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FOREWORD

A workshop was held in Tucson at the University of Arizona from March 12
through March 16, 1979 to furnish a forum for both theorists and observers to study
and exchange ideas on some of the current problems in nonradial and nonlinear stellar
pulsation. This workshop, sponsored by the Department of Physics in conjunction with
Steward Observatory was organized into morning sessions of invited and contributed
papers and into afternoon sessions of discussions and informal contributions. This
structure was quite successful with many of the contributions to these workshop
proceedings motivated by interactions at these sessions. The scientific success of
the workshop must in large measure be the result of the strong international
character of the 1ist of participants and the constructive mode in which they worked
together.

The idea for the work grew out of discussions with Drs. Robert A. Rosenbaum,
former President of Wesleyan University and John P. Schaefer, President of the
University of Arizona, on the scientific program at SCLERA and on how the scholarship
and teaching in each of these two respective institutes might be brought closer
together. The financial support which made the workshop and these proceedings
possible was furnished by President Schaefer. In the planning and execution stages
of the workshop, the advice and counsel of Dr. Robert H. Parmenter, Head of the
Department of Physics, was frequently sought.

The Scientific Organizing Committee was Drs. W. Dziembowski, W. Fitch, H.
Hi1l, E. Nather, S. Starrfield, H. Van Horn and R. White. The aim of the organizing
committee was to maintain a balance between theory and observation and through the
organization of the meeting, encourage the interaction of those working in these more
often than not isolated areas of science.

The local organizing committee consisted of Drs. T. Caudell, W. Dziembowski,
W. Fitch, H. Hi1l and R. White, and Mr. R. Bos. They were all helped during the
running of the symposium by J. Logan and R. Rosenwald and by J. Brown, conference
coordinator.

1 would also like to thank MacMillan Journals LTD for granting permission to
reprint the material in the Introduction from the workshop review by Douglas Gough in
Nature.

The scientific editing was performed at the University of Arizona and in part
at Wesleyan University in collaboration with visiting professor Dr. W. Dziembowski.
His broad knowledge of the field of stellar pulsation was invaluable. The editing of
the manuscript was performed primarily by Ms. A. Whitehead with some of the
responsibility being shared by Dr. G. Harwood. The final production, supervised by
Dr. T. Caudell, was a collaborative effort of all of us at SCLERA. In addition to
the SCLERA staff, a significant contribution was made to the final production by Ms.
J. Twehous. I express my sincere personal thanks to each person who helped complete
this project.

Henry A. Hill
Tucson, Arizona
March, 1980
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INTRODUCTION*

D. Gough
University of Cambridge
United Kingdom

In recent years considerable attention has been devoted to the observation
and theoretical description of variable stars. In this context the term "variable"
should be taken to mean pulsating or oscillatingas opposed to cataclysmic or nova. The
distinction here is important; when a system is observed to oscillate, be it a star
or a molecule, there exists then the potential of probing the workings of that system
in a quantitative manner. It is in this spirit that the following summary of the
workshop, both discussions and papers, is presented.

* * * * *

Over the past two decades the theory of the pulsation of the Classical
Cepheid and RR Lyrae stars has reached a high degree of sophistication. This kind of
pulsation is the simplest mode of oscillation a star can undergo: it is periodic and
the motion is purely in the radial direction. Although there remain some niggling
discrepancies between theory and observation, the agreement is sufficient to convince
most astrophysicists that our ideas are basically correct. Thus we seem to have a
firm foundation from which to extend our studies to stars whose oscillations are
nonradial and nonperiodic.

Walter Fitch (Steward Observatory) reviewed observations of variable stars of
8§ Scuti and related type. These stars pulsate at low amplitude, and many exhibit two
charactefistic frequencies which bear a ratio close to that of two small. integers.
Consequently much of the subsequent discussion concerned direct resonances between
two modes of oscillation. Arthur Cox (Los Alamos Scientific Laboratories) reported
his failure to reproduce this behavior theoretically from initial value integrations
even when the resonance conditions had been carefully engineered, and Robert
Stellingwerf (Rutgers University), who had analyzed the stability of pairs of singly
periodic 1imit cycles of potential double mode Cepheid models, never found both
cycles to be simultaneously unstable to linear perturbations. The double mode
behavior remains unexplained. During discussions of parametric resonances, it was
pointed out that many of these stars seem to exhibit characteristics of strange

*Reprinted from Nature, 278, 685(1979)



attractors. Some 8 Scuti stars appear to pulsate in many modes simultaneously;
Wojciech Dziembowski (Copernicus Astronomical Center) estimated that nonlinearities
developed by any one mode alone were too small to limit its amplitude to a value as
low as those observed, and concluded that mode interactions must be responsible.
Definitive calculations have not yet been performed, but techniques developed for
studying oceanic gravity wave interactions and plasma turbulence are available for
tackling problems of this kind. We can therefore anticipate considerable advances in
this study in the near future.

A class of stars for which there is no convincing explanation is
characterized by B Cephei. Myron Smith (University of Texas at Austin) reviewed the
observations. The stars are of spectral type B, and lie in a strip in the
Hertzsprung-Russell diagram a Tittle above the main sequence. Mike Jerzykiewicz
(Wroclaw University Observatory) and C. Sterken (Free University of Brussels)
reported new observations and pointed out that almost all stars in the g Cephei strip
show signs of variability. They appear to pulsate in both radial and nonradial
modes. As with the g Scuti stars simple period ratios are found, which suggest again
that resonance mechanisms are operating. Frequency splitting, presumably by
rotation, has been measured, which offers the exciting prospect of trying to infer
the angular velocity within these stars. Unfortunately we are not yet inaposition to
do this because the modes of oscillation have not been unambiguously identified;
different workers expressed contradictory opinions about the modes they thought were
responsible for the variability.

An intriguing property of some 8 Cephei stars is that they switch from one
mode of oscillation to another on a timescale of no Tonger than about 10 periods.
Smith argued that this is evidence that the oscillations are confined to a rather
thin outer layer of the star, because otherwise it would be difficult to envision how
dissipative processes could effect the enormous energy transfer that would be
involved. Others contradicted that claim, citing simple nonlinear oscillators that
can alter their character on a dynamical timescale. It is unlikely that it will be
established in the near future whether such oscillators actually represent the
behavior of B Cephei stars in any way, because the basic physics of the variability
is not yet understood.

How are the oscillations driven? Morris Aizenman (National Science
Foundation) reviewed the many ingenious ideas that have been proposed in the past,
all of which have failed. A recent suggestion by Stellingwerf that the mechanism is
no more than the Eddington valve that drives classical Cepheids and RR Lyrae stars
was debated. He proposed that interpolation in opacity tables on too coarse a grid
had led to an underestimate of the efficacy of the valve, but Arthur Cox, one of the
chief suppliers of opacity data to the astrophysical community, claimed that though
finer resolution decreased the stability of the theoretical models it was never



sufficient to render them unstable. The suggestion was made that if all the
mechanisms reviewed by Aizenman were operating in unison the sum of their
contributions might be sufficient to maintain the pulsations against dissipation.
This idea, which is reminiscent of an early suggestion for solving the solar neutrino
problem, was unenthusiastically received.

A significant fraction of the workshop was devoted to discussing oscillations
of the sun. First, Henry Hill (University of Arizona) reviewed the observations
spanning the period range 3MiN_160MiN and discussed the evidence already in the
literature for the oscillations in the data being of solar origin. There followed a
sequence of presentations of new observations and discussions of the longer period
oscillations in the upper atmosphere and the evidence for phase coherence.

By comparing different diameter measurements made at the Santa Catalina
Laboratory for Experimental Relativity by Astrometry (SCLERA), Hill argued that the
amplitudes of oscillation rise more steeply with height above the photosphere than
can be comfortably accommodated within the framework of linear theory. At first
sight this should be no cause for alarm, because the amplitudes thus inferred in the
low chromosphere are so great that nonlinearities must surely be important.
Nonetheless several partibipants were uneasy with the result, because in the
photospheric regions, where presumably linear theory is valid, the eigenfunctions
have the appearance of waves penetrating an evanescent region from above yet having
frequencies characteristic of the resonating cavity beneath. Tuck Stebbins
(Sacramento Peak Observatory) presented measurements of relative oscillation
amplitudes at different positions in the wings of a spectrum line which support
Hill's conclusion, and Timothy Brown (High Altitude Observatory) found contradictory
evidence from shape changes of the 1imb darkening function. The issue is currently
unresolved.

For many people, the most convincing evidence that the oscillation data arise
from genuine dynamical solar vibrations is their phase coherence. Peter Worden
(Sacramento Peak Observatory) criticized early analyses of the SCLERA data, but
Thomas Caudell (University of Arizona) presented new measurements of solar equatorial
diameter variations which, it was finally agreed, convincingly maintained phase over
an interval of 23 days. This did not terminate the discussion, however, because as
Maurice Gabriel {Universite de Liege) pointed out, unless there were a considerable
difference in the amplitudes of eastward and westward propagating waves one would not
expect phase coherence over a'period longer than half the mean rotation of the sun.
The details of the phase data may indeed be consistent with beating phenomena induced
by rotation, but further analysis must be done. Polar diameter measurements, which
have not yet been analyzed, are not subject to this criticism.

