 x 10 -3 L YS : 0.28 

k/Te(K) 10,000 11,000 12,000 13,000 14,000 

0 20.1 13.3 9.0 6.4 4.7 

1 8.9 6.5 4.8 3.5 2.70 

2 6.0 4.5 3.4 2.58 1.98 

3 4.8 3.6 2.67 2.02 1.56 

4 3.9 3.0 2.26 1.74 1.36 

5 3.2 2.46 1.88 1.45 1.14 

6 2.82 U 2.13 1.63 1.26 0.98 

7 2.50 U 1.89 1.44 1.12 0.87 

8 - 1.71 U 1.30 1.01 0.79 

9 2.13 U - 1.19 U 0.91 - 

10 1.97 U 1.47 U 1.11 U 0.85 0.66 

11 1.84 U 1.37 U 1.04 U 0.80 0.62 

12 1.72 U 1.29 U 0.97 U - 0.58 

13 1.60 U 1.21 U - 0.70 U 0.55 

14 1.51 U 1.13 U 0.87 U - - 

15 1.44 U 1.08 U 0.82 U - 0.45 
(6 x 10 "9) 

16 1.37 U 1.02 U - - - 

17 - - O. 51 U - 

18 - 0.49 U 0.32 U 

19 0.90 U - 0.41 U 0.28 U 
(1 x 10 -9 ) ( !  x 10 -8 ) 

20 0.62 U 0.38 U 0.22 

21 0.57 U 0.34 U 
(6 x 10 -9 ) 0.31 U_ 

(4 x 10 -5) 
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TWELVE MINUTE LIGHT VARIATIONS IN THE PECULIAR STAR liD 101065 

G. Wegner 
Department of Physics 
University of Delaware 
Newark, Delaware 

ABSTRACT 

The magnetic star HD101065 (Przybylski's star) is known for i ts  peculiar 

spectrum dominated by rare earth lines. Recently, i t  has been discovered to exhibit 

periodic 12.141 ± 0.003 min. l ight  variations of amplitude near ± 0.015 mag. in 

(Kurtz and Wegner 1979). Several lines of argument suggest an effective temperature 

near 7400 K, which could relate HD101065 to the a Scuti i ns tab i l i t y  str ip. Such 

rapid variabi l i ty is unprecedented in normal, Am and Ap stars. I f  HD101065 is near 

the main sequence, the short timescale of va r i ab i l i t y  seems to create a number of 

problems, not only for pulsation theory, but also for current ideas on the diffusion 

mechanism of metal enhancement. 

I. INTRODUCTION 

The complicated spectrum of HDI01065 and i ts  interpretation have been 

discussed in detail elsewhere. This is a summary of the main points. Przybylski 

(1961, 1963, 1966) discovered the star's richness in rare earths. Wegner and Petford 

(1974) concluded that the object has a temperature near spectral class FO (about 

7400 K) and, within the l im i ts  of a very d i f f i c u l t  atmospheric analysis, obtained 

near normal abundances for Fe, Ti and Cr while the rare earths were found to be 

enhanced by nearly five orders of magnitude. 

The star 's nature depends c r i t i c a l l y  on i t s  effective temperature. 

Przybylski (1977a,b) argued for a lower value of Tel f = 6075 ± 200 K and a 

corresponding reduction in the Fe abundance by at least 2.4 in the logarithm. Cowley 

at al. (1977) have shown that Fe lines are present in the spectrum. 

Recent progress regarding the effective temperature of HD101065 suggests that 

the higher value is correct. The determination of Tef f is made d i f f i c u l t  by the 

complicated spectrum. In fact, the abnormal Ha and HB line profiles (Wegner 1976) 

could indicate that the temperature structure of the star's atmosphere is perturbed 

by the abnormally strong l ine blanketing. The three most rel iable temperature 

indicators are probably as follows: (1) The H~ and HB line profiles give Tel f = 7500 
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and 7100 K respectively (Wegner 1976). (2) The infrared (J-K) and (J-L) colors 

measured by Glass (priv. comm.) indicate temperature near 7000 and 7500°K 

respectively, almost independent of reddening (Wegner 1976). (3) The Paschen line 

strengths, in particular that of the P12 l ine, indicate Tef f = 7400 ± 300 K (Kurtz 

and Wegner 1979). 

Additional observational results of importance are as follows, Przybyl ski 's 

star has a -2200 Gauss magnetic field which strengthens its possible relationship to 

the Ap stars (Wolf and Hagen 1976). Long period l ight, spectral and radial velocity 

variations seem to be ruled out unless they are very small (Wolf and Hagen 1976; 

Cowley et al. 1977; Przybylski 1978; Wegner, unpublished). From the sharpness of the 

lines in HD101065, the effects of rotation are small and indicate that vsini <- 7 km 
s-l. 

Astrometric data (cf. Wegner and Petford 1974) yield l i t t l e  information on 

the luminosity of HD101065. Churm's (1973) trigonometric measure gives the upper 

l i m i t ,  ~ <- 0."025, or M V <- + 5.0 mag. For Tef f = 7400 K, this could place HD101065 

near the zero age main sequence and in the a Scuti i ns tab i l i t y  str ip. The lower 

l i m i t  on the star's brightness would probably exclude the poss ib i l i ty  that i t  is a 

subdwarf unless i t  is considerably hotter than believed. The low proper motions and 

radial velocity give weak corroboration that HD101065 is not a member of the halo 

population. 

2. THE LIGHT VARIATIONS 

The recent discovery of the l ight  va r i ab i l i t y  of HD101065 provides new 

insight regarding its nature. The photometric observations made during April to July 

1978 using the 1.0 and 0.5 m telescopes at the South African Astronomical Observatory 

in Sutherland cover over 100 cycles during 22 hours of observation on eight nights 

spread over 52 days. These have been discussed in detail by Kurtz (1978) and Kurtz 

and Wegner (1979), so only the main aspects wil l  be presented here. 