One of the most exciting aspects of solar oscillations is their potential for
providing diagnostics of the solar interior. To realize this potential it is



essential to examine the theory quite meticulously to ensure that the physics is well
understood, and that measurable properties of the oscillations of theoretical models
can be computed accurately. In this respect, greatest attention has been paid to the
five-minute oscillations, because it is of these that the most refined measurements
have been made. Investigations by groups at the University of California at Los
Angeles and the Observatoire de Nice have revealed that of the uncertainties beneath
the photosphere only the value of the adiabat deep in the convection zone
substantially influences the oscillation frequencies; in addition, the Nice group
have found that the frequencies of all but the chromospheric modes are insensitive to
variations in the structure adopted for the solar atmosphere, within the framework of
the usual linearized theory. The results of both groups seem to imply that the
adiabat must be that of a convection zone whose depth is at least 20% of the solar
radius. This conclusion is similar to the findings of Beckers and Gilman, who
reported at the EPS Workshop on Solar Rotation in Catania [Publication No. 162 of the
Astrophysical Observatory of Catania (Eds. Belvedere and Paterno) 1978] that they
could not explain the observed absence of a polar vortex unless the depth of the
convection zone were at least of the order of 40% of the sun's radius.

The case for so deep a convection zone is not completely closed.
Participants of the workshop were reminded of the EPS conference on solar physics
[Pleins feux sur la physique solaire (Ed. Rosch) CNRS, Paris, 1978] held in Toulouse
last year, where Dziembowski and Pamjatnykh pointed out that the observations by Hill
and Caudell (Mon. Not. R. astron. Soc., 186, 327; 1979), apparently of solar g modes
of degree about 30, are difficult to explain in terms of the so-called standard solar
model (see Nature, 274, 739; 1978). At the Arizona workshop Jorgen Christensen-
Dalsgaard (Universite de Liege) presented computations of g modes in a solar model
with 1ow interior heavy element abundance Z; such models have shallow convection
zones through which modes of the kind reported by Hi11 and Caudell can penetrate with
ease. Solar models with Tow Z also predict Tow neutrino fluxes in agreement with
Davis' measurements, but they do pose many problems, such as how to explain the
frequencies of the five-minute oscillations. Ross Rosenwald (University of Arizona)
pointed out that if the claim of the SCLERA group concerning the nonlinear behavior
of the oscillations high in the solar atmosphere were correct, the linear
calculations performed to date may not be relevant, and this problem may disappear.
The claim has not yet been substantiated.

Another new observation which may shed light on this issue was reported by
George Isaak (University of Birmingham). His group has measured variations in the
Doppler shift of a potassium line in Tight integrated from the entire solar disk, and
have measured discrete frequencies of what appear to be acoustic oscillations of low
degree with periods of about 5 minutes. Unlike the most common 5-minute modes, these
penetrate beneath the convection zone and provide an integral measure of the



structure deep in the solar interior. A preliminary theoretical analysis favored a
model with a somewhat lower value of Z than that of the standard model, and a
shallower convection zone. This model lies between the two extremes discussed above,
and so serves to remind us how uncertain we are of the sun's internal structure.

The final day of the meeting was devoted to degenerate variables. Edward
Robinson (Univeristy of Texas at Austin) gave a stimulating review of the
observations, many of which have been obtained only in the past few years. Most of
these variables appear to be DA white dwarfs lying in a narrow range of specral type
with B-V = 0.2, though John McGraw (University of Arizona) in particular has observed
variable white dwarfs of different colors. Of the DA dwarfs, about 25% are observed
to be variable, and aside from their variability show no other distinguishing
feature. Luminosity amplitudes range from a few tenths of a magnitude down to the
limit of detectability.

The low amplitude variables have stable periods; one such star, R548 is even
more stable than the Crab pulsar. The Targer the amplitude the 1onger the period,
and the less stable the power spectrum of the pulsations. It is not unusual for the
stars with larger amplitudes also to switch entirely from one mode to another.

Oscillation periods range between about 100 s and 1,000 s, which are much too
long to be p modes. Explanations in terms of g modes have been attempted, but it is
sometimes difficult to fit the periods satisfactorily. Moreover, with the longer
period variables it is difficult to explain why neighboring g modes in the densely
spaced spectrum are not observed, a problem faced also by those who argue that the 2h
40™iN oscillation of the sun is a g mode. Carl Hansen (Joint Institute for
Laboratory Astrophysics) suggested that perhaps the oscillations were toroidal
elastic modes of a rather mushy material, but reliable estimates of the elastic
properties of these degenerate stars are not available to test this hypothesis. In
any case it was difficult to explain why only oscillations of the periods observed
should be driven, and the others damped. Arthur Cox pointed out that (with the eye
of faith) one could imagine the region in the HR diagram where pulsating white dwarfs
have been found to be an extension of the classical Cepheid instability strip. He
found models that were unstable to radial puisations, but the periods of such modes
are only about 1 s.

In summary it seems that both theory and observation are getting to a crucial
point where tentative inferences are being made which are not all in the same
direction. There is evidence that these contradictions arise from a lack of
understanding of the physics. Time was, therefore, very ripe for the experts in the
field to get together and discuss the assumptions on which these inferences are
based, to discuss the accuracy and the implications of the observations and to decide
which observations and which theory should be done in the immediate future to clarify
the most outstanding of the uncertainties.



OBSERVATIONAL EVIDENCE OF RADIAL MODE RESONANCES AND OF
NONSPHERICAL SYMMETRY IN SOME VARIABLE STARS
OF & SCUTI AND RELATED TYPES

W.S. Fitch

Steward Observatory
University of Arizona
Tucson, Arizona

ABSTRACT

(1) For 29 (and possibly 30) multimode radial variables in the Cepheid
instability strip I suggest that necessary and sufficient conditions for the
existence of their multimode excitation may be that the excited periods be close to a
direct resonance with each other and that their excitation growth rates be relatively
small. (2) Discussion of the observational evidence on nonradial modes observed in
§ Scuti and 8 Cephei stars suggests that radial mode excitation is always dominant
when nonspherical perturbations are small or variable and that nonradial modes only
appear when figure perturbations are significant, so that one seldom (or perhaps
never) observes in these stars the first order m-splitting discussed by Ledoux for
the case of slow rotation

1. INTRODUCTION

We address in the following sections the more general aspects of nonradial
and nonlinear stellar pulsation problems rather than the particular stellar types in
which they occur. In connection with nonlinear problems the observational evidence
of radial mode resonances in Cepheid strip stars will be discussed first;
consideration will be given to nonradial oscillations in & Scuti and 8 Cephei stars
in succeeding sections.

2. SIMPLE RESONANCES IN MULTIMODE RADIAL PULSATORS

Double (or occasionally triple) radial mode excitation is fairly common in
the Cepheid strip at fundamental periods of less than approximateﬁy 6-7 days.
Following especially Christy's (1966a,b) now classical work, theoretical
investigations have been very successful in elucidating the properties of single mode
radial pulsators. With regard to double mode excitation, Stellingwerf (1975) has
constructed a model with two simultaneously excited radial modes; unfortunately, with

a more realistic interior boundary condition, neither he nor anyone else could later



reproduce this result. This strongly suggests that, in order for a star to exhibit
double radial mode excitation, it must possess some unique properties. Quite
recently, Simon (1978) has proposed that the double mode state (fundamental frequency
fo and first overtone frequency fl) requires a resonance with a higher mode of
frequency i, such that fg + f; ~ f; he also identified f, with the third overtone
fq for the 2-6 day double mode or beat Cepheids and with the fourth overtone fq for
the dwarf Cepheids or Al Velorum stars. Petersen (1978) has enthusiastically
seconded this suggestion, but neither Simon nor Petersen have been completely
successful in reproducing the observed periods and period ratios for reasonable mass
models.

These resonances pose an exciting possibility, but can be criticized for the
invocation of an unobserved (and therefore ad hoc) mode to explain the presence of
the observed modes. Simon and Petersen both considered only double mode Cepheid and
RRs-type variables. There are now at least 29 (and provisionally 30) stars in the
Cepheid strip known to show double radial modes, and if the work reported in § 3.4 on
4 CVn is not erroneous, there are 34 observed radial mode period ratios, 31 of which
now seem securely established. Some of these ratios of observed periods are
obviously very sharp low order simple resonances, such as 3/5, 4/5 and 3/4,
suggesting that all of the ratios should be examined from this viewpoint. Simon
(1978) has pointed out the importance of the second order coupling frequency fy + fg
when discussing the nonlinear coupling of fy and fy, but to be theoretically
consistent, one should also examine the other cross coupling term in second order, fy
- fo- If for generality we consider two radial modes j and k, where k > j, and if we
assume a nonlinear coupling leading to a resonance where nfj ~ mfy (m, n being small
integers with m < n), then obviously there must also be approximate resonances
where fj, fs T + fj,‘and L fj are commensurable. Following Simon, we denote
the distances from each exact resonance assumed as

dj,k =1 - (nfj)/(mfk) , dj,k+j =1 - (n+m)fj/m(fk+fj) ,
dj,k-j =1 - (n+m)fk/n(fk+fj) R dj,k-j =1 - (n-m)fj/m(fk-fj) .
and dk,k-j =1 - (n-m)fk/n(fk-fj)

In Figure 1 we illustrate seven different resonances as horizontal lines in a
plot of observed period ratio versus log Pq(day). Here the solid circles are
observed ratios. The triangle is also an observed value faor CY Aqr which was
considered an uncertain value prior to the Comm. 27 IBVS No. 1537 announcement that
EH Lib has a beat period yielding a period ratio of 0.7559. The plus signs represent
our new provisional values of period ratios for 4 CVn. The 6-17 day bump Cepheids

(Simon and Schmidt 1976), involving the basic 1/2 resonance for P/Pg. are only



indicated schematically. The fractions in brackets are the five assumed direct
resonances involved. Please note how the difference frequency determines the lowest
order resonance possible. An example of this is provided by the P»/Pq * 3/5 line,
where the 3/8 and 5/8 resonances arise from the sum frequency while the 3/2 and 5/2
ratios arise from the difference frequency. If we adopt the provisional ratios for 4
CVn, then the top 1ine for PZ/P1 ~ 4/5 is represented by the § Scuti star 4 CVn, the
AI Velorum star VZ Cnc, and the RR Lyrae star AC And. At P1/Pg * 7/9 we have the §
Scuti star 44 Tau and 7 AI Velorum stars. At Py/Pg =~ 3/4 are the Al Velorum stars CY
Agr and EH Lib, the & Scuti stars 4 CVn and 21 Mon, and the RR Lyrae stars AQ Leo and
AC And. For the beat Cepheids we chose Py/Py=~ 5/7 for the 3 shortest period stars
and Py /Py = 7/10 for the remaining 8. At P»/Py =~ 3/5 are AC And and the 5 & Scuti
stars CC And, 1 Mon, & Del, § Sct, and 4 CVn. Table 1 lists the stars, their
fundamental radial mode periods, identifications of the excited radja] modes, the
observed period ratios, and the assumed resonance ratios. The last 5 columns of
Table 1 provide the 5 distances d from the assumed exact resonances. It will be
noted that generally, for the direct resonance Pk/Pj = fj/fk = wj/wk xm/n and the
two resonances with the sum frequency f, + fj, the distances from resonance are quite
small whereas the distances from resonances with the difference frequency f - fj are
distinctly larger. The larger distances in this latter case may account for the fact
that, when the observed nonlinear coupling of f, and fj in 1ight and/or velocity
measures on large amplitude variables is analyzed into its harmonic components, the
amplitude of the second order difference term is usually smaller than that of the sum
term.

The associations of P,/Py with the 1/2 and 3/5 ratios, of Py/Pg in some cases
with the 3/4 ratio, and of P»/Py with the 4/5 ratio seem inescapable. By extension,
the remaining associations of P1/Pg with the 7/9, 5/7 and 7/10 resonances appear
quite plausible. The main shortcoming of this type of argument is that no @ priori
upper limit is set with respect to invoked resonance. If we adopt Py/Pg ~17/22
instead of ® 7/9 for the AI Velorum stars, or Py/Pg * 12/17 instead of = 5/7 and 7/10
for the beat Cepheids, we get better representations, i.e., smaller distances from
resonance, for these groups already discussed by Simon (1978) and by Petersen (1978).
If we keep our adopted resonances for Py/Py, then examination of Figure 1 and Table 1
shows that we have nearly exhausted the low order resonances possible for the range
of period ratios expected from model calculations. Finally, in order for any
resonance such as 7/9 or 7/10 to be effective, the excitation growth rates must be
small, since the system must "remember" what happened as long ago as 7 fundamental
periods. In fact, all normal evolutionary mass models of 8§ Scuti and AI Velorum
stars (cf. Dziembowski 1977; Stellingwerf 1979; Cox, King and Hodson 1978b) Tist
kinetic energy growth rates AE/PE = 1073 - 1075 per period for the strongest excited
modes. Cox, King and Hodson (1978a) do not list growth rates for their most recent 3
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Figure 1. Observed period ratios as functions of log Po(day). The horizontal lines
represent the assumed direct resonance ratios, which are also given as the first
fraction in the parentheses. The remaining fractions are the corresponding
resonances of the lower and higher mode with the sum frequency and with the
difference frequency, respectively. Individual stars are plotted as solid circles.
The open triangle represents CY Aqr and the plus signs are provisional values for 4
CVn (see text).
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Table 1. Radial Mode Period Resonances

Notes Star Po(day) J.k Pk/Pj m/n dj,k dj,k+j dk, k+3 dj,k-j KoKk=j

B SX Phe 0.0550 0,1 0.7782 7/9 -0.0005 -0.0003 +0.0002 -0.0024 -0.0019
CY Aqr 0.0610 0,1 0.7443 3/4 +0.0076 +0.0044 -0.0033 +0.0297 +0.0223

AE UMa 0.0860 0,1 0.7734 7/9 +0.0056 +0.0032 -0.0025 +0.0248 +0.0193

EH Lib 0.0884 0,1 0.7559 3/4 -0.0079 -0.0045 +0.0034 -0.0322 -0.0242

RV Ari 0.0931 0,1 0.7726 7/9 +0.0067 +0.0038 -0.0029 +0.0293 +0.0228

N 21 Mon 0.0999 0,1 0.7507 3/4 -0.0009 -0.0005 +0.0004 -0.0037 -0.0028
BP Peg 0.1095 0,1 0.7715 7/9 +0.0081 +0.0046 -0.0035 +0.0353 +0.0275

Al Vel 0.1116 0,1 0.7727 7/9 +0.0065 +0.0037 -0.0029 +0.0287 +0.0223

8B CC And 0.1249 0,2 0.5999 3/5 +0.0002 +0.0001 -0.0001 +0.0004 +0.0002
SBN 1 Mon 0.1361 0,2 0.5984 3/5 +0.0027 +0.0017 -0.0010 +0.0066 +0.0040
$ 44 Tau 0.1449 0,1 0.7729 7/9 +0.0063 +0.0035 -0.0028 +0.0276 +0.0215
V703 Sco 0.1500 0,1 0.7683 7/9 +0.0122 +0.0069 -0.0054 +0.0526 +0.0409

sN s Del 0.1568 0,2 0.6093 3/5 -0.0155 -0.0096 +0.0058 -0.0397 -0.0238
SN § Sct 0.1938 0,2 0.6005 3/5 -0.0008 -0.0005 +0.0003 -0.0021 -0.0013
8B: 4 Cyn 0.1981 0,1: 0.7368 3/4 +0.0176 +0.0101 -0.0076 +0.0669 +0.0502
8B: 4 Cyn 0.1981 0,2: 0.5874 3/5 +0.0210 +0.0132 -0.0079 +0.0509 +0.0305
8B: 4 Cvn 0.1981 1,2: 0.7972 4/5 +0.0035 +0.0019 -0.0016 +0.0173 +0.0138
VX Hya 0.2234 0,1 0.7732 7/9 +0.0059 +0.0033 -0.0026 +0.0260 +0.0202

VZ Cnc 0.2323: 1,2 0.8006 4/5 -0.0008 -0.0004 +0.0003 -0.0038 -0.0030

AQ Leo 0.5498 0,1 0.7461 3/4 +0.0052 +0.0030 -0.0022 +0.0205 +0.0154

AC And 0.7112 0,1 0.7383 3/4 +0.0156 +0.0090 -0.0067 +0.0596 +0.0447

AC And 0.7112 0,2 0.5920 3/5 +0.0133 +0.0084 -0.0050 +0.0327 +0.0196

AC And 0.7112 1,2 0.8018 4/5 -0.0023 -0.0012 +0.0010 -0.0114 -0.0091

TU Cas 2.1393 0,1 0.7097 5/7 +0.0064 +0.0038 -0.0027 +0.0221 +0.0158

U TrA 2.5684 0,1 0.7105 5/7 +0.0053 +0.0031 -0.0022 +0.0183 +0.0131

VX Pup 3.0117 0,1 0.7090 5/7 +0.0074 +0.0043 -0.0031 +0.0254 +0.0182

AP Vel 3.1278 0,1 0.7031 7/10 -0.0044 -0.0026 +0.0018 -0.0149 -0.0104

BK Cen 3.1739 0,1 0.7047 7/10 -0.0067 -0.0039 +0.0028 -0.0227 -0.0159

UZ Cen 3.3344 0,1 0.7063 7/10 -0.0090 -0.0053 +0.0037 -0.0306 -0.0215

Y Car 3.6398 0,1 0.7031 7/10 -0.0044 -0.0026 +0.0018 -0.0149 -0.0104

AX Vel 3.6731 0,1 0.7059 7/10 -0.0084 -0.0049 +0.0035 -0.0287 -0.0201

GZ Car 4.1588 0,1 0.7052 7/10 -0.0074 -0.0044 +0.0030 -0.0252 -0.0176

BQ Ser 4.2707 0,1 0.7053 7/10 -0.0076 -0.0044 +0.0031 -0.0257 -0.0180

V367 Ser 6.2931 0,1 0.6967 7/10 +0.0047 +0.0028 -0.0019 +0.0155 +0.0109

Max !dl  0.0210 0.0132 0.0079 0.0669 0.0502
Mean Idl  0.0070 0.0041- 0.0029 0.0249 0.0180

Notes: & = & Scuti type; N=nonradial modes also excited; B=close binary;
:=provisional mode identification for 4 CVn; :=estimated value of P, for
VZ Cnc.