The data obtained in the B band establish that HD101065 has a principal 

period near 12.141 ± 0.003 minutes. Table I gives a summary of the observations. 

The frequencies in parentheses were adopted from the more extensive B data set. The 

andVdata are not adequate for determining possible small phase shif ts between 

l ight  curves of dif ferent color. Note the apparent decrease of amplitude in the 

light variations with wavelength. 

There is some suggestion of two low amplitude heat periods, appearing as side 

lobes of the main peak. In Table 1these are denoted by f2 and f3 while f l  is the 

12.141 min. peak. However, in l ight  of considerations l ike those of Luomos and 

Deeming (1978), these should s t i l l  be labeled as provisional. 
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Table 1. Summary of Derived Frequencies for HD101065 

[After Kurtz and Wegner (1979)] 

f P A 

(hour "I)  (minutes) (m mag) 

4.942 12.141 5.8 

±0.001 ±0.003 

(A) All B Data 

(B) B Data for JD2443643 and 2443644 only 

f l  - f2 = 0.25 hr -1 

f3 - f l  = 0.03 hr -1 

(C) V Data (4.942) 

(D) U Data (4.942) 

2.3 

7.2 
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3. DISCUSSION AND CONCLUSIONS 

What lessons does HD101065 teach us? How can the 12.141 minute per iod be 

understood? These questions can only be answered a f ter  making assumptions regarding 

the star 's structure. I t  must be remembered that nothing de f in i te  is known about the 

luminos i ty  of HDI01065. Furthermore, an abnormal He abundance cannot be ruled out 

because th is  star is too cool to have He l ines in i t s  spectrum. 

One e n t i r e l y  p l a u s i b l e  hypothesis  is  to assume tha t  HDIOI065 is a a Scut i  

star. This is ce r ta in l y  consistent wi th i t s  l i g h t  v a r i a b i l i t y  and the temperature 

adopted here. However, i t  should be noted that the dominant single stable frequency 

observed in the l i g h t  var iat ions is not a common charac ter is t i c  among ~ Scutis and 

v a r i a b l e  wh i te  dwarfs.  Never theless,  i f  t h i s  model is  adopted, then very high 

overtones are needed to exp la in  the 12.141 minute per iod.  For example, as pointed 

out by Kurtz and Wegner (1979) in  a d iscuss ion  of  nonradia l  pu l sa t i on  in  the ~ = 2 

mode, the rad ia l  quantum number would have to be k - 13 f o r  a main sequence object  

w h i l e ,  f o r  a g ian t  s ta r  model, k ~ 35. I t  is  d i f f i c u l t  to  understand how a s ta r  

could osc i l l a te  stably in such large overtones. I t  may be possible to constrain the 

internal  structure by an agent external to the dr iv ing force in such a way that only 

one pulsat ion mode is allowed. Perhaps the star's -2200 Gauss magnetic f i e l d  of fers 

a c lue.  

Lower pu l sa t i on  modes could be obtained i f  HDIOI065 was a subdwarf or had 

pecul iar i n t e r i o r  abundances, as would be the case i f  i t  was on the He main sequence. 

In fac t ,  the assumption that HDIOI065 is a unique pathological object cannot be ruled 

out and consequently opens up a number of poss ib i l i t i e s .  For example, the star could 

have been formed from an i n t e r s t e l l a r  c loud tha t  was g r e a t l y  enr iched in heavy 

elements by a supernova event. 

However, such an extreme v iew does not appear necessary to exp la in  the 

spectroscopic properties of HD101065 as out l ined above. They are suggestive that i t  

is  related to the cool Ap stars. Therefore, i t  seems more reasonable to question the 

pulsat ion theory. This assertion is given addit ional weight by the other meta l l i c  

l i n e d  objects such as HD52788 tha t  have been found to have l i g h t  per iods near ly  as 

shor t  (Kurtz 1978). I t  should also be reca l l ed  t ha t  there  are d isc repanc ies  of  a 

somewhat s i m i l a r  nature f o r  the v a r i a b l e  wh i te  dwarfs.  They seem to have per iods 

which are much too long, but also vary in high overtones (cf. Robinson 1980). 

One a d d i t i o n a l  i m p o r t a n t  q u e s t i o n  t h a t  HDIOI065 ra i ses  regards the 

re la t ionsh ip  between v a r i a b i l i t y ,  meta l l ic ism and magnetic f ie lds .  I t  has general ly 

been considered that v a r i a b i l i t y  is not exhibi ted in the presence of metal l ic ism and 

a magnetic f i e l d  because an extremely stable atmosphere is required for  the element 

separation to take place. 

Whatever the f i n a l  outcome, the study of HDI01065 and s tars  l i k e  i t  w i l l  

probably provide addit ional new surprises. 
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ON THE DEFINITION OF CANONICAL ENERGY DENSITY AND OF 

CANONICAL ENERGY FLUX FOR LINEAR AND ADIABATIC 

OSCILLATIONS OF A SPHERICAL STAR 

P. Smeyers 
Katholieke Uhiversiteit Leuven 

Weigert 
Universit~t Hamburg 

ABSTRACT 

Two variational principles are known for the problem of stellar oscillations. 

The meaning of these variational functionals is considered as well as implications 

for the definition of the canonical energy density and energy flux. 

Chandrasekhar and Lebovitz (1964) have shown that the Euler equations of a 

variational principle are equivalent to the equations that govern the l inear 

adiabatic osci l lat ions of a spherical star. The va l i d i t y  of this variational 

principle follows from the hermiticity of the linear operator that is applied to the 

linear adiabatic oscillations of a star. 

In geophysics a somewhat different variational principle is applied to the 

study of waves in a plane atmospheric layer. As far as we know, only a heuristic 

derivation of the corresponding variational functional has been given (Tolstoy 1963, 

1973). I t  can be ver i f ied that the Euler equations of this second variational 

principle are also equivalent to the equations governing the l inear adiabatic 

oscillations of a spherical star with the exception of the term that represents the 

perturbation of the gravitational force. This term is commonly neglected in studies 

of atmospheric waves. 

Thus, two variational principles are known for the problem of s te l la r  

osci l lat ions. This brings up the question of the meaning of the corresponding 

variational functionals. We shall examine this question and consider some of i ts  

implications for the def ini t ion of canonical energy densityand canonical energy 

flux. 

We have applied Hamilton's principle exp l i c i t l y  to the l inear adiabatic 

oscillations of a spherical star. The necessary Lagrangian is the difference between 

the second order change in kinetic energy, T, and the sum of the second order changes 

in the internal and gravitational potential energies (U and ~ respectively): 
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L 2 : a2 T - (a2 u + a2 ~) (I) 

I t  may be noted here that, when the perturbation of the gravitational potential is 

taken into account, a nonlocal f ield theory results. 

The Lagrangian defined by (1) can be transformed in such a way that one of 

i ts  terms becomes a volume integral of the divergence of a vector that vanishes 

together with the pressure at the surface of the equilibrium configuration. Such a 

term does not contribute to the Lagrangian, so i t  can be dropped for the purposes of 

the variational procedure. When this is done, the resulting form of the Lagrangian 

turns out to be identical to the functional of Chandrasekhar and Lebovitz. Hence, 

from a physical point of view, this functional is the difference between the second 

order change in kinetic energy and the sum of the second order changes in the 

internal and gravitational potential energies for any spherical star with a vanishing 

surface pressure that is submitted to a linear adiabatic perturbation. Furthermore, 

the requirement that the Lagrangian of Chandrasekhar and Lebovitz obeys Hamilton's 

principle allows the generation of both the equations and the associated boundary 

condition that govern the linear adiabatic perturbations of a spherical star. 

I t  is possible to transform once more the Lagrangian defined by (1), deriving 

a second term that is also a volume integral of the divergence of a vector. This 

vector now vanishes at the surface of the equilibrium configuration when the gradient 

of pressure (or density) vanishes at that surface. Hence, i f  this condition is 

sat isf ied, an additional term can be dropped in the Lagrangian. After this second 

reduction the Lagrangian becomes identical to Tolstoy's variational functional. 

Consequently, this functional represents the difference of the second order change in 

kinetic energy and the sum of the second order changes in the internal and 

gravitational potential energies for any perturbed star where both the pressure and 

its gradient vanish at the surface of the equilibrium configuration. Furthermore, 

when Hamilton's principle is used with Tolstoy's Lagrangian, the equations and the 

boundary condition can be generated that govern the linear adiabatic perturbations of 

a spherical star. In this case, however, the boundary condition takes the form to 

which i t  reduces when the gradient of pressure vanishes at the equilibrium surface. 

At this point we may conclude that both the variational principle of 

Chandrasekhar and Lebovitz and the variational principle used in geophysics actually 

stem from Hamilton's principle. 

Let us now turn to the definition of canonical energy density and canonical 

energy flux. Following a procedure of mechanics for continuous systems, one can 

derive a Hamiltonian H 2 from a Lagrangian density~ 2 by putting 
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H21[ i  2]v 2 Bt @~i 
V B Bt 

Since H 2 represents the second order change in total energy of a spherical star 

subjected to l inear adiabatic perturbation, i t  is conserved. H 2 can also be 

considered as a space integral of a canonical energy density~ 2 that is defined as 

~2 : B~i ~Z 2 
Bt a_ii- z2 (3) 

@t 

Def in i t ion (3) has been used by Tolstoy (1973) and has been recently applied 

by Dicke (1978) in a d iscussion of so la r  o s c i l l a t i o n s .  Both authors der ived a 

canonical energy density from Tolstoy's Lagrangian density. In th is  context i t  is 

well to keep in mind that,  i f  a Lagrangian dens i t y~  2 is associated with one of the 

s impl i f ied  forms of the tota l  Lagrangian L 2 as described above, the canonical energy 

density resul t ing from de f in i t ion  (3) does not correspond to the second order change 

in energy density. We may wr i te  the second order change in energy density as 

3 

~2 = ½ p - -  - v • [(P v • 7)~ + P(~ x v ) .  7]  ° :  

+½riP( v . ~)2 i ÷  + ~(~ • VP)(V • ~) 

+ ½9 7 .  vo)+ ½9 v°i , (4) 

where 7 represents the Lagrangian displacement, and @~the f i r s t  order Eulerian 
perturbation of gravitational potential. When~2 is aefined as the Lagrangian 
density that is associated with the Lagrangian of Chandrasekhar and Lebovitz, 
canonical energy density is linked to the second order change in energy density by 

~C =~2 + ½v • [(P V ~)~ + p(~ x v) • ~ ]  . (5) 

In the second case, when~2 is associated with Tolstoy's Lagrangian, one has for 

canonical energy density 

~T :~C +½v • [(7 • vP)~] (6) 

An equation for the local change of canonical energy density can be obtained 

by differentiating this density with respect to time. When the Euler equations of 

the variational principle are taken into account, the equation takes the form 
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where 

½o i - 

@x 3 

(7) 

~ :<2 + ½~" v°i (8) 
The right-hand member of equation (7) can be interpreted as the local 

production of canonical energy due to the perturbation of the gravity field. When 

integrated over the volume of the equilibrium configuration, the energy production is 

zero, as may be expected since H 2 is conserved. For the important case of 

displacement fields that vary harmonically in time, the rate of local production of 

canonical energy is ident ical ly  zero at al l  points, and equation (7) becomes a 

conservation equation for~¢ 2. 