References: SX Phe, Kozar 1978; EH Lib, Karetnikov and Medvedev 1979; 1 Mon, this
paper; 44 Tau, Wizinowich and Percy 1978; & Del, this paper; 4 CVn, this
paper; AQ Leo, Jerzykiewicz and Wenzel 1977. References for the other
stars are given in Fitch and Szeidl 1976 or in Stobie 1977.




12

Mg model of AC And, but it seems probable that these growth rates are much smaller
than those of, for instance, the Christy models of RR Lyrae stars. It therefore
seems reasonable to suggest that the RR Lyrae star AQ Leo, the 2-6 day double mode
Cepheids, and the 6-17 day bump Cepheids may also have relatively low growth rates
for radial mode excitation. This condition, together with the existence of nonlinear
coupling leading to a resonance, may constitute the necessary and sufficient
conditions for the excitation of double mode radial pulsation. Stockman (1979) of
Steward Observatory recently made an excellent suggestion regarding the testing of
Simon's (1978) resonance hypothesis or that discussed here by artificially "tweaking"
appropriate nonlinear models to force a resonance and then observing whether this
produced double mode excitation.

3. NONRADIAL MODE EXCITATION IN & SCUTI AND g CEPHEI STARS
3.1 Preliminaries

In considering nonradial mode excitation, it should first be noted that, of
the 17 radial mode variables in Table 1 with Py < 0.25 day, 7 are 8 Scuti stars and
10 are AI Velorum or RRs stars. Further, 6 of the 7 § Scutis are either in binaries
(cC And, 1 Mon, 4 CVn) and/or also exhibit nonradial modes (21 Mon, 1 Mon, & Del, &
Sct). Only 44 Tau, which Wizinowich and Percy (1978) recently showed to have P1/Pg =
0.7729, does not display these additional complications. In 6 of these 7 stars the
strongest excited mode is the radial fundamental. However, if the present work
proves correct, in 4 CVn the strongest excited mode is the second radial overtone Pj,
with Py second and Py the weakest of these three. In addition, 4 CVn also appears to
be an eclipsing binary witﬁ an orbital period Pdrb = 13,6 day, and it may have tidal
modulation of Py and Py but not of Py

Before taking up the general question of nonradial mode excitation, new
results on 1 Mon, & Del and 4 CVn will be discussed in some detail.

3.2 1 Monocerotis

Miller (1973) obtained 17 nights of V-filter photometry on 1 Mon and, upon
finding a very strong beat period of 7.7455 day, attributed this to the simultaneous
excitation at nearly equal amplitudes of periods Py = 0.13377 and P, = 0.13613 day.
Because I thought the star interesting but didn't agree with his conclusions,
Wisniewski and I placed 1 Mon on our observing program. Five nights of Stromgren b-
filter measures had already been obtained when we received from Shobbrook and Stobie
(1974) a preprint of their excellent paper in which they discussed both the 25
nights of V-filter measures they had obtained and the 17 nights by Millis. We then
dropped 1 Mon from our own observing program as being a needless waste of available
time.

Shobbrook and Stobie (1974) showed that the variations of 1 Mon could be
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explained either as the resultant of nonlinear coupling of three nonlinearly excited
equidistant frequencies f; = 7.346132, f, = 7.475281, and fq = 7.21718 cycles/day
(hereafter c/d), or as the tidal modulation of f1 by a companion in a nearly circular
orbit of frequency F = 0.064555 c/d (P, = 15.4907 + 0.0036 day). In the former
case, which they preferred, the three modes would result from first order rotational
perturbations of a nonradial mode, lifting the m-degeneracy according to the theory
introduced by Ledoux (1951), with an observed splitting Af = fo-fp =9 - f3=
0.12911 c/d (= 2F for the tidal case). However, the observed period ratio Po/Pq =
3/5 (cf. Table 1), a ratio which one would expect for two radial modes where
rotational splitting is not possible. For this reason, we consider the nonradial
mode m-splitting explanation for f (f; of Shobbrook and Stobie 1974) to be
questionable.

Their objections to a tidal modulation in 1 Mon were (a) that no odd harmonic
combinations of F with f; (our fp) are present, and (b) that, if a binary, 1 Mon
should show an-orbital velocity variation, Kl’ of the order of 100 km s"l, whereas
the Timited velocity data available indicate Ky =4 km s”l.  We here demonstrate that
their basis for objection (a) is incorrect and that objection (b) is not necessarily
valid.

Shobbrook and Stobie (1974) found that there is no measurable phase
difference between variations in yellow and blue light, so in discussing the phase
variations it is possible to combine the measures of Fitch and Wisniewski (1979) for
five nights with theirs. By using the least squares method, sine curves in the
fundamental radial mode fo (fl of Shobbrook and Stobie 1974) and its second harmonic
2fg have been fitted to determine the nightly mean values of the amplitudes A and
phases ¢ on each of the 17 nights by Millis, 24 of the 25 nights by Shobbrook and
Stobie (1974) (1 night has too few measures), and the 5 nights by Fitch and
Wisniewski (1979); To combine the phase variations ¢ in fg and ¢5g in 2f'0, each
night's ¢,q is first divided by 2 and then added to a mean zero-point phase
correction of 0.5806 cycles appropriate to our chosen time zero-point Tg = Hel. J. D.
2439000.0.  Shobbrook and Stobie (1974) demonstrated that adoq = 2a¢g in 1 Mon, just
as Fitch (1967, 1976) had earlier found in CC And. In other words, in both stars one
observes a real variation in the time of occurrence of a nonlinearly excited mode.
In Figure 2, 4’0 is plotted as solid circles and 0.5¢’20 + 0.5806 as plus signs against
the nightly mean phases of F = 0.064555 and 2F = 0.12911 c¢/d. Suggestive smooth
curves have not been drawn through the points, but it seems obvious that the double
cycle interval of 15.491 days (F = 0.064555 c/d) gives a much better representation
of the observed phase variations than does the half period (2F = 0.12911 c/d).
Further, when we fit t‘o alT the yellow measures a single expansion involving just jfg
+ kF, where j and k are selected integers including odd values of k (-5, -4, -3, -2,
-1, 0, +1, +2, +3, +4, +5 when j = 1), a much better representation of the combined
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Millis and Shobbrook and Stobie (1974) data is obtained than if only the even k
integers, such as those adopted by Shobbrook and Stobie (1974), are used. This
formed the basis for their first objection to the presence of tidal modulation in 1
Mon. When the Millis and Shobbrook and Stobie data are combined, the f4 » 12,105 c/d
of Shobbrook and Stobie are resolved into our fo = 12,2741 (or 12.2771) c/d and =
13,0621 c/d, where o (uncertain by 1 cycle/yr) is the second radial overtone and i
is a presently unidentified nonradial mode of very small amplitude (AO = 0.0866
0.0003, Apg = 0.0158 + 0.0003, A, = 0.0026 + 0.0003, and Ay; = 0.0028 + 0.0003, in
units of the mean light level).

The second objection raised by Shobbrook and Stobie (1974) to the tidal
modulation of f; was based upon the uncharacteristically low value for Ky, thereby
raising doubts as to 1 Mon's binary status. In considering the orbital velocity of 1

1 The notation used

Mon on the binary hypothesis, several points must be addressed.
in the following discussion will be that of Fitch and Wisniewski (1979).

First, because of the small differences in successive half cycles of F, the
orbital eccentricity e must be small. Inthe circular orbit approximation, if we
start from Kepler's harmonic law and the definition of the centér of mass, we obtain

the following expression for the orbital velocity of the primary mass M;:

1/3

vy = Vg o3 (e )3 ()2 o)

1 @

where Vg = 29.86 km s~1 for the orbital speed of the earth and PQ = 365.25 day for
its sidereal period. With F = 0.064555 c/d as the orbital frequency of 1 Mon, we
have Vl(km s'l) = 85.6 q (1 + q)'z/3 (Ml/M0)1/3. If for illustrative purposes we
adopt M; = 2.0 Mg and M, = 0.1 Mg, so that g = 0.05, then Vi = 5.2 km s™1. This is
not in serious disagreement with the observational Ky = 4.0 (£2.7) km 57! determined
by fitting F, fg, fg + 2F, and 2fy to the 19 velocities obtained on 4 nights by Jones
(1971). The difficulty here is that one should employ a much more complicated
frequency set to accurately represent the actual velocity variation, and there are
not enough measures available to permit such a fitting.

In an earlier presentation to this workshop, equations (24), (26) and (27) of
Fitch and Wisniewski (1979) were used, together with an observational value of Ay =
0.0045 + 0.0003, to derive q € 0.2, However, a fundamental error existed in the
assumption that Apr represents an ellipticity effect. Using equations (24) and (26)
together with the definition of the pulsation constant Q, (= 0.033 day for the
fundamental radial mode), one can show that with My = 2.0 Mg, q = 0.05 (as above), xi

IThe first discussion of this problem at the workshop was in error due to the
inadvertent use of the constant in equation (27) of Fitch and Wisniewski (1979),
which contained the orbital frequency of 14 Aur A rather than 1 Mon.
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= 0.55 for an F2 star in the V-filter, y; = 1.0, fq = 7.346132 ¢/d, F = 0.064555 c¢/d,
and for the amplitude of concern, Ayp $8.6 x 107 as compared to the observational
value of 0.0045 + 0.0003. That is, the observed variation in mean 1ight Tlevel cannot
be an ellipticity variation if the orbital velocity is small, but it can arise from
nonlinearity effects in large amplitude beats as pointed out by Shobbrook and Stobie
(1974)., Much more extensive velocity measures, uniformly distributed over the phases
of F, are needed, but we believe the present evidence favors a tidal modulation model
for 1 Mon.