Using equation (7) we may also define the components of the flux of canonical 

energy as 

BC l ~-- (g) 

Bx j 

When~ 2 is derived from the Lagrangian of Chandrasekhar and Lebovitz, the canonical 

energy flux can be written expl ici t ly as 

.C = -  p .v  - • • 

In particular, the radial component of the flux takes the form 

r - r iP(v '~)  B~r (11) 
~C : @t 

This component clearly vanishes at the surface of the equilibrium configuration when 

the boundary condition, which expresses the conservation of momentum, is satisfied. 

I t  is interesting to note that, according to expression (10), a displacement f ie ld  

proportional to sin ot gives rise to a f lux of canonical energy that is everywhere 

opposite to the f lux associated with the corresponding displacement f ie ld  that is 

proportional to cosot. This property physically distinguishes the two types of 

displacement fields. 

For displacement fields that vary harmonically in time, expression (10) for 

canonical energy flux reduces to 
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~C = - rlP(V" ~) Bt @~ (12) 

On the other hand, when~ 2 is derived from Tolstoy's Lagrangian, canonical 

energy flux is defined as 

~r T : - [r lP(V • ~) + ~-  VP] ~ @~ (13) 

With th is  de f in i t i on ,  the radial component of the canonical energy f lux  vanishes at 

the surface of the e q u i l i b r i u m  con f igu ra t i on  only i f  both the pressure and i t s  

gradient vanish at that surface, 
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PROPERTIES OF NONRADIAL STELLAR OSCILLATIONS 
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ABSTRACT 

I t  is shown that the osci l latory properties of the eigenfunctions can be 

proved rigorously for the second order problem. Models with discontinuities in 

density are also considered and "discontinuity modes" are shown to exist. The 

distribution of amplitudes of these modes is also discussed. 

1. INTRODUCTION 

The mathematical properties of the eigenvalue problem describing the 

adiabatic nonradial oscillations of stars are s t i l l  poorly known and our information 

rests only on numerical integrations. 

Even when the problem is simplified neglecting the Eulerian perturbation of 

the potential, a rigorous analysis of the eigenvalue problem is s t i l l  lacking. As 

early as 1941, Cowling (1941) introduced the distinction between p and g spectra on 

the basis of an asymptotic discussion of the problem. Owen (1957) was unable to find 

the f mode and the f i r s t  p and g modes for polytropes of high central condensation. 

Robe (1968) showed that these modes s t i l l  exist but that they acquire extra nodes. 

Scuflaire (1974) and Osaki (1975) showed that a regularity can be found in all cases 

provided the nodes are counted in an appropriate way. 

We show that a rigorous discussion of the osci l la tory properties of the 

eigenvalue problem can be done when the Eulerian perturbation of the potential is 

neglected. Full demonstrations are given by Gabriel and Scuflaire (1979). 

The discussion is also extended to cases where discontinuities in density are 

present in the star. For incompressible f lu ids,  i t  is known that each density 

discontinuity gives rise to a new mode (called a discontinuity mode), We show that 

i t  is not always so in stars. 

When a density discontinuity is present in the star, there can nevertheless 

exist one or more modes having their largest amplitudes in the vicini ty of one of the 

discontinuit ies. This problem is discussed using a simpl i f ied mod~l whose 

predictions allow the interpretation of numerical results obtained from physical 

models. 
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2. OSCILLATORY PROPERTIES OF NONRADIAL OSCILLATIONS 

2.1. Equations and Boundary Conditions 

The equations for nonradial oscillations neglecting the Eulerian perturbation 

of the gravitational potential (Cowling's approximation) are 

dv 
d ~ : a  w , (1) 

dw : b v (2) 
dr 

where v = f l  r2 a r  , w = f2  p'  p 

f l  = exp r I d r  ' 

(fo ] f2 = exp A dr , A = - r l  

2 
( ~  ] r 2 f l  c 2 r 

a : , - 1 c--g~-~- 2 , : r I -p , 

, (4)  

(5) 

f2 b = 1 ( 2_n 2) , (6) 
r ~ 

is the degree of surface spherical harmonic, c is the velocity of sound, n = 

is the Brunt-V~is'~l~ frequency and ~a = [c(~+~)]1/2 c/r is the c r i t i ca l  sound 

frequency. 

Equations (1) and (2) are those given in Ledoux and Walraven (1958) modified 

to take the non-constancy of r I into account. 

Equation (3) shows that f l  is continuous throughout the star even when 

discontinuities in density are present. In such cases, A must be considered as a 

distr ibut ion to maintain the va l id i t y  of equation (4); f2 is discontinuous at 

discontinuities of density and satisfies the equation 

f2___~_+ = f 2 -  , (7)  
p+ P_ 

where the subscripts - and + refer to the lower and upper sides of the discontinuity. 

For what follows i t  is useful to represent the solutions in the [v(r), w(r)] 

plane (Scuflaire 1974) and to introduce the polar coordinates (~,e) defined by 
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v : ¢ cos e , w = ¢ sin e 

Then equation ( i )  and (2) become 

de b cos 2 e - a sin 2 e 
dr 

(8) 

(9) 

d-2E = (a + b)¢ sin e cos e 
dr 

The discussion of the properties of the eigenvalue problem-T~-based on the behavior 

of the solutions of equation (9). 

I t  is readi ly  ver i f ied that the regular i ty  condition at the center requires 
~+1 ~ l im rw o 2 tha t  v and w go to zero respec t i ve l y  as r and r , t ha t  r+O ~- - ~ and 

e(O,~ 2) : ~ /2  + k~. 

We may take  k = 0 and we have 

r , a  2 ~ e( ) : ~ - - ~ r  
O 

for  su f f i c ien t l y  small r. 

The boundary condition to apply at the "surface" is less obvious especially 

for non-zero surface temperature models. In a l l  cases we are led to a condition of 

the form e(R) = ~ + k~ wi th  0 < ~ < ~/2. 

For zero surface temperature models the boundary cond i t ion  is ap(R) = O, 

which is equivalent to the condition of regular i ty  of the solution, implies that 

: tg-1 f2(R)l 
8 

LR" 

For these models 

r = R and P = Kp Y 

e = k ~ +  

with m = 

i t  can be considered that in the outermost layers (r  > r2) m(r) = M, 

with y constant. Then i f  ln21 >>~2 >>a~ the regular solution is 

and 

tg - I  (B x -m) , 

2y - I" 1 
, x : R - r ,  

m + /m 2 - 4alb I y(y - 1"1) 

B = 2a I , alb I r~(y_1)2 

At a d i s c o n t i n u i t y  in densi ty  6r and ap must be continuous. 

cont inui ty of v and a discont inui ty in w given by 

(12) 

This imp l ies  the 
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and for  e 

tg e + - t g  B_ : r-~fl [ ~ ]  (p+-p_) (13) 

Obviously we may impose that le+ - e_l < ~ then e+ and e_ belong to the same interval 

i k : 3,  + 
From the de f i n i t i on  of a and b i t  is obvious that they are respect ively 

decreasing and increasing functions of o 2. Because of th is  simple property i t  is 

possible to demonstrate rigorously the osci l latory properties of the eigenfunctions 

of nonradial osc i l l a t i ons  using exact ly the same mathematical techniques as 

Coddington and Levinson (1955) for the Sturm-Liouville problem. The proofs are given 

in details by Gabriel and Scuflaire (1979). 

I f  we assign to the nodes the sign of de at that point the properties are: ~-g 
(1) Al l  stars have a stable p spectrum of pressure modes, i .e.,  o 2 > 0 k = 1, 2, 

• . . ,  which has an accumulation point at i n f i n i t y .  The eigenfunction r k 

associated to ~ has k zeros. 

(2) There is a fundamental node associated to k : O, with ~ > O. The algebraic 

sum of the nodes of aro is equal to zero. 

(3) I f  the star has at least one radiative zone there is a stable g+ spectrum of 

grav i ty  modes, i .e.,  a S > 0 k = -1, -2, . • . ,  which has an accumulation 

point at zero. The eigenfunction ar k associated to a~ has k zeros (k < 0). 

(4) I f  the star has at least one convectively unstable zone there is an unstable 

g- spectrum of gravity modes, sometimes called convective modes, i.e., ~ ~< 

O, k = +I,  +2, . . . ,  which has an accumulation point at zero. The ar  k 

associated too~ has k zeros. The smaller eigenvalue o f ~  is larger than 

the minimum of the square of Brunt-V~is~l~ frequency. 

(5) I f  there are N "unstable" discontinuities in the star such that the density 

below the discontinuity is smaller than above, then N new modes appear in the 

eigenvalue spectrum provided there is no convectively unstable zone, i.e., i f  

there is no g- spectrum. We call these modes unstable discontinuity modes. 

a l l  unstable, i.e., ~ < 0 j = 1, • . . N. They are 

(6) I f  there are N "stable" d i scon t inu i t i es  in the star such that the density 

below the discontinuity is larger than above, then N new modes appear in the 

eigenvalue spectrum provided there is no g+ spectrum. (The homogeneous model 

is an example of such a situation.) We call these modes stable discontinuity 



482 

modes. They are a l l  s tab le ,  i .e . ,  ~ > 0 j = 1, . • • N. 

3. BEHAVIOR OF EIGENFUNCTIONS NEAR A DISCONTINUITY 

From the r e s u l t s  o f  the  p reced ing  s e c t i o n  we see t h a t  under some 

circumstances the presence of d iscont inu i t ies  in density introduces new modes, i.e., 

d iscont inu i ty  modes, while under other circumstances, which are the most common ones, 

no new mode may be associated with the d iscont inu i t ies.  Nevertheless, i t  may be that 

some modes show large amplitudes near the d iscont inu i ty  and may s t i l l  be associated 

with i t .  

To check t h i s  we have searched f o r  such modes in main sequence models of a 

i . I  Me wi th X : 0.6 and Z = 0.044. For X c >0.25 these models have a small growing 

convect ive core on the top of  which a "s tab le"  d i s c o n t i n u i t y  develops~ As such 

models are not f u l l y  c o n v e c t i v e ,  t h e r e  is  no new mode a s s o c i a t e d  to the  

discont inui ty.  A few properties of these models are given in Table I. 

Numerical c a l c u l a t i o n s  have been performed fo r  values of the degree of 

spherical harmonic order ~ equal to i0, 25, 50, and I00. Table 2 shows the results. 

I t  gives the eigenvalues m2 of the "d iscont inui ty  modes" (in unit  GM/R3), the ra t i o  

R a of  the value of 6 r / r  on the d i s c o n t i n u i t y  to i t s  l a rges t  value elsewhere in the 

star and the i den t i f i ca t i on  of the modes. 

In a l l  cases but one, only one d iscont in i ty  mode was found. For model I and 

: I0, three modes with R a > I were found. All other modes of these models show R a 

values much smaller than one. 