3.3 & Delphini

Leung and Wehlau (1967) analyzed the B-filter photometric measures of & Del
which they had obtained on 33 nights in 1962-63. They described the variation they
found as being due to the resultant of 3 frequencies centered around 6.4 and 2 around
12.7 c/d, with a single additional frequency at 10.4686 c/d. None of the frequencies
they listed can be described as simple combinations or multiples of others. Because
their analysis seemed questionable and because Preston (1966) had announced § Del to
be a binary in a very eccentric orbit of 40.5 day period, § Del was included in our §
Scuti star observing program. On 29 nights between August 1972 and September 1974,
5431 b-magnitude measures were obtained covering 114.8 hours of the variation, and to
date the only result has been a confirmation of the 4 Towest frequencies already
found by Leung and Wehlau. Following an independent analysis of their data as well
as an analysis of our own, theelements of the 1ight variation of & Del in 1962-63 and
in 1972-74 are presented in Table 2. For the first two frequencies fy and fy; phase-
locking has been forced between the two data sets, even though there is a suggestion
that all frequencies have changed very slightly during the interval between these two
sets. Because of these apparent small changes and the subsequent ambiguities in
cycle counts, different frequencies for fy, and f, were adopted in the two sets. In
each set, the estimated uncertainty in any frequency is + 0.0002 c/d, so that any
real frequency changes are only marginally apparent. In both sets, more
periodicities are present near 12-13 c/d, but the precise values of these periods
differ. No harmonic or sum or difference frequencies appear to be present. Further,
in both sets the fundamental radial mode f is the dominant excited mode; the second
radial overtone fo is also present; at least two nonradial modes fy) and fyp are
excited; and no possibility exists of invoking a constant frequency difference a la
Ledoux (1951) to explain the nonradial mode excitation. ¢ Del appears to be very
similar to 8 Scuti in overall pulsation behavior (Fitch 1976).

3.4 4 Canis Venaticorum
On 36 nights between February 1974 and April 1976 Wisniewski, Bell and Fitch

obtained 7984 b-magnitude measures covering 202.0 hours of the 1ight variation of 4
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CVn. As.we have stated earlier (Fitch and Szeidl 1976; Fitch 1976), the Fourier
transform frequency spectra are extremely complex. At present it appears most
probable that in 4 CVn the 3 radial modes fq = 5.0489, f; = 6.85225 and f, = 8.5949
c/d are all excited with f, the strongest and fy the weakest of the three. Further,
the apparent presence of additional frequencies at 1.3270, 1.4016, 4.5292 and 7.3751
c/d can be rationalized by noting that 1.4016/19 = 0.07377 and 1.3270/18 = 0.07372
c/d, while (5.0489 - 4.5292)/7 = 0.07424 and (7.3751 - 6.85225)/7 = 0.07469 c/d. That
is, there are 5 apparent combinations which all suggest the presence of a low
frequency F ~ 0.0737 - 0.0747 c/d and a modulation period Py = 13.6 - 13.4 day. 1In
addition, there are present a number of other low harmonics of a frequency F near
this value, such that when a 9 term expansion in selected harmonics of F = 0.07379
c/d was fitted to the complete data set and then the mean light variation calculated
over one long period according to these harmonics, a very strong indication was
obtained that 4 CVn has an orbital period P,., = 13.6 day and undergoes two shallow
eclipses per period (depths » 0.04 mag), but that these eclipses are not equidistant.
The time intervals between successive mid-minima are about 6.1 and 7.5 days,
respectively, so that if this interpretation is correct the orbit must be
significantly noncircular. In this picture, all the low frequency terms arise from
the attempt to describe eclipses by Fourier expansions in the orbital period, while
the terms at fy - 7F and f; + 7F are attributed to orbital modulation of the
fundamental and first overtone radial modes. A more complicated possibility is that,
since the two eclipse minima appear to be of approximately equal depth, the binary
members are of nearly equal T, and both may be & Scuti variables. In that case it
may be that fy = 4.5292 and f) = 7.3751 c/d are the radial fundamental and second
overtone modes of the second star, with f3/f; = 0.6141 and with F * 0.07374 c/d (Porb
= 13.56 day).

Because the strongest pulsation frequency in 4 CVn, which we have termed f, =
8.5949 c/d, is clearly present in each of our 6 data subsets as well as in the fit to
the complete data base, we do not agree with the conclusions of Warman, Pena and
Arellano-Ferro (1979). They analyzed 5 closely spaced nights of V and B photometry
which they had obtained in 1977, and proposed that the first 4 radial modes are
excited in 4 CVn, with fg = 4.796, f; = 6.540, f, = 7.942 and f3 = 8.636 c/d.
However, we find none of these frequencies. Whatever may be the correct solution to
the problems posed by the very complex but periodic behavior of 4 CVn, it now seems
certain that there is no observational evidence connecting this behavior with first
order rotational perturbation theory.

3.5 Nonradial Mode Excitation
In most well-observed 6 Scuti stars the 1ight variation is quite complex, and

in many of these stars the observed frequency splittings are sufficiently small that
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some nonradial mode excitation must be present. However, as already pointed out in §
3.1, when radial modes are also present the fundamental fO is usually the most
strongly excited of all, and the nonradial modes are usually an order of magnitude
weaker than fj (cf. 1 Mon, 8 Del, & Sct). The only & Scuti stars in which constant
frequency difference spacing has been demonstrated are CC And and 1 Mon, and it now
seems apparent that they are both binaries with the radial fundamental being tidally
modulated. Because of the alternating character of even and odd half-cycles of the
long beat period, both of these stars must have elliptical orbits. In addition, the
g Cephei stars o Sco and o Vir are both binaries in elliptical orbits and both show
tidal modulation of the dominant pulsation frequency.

By contrast, the § Scuti stars Y Cam and 14 Aur and the g Cephei star 16 Lac
are all binaries in circular orbits and all have excited nonradial modes that are not
tidally modulated and that are also not separated by constant frequency differences.
Y Cam is an eclipsing binary‘(Broglia and Conconi 1973), 16 Lac is a spectroscopic
and an eclipsing binary (Jerzykiewicz et al. 1978), and 14 Aur is a spectroscopic and
an ellipsoidal binary (Fitch and Wisniewski 1979). Jerzykiewicz (1978) has recently
reanalyzed the published observations of the B Cephei star 12 Lac, and has concluded
from the existence of constant Af steps in the frequency spectrum that in this case
Ledoux's theory of first order rotational splitting does apply. However, we must
point out that the 4 frequencies (his f1, 3, f4 and f5) for which he makes this
identification may just as easily be described as fy, f; + 2F, f{ + F, and 2f; + F,
where F = 0.15537 c¢/d implies an orbital period Porb = 6.4362 day. Further, as he
admits, the mean 1light level varies from night to night. We suggest that when
adequate observations become available the light level variation will be found to be
periodic with period 0.5P, . = 3.2181 day, as expected for a close binary subject to
the ellipticity effect. The other two frequencies f, and fg do not fit this simple
splitting pattern and at least f, must be a nonradial mode.

The suggestion that duplicity effects may commonly complicate the behavior of
a pulsating star has met with a great deal of resistance, the basis of which is
difficult to understand. If one recalls that about half of all stars occur in binary
or multiple systems, and that the g Cephei and & Cephei instability strips represent
normal stages in the evolutionary life histories of stars of various masses, then it
is to be expected that about half of all these variables will have physical
companions that will in many cases be close enough to influence the outer structure
of the pulsating star. If one insists that CC And, 1 Mon and 12 Lac are not binaries
but rather that the strongest pulsation mode (which we identified as fO in CC And and
1 Mon) is a nonradial mode with first order m-splitting, then one requires ad hoc
explanations for the following points: (a) In CC And, 1 Mon, § Del, § Sct and AC
And, we find PZ/PO *3/5, with PO the strongest excited pulsation mode and, in AC
And, definitely the radial fundamental mode. On the nonbinary hypothesis, PO is not
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a radial mode in CC And and 1 Mon, but shows an m-splitting not seen in § Del, § Sct
and AC And. (b) From a study of the statistics of binary orbits, we expect to see a
number of pulsators with close companions in noncircular orbits. If CC And and 1 Mon
are not representative of this type of system, why have stars such as this hot been
found and how will their pulsational behavior differ from that observed in CC And and
1 Mon? (c) CC And and 1 Mon both show a pulsation behavior which alternates in
character between even and odd cycles of the m-splitting beat period. This is not
predicted by Ledoux but is consistent with tidal modulation in an elliptical orbit.
(d) Both CC And and 1 Mon are relatively large amplitude nonlinear pu]sators,bwith
significant second harmonic content in the light variations due to the dominant mode
(qur Pp in each). If these are nonradial modes, then they must in both cases be
surface harmonics with & 2 5, since for both stars the accurate analytic
representation of the observed light variations requires terms to at least fp = 5F.
To interpret such terms as m-splitting requires that m = 5, however, since |m| < g,
it follows that £ 2 5, a result which is unreasonable for a large amplitude pulsator
viewed in Tight integrated over the apparent disk.