The existence of one d iscont inu i ty  mode w i l l  not surprise but the presence, 

in one case, of three of them probably w i l l .  This can, however, be explained on the 

basis of a simple model. 

For the amplitude to be large on the d iscont inu i ty  i t  is necessary that the 

eigenfunctions have an exponential behavior on both sides of the discont inui ty.  Let 

us suppose tha t  i t  is so and that  the c o e f f i c i e n t s  a and b in equations (1) and (2) 

may be considered as constant. 

Below the d iscont inu i ty  (subscript I) the solut ion is given by 

x l ( r - r  d) 
v I : e 

w I : b~aa~ e x l ( r - r d )  

with ~ = ~ , 

where r d is the radius on the d i s c o n t i n u i t y .  We have taken v ( r  d) : I and we have 

also dropped the other independent solut ion corresponding to the singular one at the 
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Table 1. 

n o P 1 - P2 q x X c 

Pl +P2 

1 3,8 10 -3 3,41 10 -2 7,13 10 -2 

2 2,3 10 -2 4,20 10 -2 7,15 10 -2 

3 6,2 10 -2 4,83 10 -2 6,9 10 -2 

O. 568 

O. 466 

0.332 

A few properties of the models, q is the mass fraction and x the 

fractional radius at the discontinuity. X c is the central hydrogen 

abundance. 
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TABLE 2 a 

10 25 50 100 

2 8.747 

R a 11,31 

2 g6 
8,626 

R a 78 

2 g7 
7.478 

R a 2,10 

g8 

19,682 38.256 75,42 
107 8 106 105 

g4 f f 

Dimensionless eigenvalues 2 of discontinuity modes, ratio R of amplitudes 
on the discontinuity to the maximum value in the rest of the star and 
identification of the modes for model 1. 

TABLE 2 b 

10 25 50 I00 

2 51,38 120.1 233.8 454.2 
R a 4 106 2 1023 4 1050 4 1047 

P2 P3 P2 P2 

Same as Table 2 a but for model 2. 

TABLE 2 c 

10 25 50 100 

2 145.0 340.5 66,2 1317 
R a 3 107 5 1022 3 1049 6 1044 

P5 P6 P6 P6 

Same as Table 2 a but for model 3. 
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center. 

Above the discontinuity (subscript 2) we have 

~2(r-rd) ~2(r_rd ) 
+Be v2=Ae 

b~2 [ x2(r-rd) -x2(r-rd) 1 
w2 = ~ / ~  2 A e + B e  

The continuity of ~r and ~p give A and B and we have 

v2 = ch(x2(r-rd)) + sh(~2(r-rd)) a~22{[---~ I ~~1 (P+-P-)I r2f 1 

V2 ch(~2(r_rd)) + sh(~,2(r_rd) ) -o -n p_ 
: 2 ~ - n ~ J  P+ {LOa,l - 

P++P_ 2 /o-2- a,21 
°+ ad V °2 

P- - P+ (14) 
with Od 2 : g v  r ~  p-+p+ 

o~ is the eigenvalue of the discontinuity mode of an infinite incompressible fluid 

(see for instance Landau and Lifschitz 1969). 

If  for r > r x the eigenfunction oscillates, i t  can have its largest amplitude 

on the discontinuity only i f  v2(r x) << 1. This condition can be fulf i l led only i f  o 2 

is in a narrow range around the value which gives v2(rx) = O. Its general form is 
very complicated. More interesting is its expression when ~a,~ = 2 >> o2 a,2 >> n~ 
n~. Then V(rx) = 0 i f  

2 2 P++P- 2 2 
o = o c P+ coth(X2(rx_ rd)) +p_ o d = o d 

i f  x2(rx-r d) >> i , (15) 

and V(rx) < 1 i f  
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2 2 
o ~ c  < -2 

I ~c I o d 

p÷ 
p+ T-p. [sh(~'2 (rx - rd))]  - I  

P÷ 
< 

P+ ch(~,2(r×-rd) ) + p_ sh(~,2(rx-rd)) = 

-~2(rx-rd) 
2p+ e 

p++p_ 

(16) 

i f  ~2(rx- rd) >> 1 

I f  several eigenvalues satisfy condition (16) the corresponding modes are l ikely to 

ha~'their largest amplitude on the discontinuity, i.e., to be discontinuity modes. 

T~s wil l occur the most easily i f  o c fal ls in the range of high order p or g modes. 

The range of ~2 defined by condition (16) decreases as ~2(rx - r d) increases. 

Since x increases with ~ for a given mode (in the models studied here we have ~r d ~ 

in all cases), the probability to find several discontinuity modes decreases as ~ or 

(r x - rd) increases. For all usual models (r x - rd) wil l  be larger i f c~  fal ls among 

p modes rather than among g+ modes and more discontinuity modes are found i n t h i s  

la ter  case. I t  is indeed when the discontinuity modes are g+ modes of high order 

that we find several of them. 

Since the behavior of the eigenfunction changes very rapidly when o 2 deviates 

slightly from ~ i t  wil l  always be possible to find at least one discontinuity mode, 

provided of course that the solutions do not osci l late on the other side of the 

discontinuity for ~2 ~ ~ .  For this later case no discontinuity mode w i l l  be 

identified. 

Even i f  equation (15) is a very crude one ~ = ~ gives a useful order of 

magnitude for the eigenvalue of discontinuity modes. In all cases we have met so far 

~ predicts always the eigenvalues within less than a factor two. 

The very peculiar amplitude distr ibut ion of discontinuity modes should be 

kept in mind when the stabi l i ty of models with discontinuities is discussed. 
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ON MODE INTERACTION OF RONRADIAL OSCILLATIONS 
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ABSTRACT 

A method is presented for the discussion of the details of mode interaction. 