From the preceding discussion, it appears that the observational evidence
implies that nonradial mode excitation in stars above the main sequence will usually
occur only in those stars with significant departures from spherical symmetry, due
either to high rotation or to close companions. If this inference is correct, and if
the theoretical investigations of nonradial pulsations are to have any relevance to
the real world, then the model builders will have to accept the rather grim problems
posed by the abandonment of simple spherical models.

* * * * *

This work has been supported in part by a National Science Foundation grant

GP-38739.
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8 SCUTI VARIABLES:
THE LINK BETWEEN GIANT- AND DWARF-TYPE PULSATORS

W. Dziembowski*
Department of Physics
University of Arizona
Tucson, Arizona

ABSTRACT

An attempt is made to interpret the differences in pulsational behavior
between horizontal branch and main sequence {or early post-main sequence) variables.
Results of linear stability studies for & Scuti stars are reviewed and supplemented
with new calculations. The function of the opacity mechanism in generating
instability to a variety of radial and nonradial modes is discussed. The highest
excitation rates for these variables, though still much lower than in the case of
Cepheids, are found in fundamental modes with higher spherical harmonic orders, £,
and among higher overtones with Tow values of & It is argued that amplitudes in ¢
Scuti stars are limited by nonlinear mode coupling, resulting in Tower amplitudes and
multiperiodicity, rather than by saturation of the opacity mechanism as is the case
with horizontal branch variables.

1. INTRODUCTION

The discoveries of many low amplitude variables made in recent years and the
demonstration that the sun is an oscillating star strongly suggest that stellar
oscillations must be very common. Understanding of this phenomenon‘may furnish
insight into the mechanics of atmospheric turbulence and heat balance; it may also
provide a means of probing stellar interiors.

Most Tow amplitude pulsators fall into the three following types:

1. ZZ Ceti,
2. B Cephei and related early type variables, and
3. § Scuti.

In all cases, these are stars characterized by dwarf-like or only slightly developed
giant-like structure. This is in contrast to classical pulsating stars, such as

*Visiting Professor on leave-of-absence from the Copernicus Astronomical
Center, Warsaw, Poland.
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Cepheids and RR Lyrae, that are helium-burning stars in advanced evolutionary stages.
It now appears likely that there is one common cause of variability in all the above
stars, namely the familiar opacity mechanism. There are, however, striking
differences in the pulsation properties of giants and dwarfs, respectively, which are
listed below:
1. Pulsations detected in giants are usually of high amplitude, while dwarfs are
usually Tow amplitude pulsators.
2. The number of modes excited in giants is one or, in rare cases, two; a large
number of excited modes is found in pulsating dwarfs.
3. There is no evidence for the existence of nonradial modes in giants.

However, nonradial modes are clearly indicated in many dwarfs studied.

4. The instability strip in giants is well-defined but poorly defined in dwarfs.

Our understanding of the pulsation phenomenon in Cepheids has reached a very
satisfactory level since it is, by astrophysical standards, remarkably simple. Small
amplitude variables present a much more complicated problem due both to a Tack of
spherical symmetry of the motion and to multiperiodicity. The nature of these
differences between giants and dwarfs in their pulsational behavior will be discussed
using § Scuti variables as an example. This type of variable star comprises both
main sequence stars and early post-main sequence (thick shell phase) stars.

Two factors complicate consideration of these variables as members of a
homogeneous group. One is the problem of whether large amplitude variables
classified as RRg types, which overlap genuine & Scuti stars in their range of
periods and spectral types, are in the same evolutionary phase as the & Scuti stars.
There is no consensus on this question. However, it is more in the spirit of this
paper to assume that these are more evolved objects having Tow mass and that they
therefore should not be considered in the same group. This question will be
addressed in 5§ 5 where the possible existence of large amplitude variables among main
sequence stars will be discussed.

The other complicating factor is metallicity. In his recent r-eview,1 Breger
(1979) concludes that variability and strong metallicity are mutually exclusive for
main sequence variables, but not for post-main sequence variables. It has been
speculated (Vauclair, Vauclair and Pamjatnykh 1974) that since metallicity may be
treated as evidence for unsuppressed diffusion, the settling of helium relative to
hydrogen should occur. Because most of the driving is due to the He II ionization
layer, depletion of helium from this zone due to settling may prevent pulsational
jnstability. Recently, Cox, King and Hodson {1979) made an extensive survey of
linear stability in models with a reduced helium content in their outer layers. They

lReaders are referred to this excellent review for a complete survey of the

properties of & Scuti stars.
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showed that the extent of the instability strip is very sensitive to the amount of
helium and that the complete depletion of helium in the outer layers results in
stabilizing the models.

Although this effect is unquestionably important for understanding pulsation
properties of & Scuti stars, it seems doubtful that it can account for the essential
differences between these stars and Cepheids. This is especially borne out by the
fact that many normal main sequence stars which 1ie within the instability strip
still fail to pulsate with large amplitudes.

2. CHANGES IN PULSATION PROPERTIES IN THE COURSE OF STELLAR EVOLUTION

Development of a condensed core and extended envelope during evolution causes
drastic changes in the propagation properties of acoustic and gravity modes in the
stellar interior. An oscillatory mode characterized by its frequency, w, and
spherical harmonic order, &, has almost all of its energy confined to the layers
where it can propagate, thereby becoming a trapped acoustic or gravity wave. From
the point -of view of pulsational instability, the location of the propagation zones
and hence the evanescent zones is important because (1) it tells what portion of the
stellar mass is engaged in the motion, and (2) the driving via the opacity mechanism
depends on the evanescent (non-propagating) behavior of the oscillations in the
driving zone. Discussions of the propagation properties of various stellar models
may be found in the following papers: Scuflaire (1974); Dziembowski (1975); Osaki
(1975); and Unno (1975).

Approximate criteria for propagation can be written (cf. Dziembowski 1975) as

w2 cle +1)r, w2 g/c for acoustic waves, and (1}

w $ng/c, w S mec/r for gravity waves (2)

where ¢ is the speed of sound, g is the local gravitational acceleration and
2 <3]np> <a]nT> dinT <a1np> du
n® = - - + 3)
9 1nT P.M 3 1nP ad dTnP ou P,T d1nP (

where p, T, P and u denote density, temperature, pressure and the mean molecular

weight, respectively, and the derivative Eﬁ%ﬁ;is calculated in the equilibrium model.
The Brunt-Vdisala frequency, ng/c, is frequently denoted by N. The above criteria
provide, in an approximate way, the necessary and sufficient conditions for
propagation. They differ in this respect from those obtained by Scuflaire (1974)
which, although rigorous, represent only necessary conditions.

The radial behavior of the parameters gz/c2 and cz/rz, which enter into the
above criteria, are shown schematically in Figure 1 for an evolved stellar model.
The characteristic feature for such stars is a pronounced hump in g/c which is
nonexistent or barely present in zero age main sequence (ZAMS) stars. This hump
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prevents the penetration of radial modes into the deep interior and, as a result, the
propagation zone in evolved stars contains a smaller fraction of the total mass. The
upper boundary of the propagation zone is also moved outward in evolved stars
because, for a given mode, w varies as R-3/2 and the surface g varies as R-2,

This effect has another interesting consequence: higher order acoustic modes
may be evanescent in the driving region for stars with higher surface g. It has
indeed been found by Castor (1970) and confirmed later in several papers that, with
respect to radial pulsations, & Scuti stars are unstable to high order overtones with
considerably higher growth rates than those of the fundamental mode or the first
overtone. )

Consequences of the development of the g/c maximum are different in the case
of the nonradial modes because these modes may propagate in the interior as gravity
waves. As shown in Figure 1, there is an intermediate frequency range where modes
have mixed character; those in the envelope are acoustic-type waves, while gravity-
type waves are found in the interior. This gives rise to a new set of modes and
modifies the properties of previously existing modes.

The propagation zones are separated by an evanescent zone where the amplitude
changes monotonically with r. For modes with high values of 2, the increase of the
amplitude in the envelope for the trapped modes is so large that their properties are
not affected by the changes in the interior (Shibahashi and Osaki 1976). 0On the
other hand, the properties of Tow 2 modes are always strongly affected. In the case
of such stars as RR Lyrae or the Cepheids, such modes either experience a reduction
in growth rate by orders of magnitude or are entirely damped. It has been found, for
example, that as soon as & 2 6, the growth rates are reduced to the same order of
magnitude (and remain always less) than those for the radial modes (Dziembowski 1977;
Osaki 1977).

Similar, though much smaller, effects are present in the evolutionary phases
of § Scuti stars. In Figure 2, taken from Dziembowski (1977), the growth rates for
Tow & modes are compared in two models of a 1.5 My star. In the ZAMS star model, a
weak maximum of g/c establishes the inner propagation zone. In the frequency range
considered, however, only for £ = 4 is a modé trapped in this zone. Except for this
mode, the growth rates of nonradial modes are essentially the same as those for
radial modes, both being determined almost exclusively by frequency.

A much larger number of modes is present in the second model which represents
the phase immediately following hydrogen exhaustion in the center. Most of these
modes are trapped in the interior and, therefore, have much smaller growth rates than
the radial modes. The modes with frequencies close to those of the ZAMS model are
not trapped within the envelope to a very great extent. This is especially true for
modes with ¢ = 2 or 3, a factor which brings about a noticeable decrease in the
growth rates of nonradial, relative to radial, modes.
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Figure 1. Regions of acoustic (a)- and gravity (g)-wave propagation in the interior
of a giant. Critical lines are drawn schematically. Factor n has to be used to
determine the critical frequencies for gravity-waves, while factors ¢ + 1 and 2 must
be used to determine the critical frequencies for acoustic- and gravity-waves,
respectively. Note that if g is large, there are two g-regions.
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Figure 2. Growth rates (-oy) and frequencies (sp) in units of (41[G(p))1/2 for modes
in the range of frequencies corresponding to the two first overtones of the radial
pulsations. The graphs are for two models of a 1.5 Mg star.
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It should be noted that the modes with the highest growth rates tend to
cluster close to the frequencies of the radial modes. This may explain the closely
spaced spikes frequently seen in the periodogram for & Scuti variables.

3. SOME RESULTS OF LINEAR STABILITY SURVEYS FOR MODELS OF & SCUTI STARS

Several surveys concerning linear stability have been made, the most recent
and complete one for radial modes being that of Stellingwerf (1979). The current
discussion is based primarily upon the results of this survey and, in addition, upon
some new calculations pertaining to nonradial modes.

A11 stellar models which lie within the range of effective temperatures for §
Scuti variables are unstable to some modes of radial and nonradial pulsations,
assuming a standard helium content. The instability is due to the opacity mechanism
with the He II ionization zone playing the dominant role in driving.

The highest pulsational energy growth rates per period (n = -4wwp/up, where
Wy and Wp are the real and imaginary parts of w) are found for the fourth overtone,
where they reach values of about 10-3.  The growth rates for the fundamental and the
first overtone modes are at least two orders of magnitude lower. Let us recall that
in Cepheids and RR Lyrae stars only fundamental, first overtones, and occasionally
second overtones can be driven but the typical growth rates, n, are between 0.05 and
0.2.

Though, in all cases, the He II ionization zone provides the major driving,
there are differences in details of the opacity mechanism. In the case of § Scuti
stars, H I and He I ionization zones play virtually no role in driving radial
pulsations. Instead, the significant contribution to driving comes from the zone
located at T= 1.5 x 105 K. This driving zone acts only in stars with high surface
g; it is caused by an opacity bump which occurs when the location in frequency of the
Planck function maximum coincides with the frequency of the He II ionization edge
(Stellingwerf 1979).

Results are similar for nonradial modes associated with spherical harmonics
of moderately low order (¢ < 50). Figure 3 gives a comparison of the driving (or
damping) rates for radial and nonradial modes. Only those modes that are effectively
trapped in the envelope were included in this survey. Modes corresponding to £ lower
than 10 have somewhat reduced driving (or damping) rates due to imperfect trapping,
as discussed in the previous section. It is clear that linear theory predicts no
preference for radial over nonradial mode excitation for a wide range of £ val ues.
In driving fundamental modes associated with high & values, the H I ionization zone
is important and becomes dominant at £ = 80-100.

Linear theory locates the blue boundary of the instability strip for main
sequence stars at spectral type A3 in agreement with observations. Driving of high &
modes by this instability is expected in much earlier types, but this cannot result
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Figure 3. Periods and excitation rates for envelope oscillation of a § Scuti star
model with M = 2 M | L = 31.3L_,, Tlog {e = 3.887 and standard Population I
composition. Frequ’er?cy o is in (2ﬂG(p>)1/ units and the numbers at the points
indicating mode location are growth rates (- ) in the same units. Modes lying on
the diagonal are f-modes. The upper left cornér contains p-modes while g-modes are
located "in the lower right corner.
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in observable variability. In addition, the shortest period theoretically predicted
for & Scuti stars is somewhat less than 30m, a figure which coincides with the
observational evidence. This theory also provides an explanation of why nonradial
modes are observed in & Scuti stars but not in Cepheids.

The latter point is, however, only one of the differences between giant- and
dwarf-type pulsators discussed in the introduction. It is tempting to relate lower
amplitudes in dwarfs to lower growth rates, but predictions based on linear growth
rates are subject to a great deal of uncertainty. This may be appreciated by noting
that we have firm evidence of fundamental mode excitation in & Scuti stars in spite
of the fact that the undetected overtones have growth rates which are at least two
orders of magnitude larger than the fundamental mode. Thus, the major differences
between § Scuti stars and giant pulsators can be understood only by studying
nonlinear effects leading to amplitude limitation.

4, LIMITATION OF PULSATION AMPLITUDES

Christy (1966), in his celebrated paper on nonlinear pulsations of RR Lyrae
stars, showed that in these stars pulsation amplitudes are limited by saturation of
the driving mechanism. This occurs when the flux carried by pulsation in the driving
zone amounts to about 10 percent of the total luminosity. Is the amplitude limiting
process the same in § Scuti stars? The answer is that it is almost certainly
different. ’

By applying the same numerical technique as used in the case of RR Lyrae
stars to 8 Scuti stars, Stellingwerf (1980) has shown conclusively that these stars
should have very large (> 1 mag) amplitudes, a finding which is in obvious conflict
with the observations. One may speculate that driving is saturated by a large number
of nonradial modes which correspond to large 2-values and are therefore invisible in
the form of 1light variability. However, an inspection of numerical data on Tlinear
nonradial modes leads to the prediction of root mean square macroturbulence
velocities in the range 10! - 102 kms'l, assuming these modes carry 10 percent of
total Tuminosity. This result apparently rules out the possibility of this form of
saturation, since the observed macro- and micro-turbulence velocities are only a few
kms~L. '

The conclusion must be that the opacity mechanism is not saturated in & Scuti
stars and, consequently, that there must be an efficient mechanism that removes
energy from linearly driven modes. This situation is apparently similar to that of
convection in subphotospheric layers, in which case radiative 1osses prevent the
temperature gradient from approaching its adiabatic value. It seems most likely
that, in our case, energy is driven out from the mode as a result of its nonlinear
interactions with other modes. In Stellingwerf's model, the number of possible modes
available for interaction was grossly reduced by the assumption of.spherical
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symmetry.

When considering Tow amplitude oscillations, only three (and in special cases
two) mode resonant interactions are important. Such interactions take place between
any (j, k, m) modes if Wy = W+ + Aw with Aw much smaller than any of the three
w's involved and if the projection of the nonlinear terms resulting from interaction
between one pair of the modes onto the eigenfunction of the third mode is non-zero.

If we write the displacement vector'E in the form

Ei = Ai(t)ﬁi sin[@i + (mi + Am)ﬁ]

where h; is the normalized eigenvector, then by standard techniques known in various
fields of physics (see, for example, Davidson 1972) we have

dA.

1 -
o )._i A'i + C.i ApAq cos &

where i, p, and q are any of j, k, m; Ci is the projection of interaction terms for
the p- and g-modes onto the i-mode eigenfunction; A; is the linear growth rate (if >
0); @ = &5~ ¢y - ¢y and

A A A.A
d£=Am+<: kA"’-(: JA"'-C 3k>

J Aj k Ak m A

Several special cases of mode interaction have been studied in the past.
Vandakurov (1965, 1967) investigated the decay instability of a radial mode (j) into
two gravity modes (k,m). If nonadiabatic effects are ignored, then instability
occurs if

>2 2
4hjCka > Aw

In the case considered, Cy = C, and, consequently, the above inequality defines an
instability band for each value of the radial mode amplitude.

This instability is prevented by damping of the nonradial modes if - 2
2|chk . On the other hand, if A4 is large, the growth of the radial mode may not be
disturbed by possible growth of the nonradial modes. This is one reason why this
instability is not likely to be important in the case of giants. The other reason is
that, in giants, radial modes tend to be trapped in the envelope, while gravity modes

tend to be trapped in the deep interior which results in very low values of the
projection C. For & Scuti stars, however, the decay instability is likely to be very
important.

In an attempt to interpret amplitude modulation in RR Lyrae stars, Kluyver
(1935) studied high frequency mode driving using the resonance wj - 2wy, a special
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case of the more general resonance considered here. Papaloizou (1973) studied the
limiting action of such a resonance on pulsation amplitudes in massive stars which
are vibrationally unstable due to the € mechanism. It is 1ikely that, in 8§ Scuti
stars, this phenomenon is responsib]e for limiting amplitudes of higher overtones.

The effects of mode coupling in limiting amplitudes have thus far been
considered only for linearly driven modes. However, the possibility of the existence
of opposite effects emerges from the work of Simon (1978) and the discussion
presented by Fitch (1980), which indicate that short period variables that are
characterized by rather large amplitudes show evidence of resonances in their
frequency distributions. Amplitude amplification as a result of resonant mode
interaction is known in plasma theory (Davidson 1972) and occurs if Cp = Cp, = -Cj-
In the case of oscillation mode interactions in a star, this remains an intriguing
possibility. Quantitative studies of mode coupling in & Scuti stars and other stars
are now in progress.

5. CONCLUSION
The preceding discussion suggests the following interpretation of the
differences listed in the introduction between dwarf- and giant-type pulsators:

1. Amplitudes in dwarfs are smaller because they are limited by nonlinear mode
coupling which becomes important before the driving mechanism is saturated.
The greater importance of mode coupling in dwarfs than giants is related both
to lower excitation rates and lower values of coupling coefficients. These
two effects may be understood in terms of differences between propagation
mode properties in giants and dwarfs.