I t  is shown that during an interaction, two modes exchange their properties and that 

the two interacting eigenfunctions are weighted means of the eigenfunctions computed 

when the interaction in negligible. 

1. INTRODUCTION 

In recent years, several sequences of s te l la r  models showing "mode 

interaction" have been found, i.e., for a given sequence of models two eigenvalues 

become close to one another and seem to cross. However detailed consideration of 

this possibil ity shows that the eigenvalues do not actually cross because during a 

sequence the corresponding eigenfunctions exchange their behavior. This phenomenon, 

called "avoided crossing" by Aizenman et al. (1977), was f i r s t  found by Osaki (1975) 

for massive stars during the main sequence phases. I t  is also found by Boury et al. 

(1979) for models with a discontinuity in density. 

Pekeris et al. (1962, 1963) have also found mode interactions in the 

oscillations of Bullen's and Gutenberg's earth models in which they vary the r ig id i ty  

of the inner core. The same kind of problem has also been studied by Denis (1974). 

On the other hand, before the discovery of mode interactions, examples of 

resonances between two regions in a given s te l la r  model had already been found. 

Resonances between convectively stable core and envelope separated by a convectively 

unstable zone were found by Goossens and Smeyers (1974). In the case of resonance, 

not only are two g+ eigenvalues very close to each other, but the amplitudes of their 

eigenfunctions are large in both regions. I f  the parameters of the models had been 

varied with a small step mode interactions would have been noticed. 

Resonances or mode interactions can occur in any sequence of models which 

have eigenfunctions spatially oscillating in several regions separated by zones where 

they have an evanescent behavior. The i n i t i a l  tendency has been to call resonance 

interactions the interaction between two g+ or g- modes and to use the name mode 

interactions when the two interacting modes have a g+ behavior deep in the star and a 

p behavior in the envelope. However the two names appear to refer to the same 
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fundamental phenomenon. 

When resonances occur for  low order p or g modes the perturbat ion of the 

gravitational potential may not be neglected and we may ask i f  mode degeneracy can, 

in fact, happen although we know from the theory of catastrophes that this w i l l  only 

happen under special circumstances. Degeneracy w i l l  not eas i ly  be dist inguished 

numerically from an avoided crossing and therefore a complementary check is useful. 

We provide here th is  check as well as a method to study the deta i ls  of the 

interaction. 

2. MODE INTERACTION 

Let us write the equation of motion 

Xp~ : ~ p  -~P ~p -p ~ ~ = L(~) p - (1) 

where X = a 2 is the e igenvalue,  ~ the symbol f o r  Eu ler ian pe r t u rba t i on ,  @ the 

gravi tat ional  potential and ~the displacement. Since L(~) is an operation operating 

on { ,  th is  means that in equation (1) ~p, 6p, and a@ are expressed in terms o f t  with 

the relat ions 

~P : _ ~.(p~) (2) 
p 

ap : - ~.R[p -r lP 

I {~" (P~)}r' 
a@(~) : -G  - - -  dV' 

I~ - ~ I  

Let us consider a sequence of models defined in terms of a parameters. 

Suppose that for  ~ = 0 the model has two eigenvalues L1 and ~2 very close to one 

another and that they are eventually degenerate for ~ small. 

I t  has been shown by Gabriel (1979) that the eigenvalues of nonradial 

osci l lat ions are at most double. Therefore we can write 

x I - x 2 
Xl << 1 (3) 

and 

Let ~I 

Xl - X2 X l -  XJ j ~ 1,2 

Xl << Xl 

and ~2 be the corresponding eigenfunctions for c > O. 
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For ~ small i t  is possible to compute the two interacting modes by a 

perturbation technique introduced by Wigner and von Neuman (1929). 

We write for the eigenfunctions 

~(E) = Cl(~) ~i + c2(~) ~2 (4) 

where '1 and E2 are considered as functions of a Lagrangian var iable,  for  instance 
the mass fraction. 

Subst i tu t ing~1 or~2 fo r~  in equation (2), one obtains the corresponding 
functions ~p, ap, and 6@ for a given model. Then with equation (1) we define L ~i)  

for i = 1,2. Introducing equation (4) into equation (1), we obtain 

Cl[Xpc~ 1 ÷ ÷ - LE(~I)]  + c2[xpe~ 2 - Le(~2)]  = 0 

÷ g2 After mult ipl icat ion by ~I or and integration over the volume of the star, we 

find, 

(~ - I11)c I - 112c 2 = 0 (5) 

-112c I + (X - 122)C 2 = 0 

with 

r÷ L "÷"  
l i j  = J~1- ~{~j) dV 

where ~1 and ~2 have been normalized. 

conditions i t  can be seen from equation (4) in Gabriel (1979) that 

112 = 121 

System (5) is valid in a linear approximati'on, i.e., we may write 

Lc(~) = Lo(~) + ~AL(~) 

and 

Since ~I and ~2 satisfy the boundary 

(6) 

l i j  = ~i6ij + ~alij 

where ai j  is the Kronecker delta function. 

In this approximation we may expect all the &l i j  to be different from zero. 

Therefore system (5) iscompatible i f  ~ is an eigenvalue of a two by two hermitian 

matrix. I f  112 ~ 0 such a matrix may not have a double root and the eigenvalues for 

nonradial oscillations are single. 

Let us now consider the conditions of validity of equation (6). We wi l l ,  of 
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course, exclude homologous sequences of models for which LE(-~ ) ~ Lo(~ ) and which wi l l  

show no crossing. Since a crossing is possible only i f  111 = 122, then 111 or 122 or 

both must satisfy equation (6). Therefore the linear approximation breaks down only 

i f  equation (6) is not val id for 112. Since e may be chosen as close to zero as we 

want for the mode giving 111 = I22 , the necessary condition for equation (6) not to 

be valid for 112 is that 

d 112 
l im-~--E = 0 

as ~ = 0 is taken closer and closer to the model for which 111 = 122. When the 

l inear  approach is allowed, i t  is also possible from equations (5) and (6) to study 

the details of the interaction. 

The compatibility condition for equation (5) is given by 

x 2 _ (AI11 + AI22)~X + (AI11AI22 - AI12AI21)c 2 

- X(X I + X 2) + (XIAI22 + X2AIll)~ + XIX 2 = 0 (7) 

This conic is a hyperbola since the discriminant of the quadratic members 

by 

= -¼ (all1 - AI22 )2 - AI12AI21 

given 

is always negative. 

section a ~ 0 with 

I t  is never degenerate since the discriminant of the conic 

A = (X 1 - X2 )2 aI12AI21 

where A112 = A121. The minimum separation a~mi n is given by 

A~mi n = (-a/~) I/2 (8) 

which occurs for c given by 

(x I - X2) ( a l l l  - A122) 
c : 4~ (9) 

This value of ~ gives also the model where the asymptotes of equation (7) cross each 

other. I t  may also be noticed that equation (7) gives real values of x for al l  ~ and 

the position of the hyperbola with respect to the asymptotes is known. 

From equations (5) and (6) we see that x is given by 



492 

X I - (X 1 + X2)/2 = 

(All1 + A122)¢ ± v/(Xl - X2)2 - 4~c2 + 2(X I - X2)(AI11 - A122)~ 

When E becomes large, i .e.,  when ax >> ( X l -  ~2), 

c2 : - (a l l1  - A122) ± sign(E) 

c I 2~112 

Cl/C 2 is given by 

where s ign (E) = ± 1 accord ing to the s ign of  E. 

There fo re ,  a s y m p t o t i c a l l y  the e igen func t i ons  corresponding to the smal ler  

( l a r g e r )  e igenva lue when E < 0 is  the same as t ha t  corresponding to the l a r g e r  

(smal ler)  one when ~ > 0. This means, that  during the mode in te rac t ion ,  there is an 

interchange of the propert ies of the two eigenfunctions. 

Introducing 

y : AII2(AI11 - A122 )-1 

we have 

c_22 : - i  ± k~4y 2 + I 
c I 2y 

wi th k = sign (¢) • sign ( a l l l  - A122 ). Equation (8) shows that  

- 

4 y 2 :  L L AXmin J - 

and we get 

c~2 = s ign (y ) [ -a  ± kB] ( I I )  
c I 

with 

x I - x 2 

I t  is then" possible to express+~ I and ~2 in terms of the two asymptot ic  solut ions ~a 

and~'b f o r  which e : ®. I f  ~a co r r e sponds  to  the  plus s ign  in e q u a t i o n  (1), we 

obtain,  taking the normal izat ion condit ions in to account, 
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+,[, + ] + +ks+a 

=+1 [B J ~2 2~8 ~a+B+/~--+--k~-~+ 

where the ± signs in these expressions appear because the sign of ~ , r  ' B2,r ' ~a,r ' 

and ~b,r at the surface is not determined. We see that ~1 and ~2 are weighted 

averages of ~a and ~b" These weights are equal i f  E = 0 at the minimum separation of 

the eigenvalues, I f  ~a and~b were defined at + = ~, k would change i ts  sign and 

their coefficients would be interchanged. This shows again that the two eigenvalues 

are interchanged. The same interchange of the coefficient occurs when (All1 - A122) 

changes i ts  sign. I f  we always take ~1 > X2, equation (9) shows that (All1 - A122) 

changes sign when the origin of +, i.e., c = 0, is taken at one side or the other of 

the model for which the asymptotes cross. The interaction has a symmetry with 

respect to that model. 

Usually ~a and {b have large amplitudes in only one of the two regions where 

they have an oscillatory spatial behavior. Then ~1 and ~2 have large amplitudes in 

both regions. This is the situation met for resonances as well as for mode 

interaction and they are two names given to the same phenomenon. 

2.1. Practical Remark 

From the def ini t ion of AL(~i) i t  may seem d i f f i c u l t  to compute the l i j .  
However, i t  is easy to obtain them numerically. Let us compute the interaction of 

two modes ~1 and ~2 for two models close to each other corresponding to ~ = 0 and 

= c]. We have 

c ( 11 : I ++i(ol  j( 11 dV 

Equation (5) written for ~1(Cl) and~2(E1) give a 4 by 4 system with the l i j  as 

unknown, the solutions are 

I l l  = 12 12 
ClC 2 - c2c I 

I22 = 1 2 1 2 
ClC 2 - c2c I 
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112 = 

121 = 

[},2(~1) _ } , i (Cl ) ]  1 2 ClC 1 
1 2 c1_2 

ClC 2 - 2~1 

[ ~ i ( ~ i  ) ~2(E1) ] 2 1 - c2c 2 
12 12 

ClC 2 - c2c I 

The condition 112 = 121 implies that 

where 

111 = ~1(~ i )  + A~ , 122 = >,2(~i) _ A~, 

21 
[~,i(¢1) - },2(ci)] ClC 2 

a~ - 12 22 
ClC 2 - ClC 1 

a~ is a second order term. This expression for  111 and 122 is in good 

agreement with another expression obtained from the derivative of equation (7) with 

respect to E which shows that, ( i f  ~I > x2), 

lim @~+ 
A111 = E + o B~ 

lim B~ 
A122 : ~ + o B~ 

This procedure allows one to compute eas i ly  the deta i ls  of the in terac t ion .  
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