2. Multiperiodicity in dwarfs is caused by the fact that the driving mechanism
is not saturated and by the fact that there are many nonradial modes
associated with low & harmonics having very simiiar properties.

3. Nonradial modes are not observed in giants because, for Tow £ harmonics, they
are either damped or their excitation rates are so low that the driving
mechanism is saturated by the radial modes. The latter modes saturate in
driving before nonradial modes grow to any observable amplitude). Again, the
difference in growth rates between £ = 0 and ¢ > 0 modes, in the case of
giants, is easily understood in terms of propagation properties.

4. 1In addition to the fact that dwarfs tend to be low amplitude pulsators,
gravitational settling of helium in dwarfs may contribute to poorer
definition of the instability strip.

* * * * *
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ABSTRACT ; ‘

Using the von Sengbusch-Stellingwerf relaxation method, hydrodynamic
calculations have been made to find strictly periodic solutions for the fundamental
mode pulsations of 7 My models. These models have a helium enrichment in the surface
convection zones up to Y = 0.78. From the 1inear theory period ratio HZ/HO and the
Simon and Schmidt resonance hypothesis, the observed Hertzsprung progression of 1ight
and velocity curve bump phase with period should result. These surface helium
enhanced models show the proper nonlinear bump phase behavior without resort to any
mass loss before or during the blue loop phases of yellow giant evolution. At 6000 K
and the luminosity of 4744 L0 given by evolution theory for 7 Me (that is, at a
fundamental mode period of 8.5 day), the velocity curve bump is well after the
maximum expansion velocity. At 5400 K and the same luminosity (period of 12.5 day),
the bump on the velocity curve occurs well before maximum expansion velocity time.
The Christyechoes appear to be exhibited in the latter case but not in the former.
The echo interpretation may not be appropriate for these masses which are larger than
the anomalous masses used by Christy (1975); Stobie (1969a, 1969b); and Adams (1978).
Resonance of the fundamental and second overtone modes should not necessarily show
echoes of surface disturbances from the center. The conclusion is that helium
enrichment in the surface convection zones can adequately explain observations of
bump Cepheids at evolution theory masses.

* * * * *

Our calculations deal with the so-called bump Cepheids which have periods
between about 5.5 and 13 days. Chemically homogeneous models were considered in some
detail by Christy (1974), Stobie (1969a, 1969b); King et al. (1973); and most
recently by Adams and Davis (1978). The Goddard model, calculated by a large number
of computer programs, also possesses a velocity and light curve bump. Until 1977, a
model mass of about 2/3 the evolutionary theory value was required in order to give
the proper bump phase and its variation with the fundamental radial pulsation mode.

A1l Cepheid mass anomalies can be resolved if one adopts models with helium
enriched convection zones and, for modes with periods between 0.7 and 4 days, a
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deeper helium enriched zone constituting possibly 103 of the stellar mass (Cox et
al. 1977). This strategy has had successes in explaining the double-mode Cepheids
and the sole triple-mode Cepheid, AC Andromedae, in terms of normal evolution theory
masses. This paper addresses only the bump Cepheids; results for AC Andromedae and
double-mode Cepheid models are discussed by Cox, King and Hodson (1978) and by Cox,
Hodson and King (1979) respectively.

In bump Cepheids, helium enrichment is necessary only in the thin convection
zones which comprise less than 10-4 of the stellar mass. The cause of this
enrichment may be some fractionation process that operates through a solar-type wind,
leaving the helium behind (Cox, Michaud and Hodson 1978). The mass loss rate of
about 10'10 Me/yr is probably unobservable, and certainly the mass of the yellow
giants, pulsating or not, is not significantly affected in the 106 - 107 years needed
for their blue Toops in the Hertzsprung-Russell diagram. The helium enhancement
requires time and cannot operate in fast-evolving stars of mass greater than 8 M@.

A question relevant to the helium enhancement hypothesis is: Can this
tremendous helium mass fraction, Y = 0.75, be detected in the stellar spectrum? Kamp
and Deupree (1979); Sonneborn, Kuzma and Collins (1979); and Kurucz (1978) have
considered the spectrum of yellow giants. The only effects noted with ¥ = 0.75 are a
reduced Balmer jump, a large strengthening of the weak metal lines that is probably
unobservable, and a moderate strengthening of the strong temperature sensitive lines.
A11 the authors feel that the enhanced helium may not be detected, especially since
all blue looping yellow giants should show the same helium enhancement regardless of
their pulsation. More work is in progress.

Another unanswered question is: Will the inverted u gradient due to the
helium enhancement mix downward rapidly enough to destroy the enriched layer, during
which time fractionation is being brought about by the wind? Two-dimensional
calculations are currently being made to study this question. A smooth gradient in a
7 M, 5900 K Cepheid from Y = 0.30 at 90,000 K and 8 x 10-8 g/cm3 (1-q9g=3x 10‘4)
toY = 0.72 at 60,000 K and 2 x 108 g/cm3 (1 - q = 6 x 107°) has been studied for a
very short run (Tess than a year of star time). The small effects noted indicate a
mixing timescale of at least 105 years, but this number is still very tentative. A
mixing time of 106 - 107 years would serve to keep the helium in the convection zones
for bump Cepheids; this would also allow a slight downward leakage to give correct
period ratios for the slower evolving double-mode and triple-mode Cepheids.

Simon and Schmidt (1976) have enabled us to study the bump phase using only
the linear theory. From the extensive Stobie (1969b) nonlinear results and their
linear adiabatic periods, Simon and Schmidt have shown that bumps occur for Cepheid
models when I5/My lies between 0.46 and 0.53. At Tp/mg = 0.53, the bumps are located
far on the descending sides of the light and velocity curves while, at 0.50-0.46 for

Iy/Ny, they are on the rising parts. Figure 1 (from Cox, Michaud and Hodson 1978)
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plots Iy/lg versus It .

Consider first the results in Figure 1 for the homogeneous models at 7 Mo
using the King IVa composition (X = 0.70, Z = 0.02). On the basis of these linear
results, there should be no light or velocity curve bumps for those models between
the blue (B) and red (R) edge, a finding which is inconsistent with the results of
nonlinear calculations. If the mass is reduced to 5 M0 but the luminosity for 7 Me
retained, the corresponding curve in Figure 1 indicates that one can presumably get
bumps for periods 1ike 10 days or longer. The curve near to the one just discussed
was obtained using Carson opacities in homogeneous evolutionary mass models for 7 Mg
and evolutionary luminosity. A nonlinear calculation at the tip of the extension at
8.7 days and 6000 K, with slightly lower T,/Hjy, gives no bumps if the pulsation
amplitude is a normal one such as 30-40 km/s, If the amplitude is made slightly
larger by a reduced artificial viscosity, one gets amplitudes like 45 km/s. Because
of the stronger helium driving, Vemury and Stothers (1978) have found bumps. Surface
helium enriched models at 6, 7 and 8 M, show the proper observed Hertzsprung
progression of the bumps.

A few words about the Vemury and Stothers (1978) result are in order. -First,
the Carson opacities used by them differ greatly from the opacities that have been
found in other work. The bumps seen in Figure 2 (taken from Vemury and Stothers
1978) do not seem to be like the well-known echoes from the central regions discussed
extensively by Christy (1974). We propose that they are surface disturbances,
perhaps shock waves, due to the large velocity gradients at the surface, and not the
bumps observed in the Cepheid 1ight and velocity curves.

Setting aside the Vemury and Stothers results, for which only the opacities
used are disputed, the question is whether nonlinear calculations can actually
confirm the observed Hertzsprung progression of the bump phase with period for our
inhomogeneous models. Surface helium enhanced models for Yg = 0.78 have been
calculated at 7 M, for the evolution theory blue Toop luminosity of 1.85 «x 1037
erg/s. Results for the cool Te of 5400 K, near the red edge or possibly just beyond
it, are given in Figure 3. This model has fundamental mode period of 12.5 days. The
period ratio, according to the Simon and Schmidt (1976) hypothesis, should give a
bump on the rising part of the light curve and on the falling part of the observer's
radial velocity curve. This is seen for this red model where radial velocity
variations at every one of our 49 levels, each differently amplified and slightly
displaced from its neighbors, are plotted against time for five periods. The Christy
(1974) echo can be seen clearly, which simultaneously verifies the Christy (1975);
Simon and Schmidt (1976); and Cox et al. (1977) concepts on, respectively, echoes,
period ratios and enhanced helium. This case is analogous to the Cepheid Z Sct
(12.9d). Note that mass loss in early red giant stages, forbidden to us by stellar
evolution research, is not required to give the bumps at the proper phase.
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T
Cepheid Period Ratios !

0, /M,

Mo (days)

Figure 1. Plot of T 2/Mg versus My for various Cepheid masses and compositions, from
linear theory. Fundamenta] que and red edges are indicated by B and R,
respectively. Homogeneous envelopes are indicated for three cases; 7 Mg - King IVa
(7_1va), 7 Mg - Carson 312 (7 C312), and 5 M, - King IVa (5 IVa). From nonlinear
calculations all surface helium enriched models at 6, 7, and 8 Mgy show bumps with the
observed Hertzsprung progression. For the homogeneous models, no bumps are found
unless the luminosity becomes too large for a given mass (5 IVa) or an extreme
velocity gradient (7 C312). (Ap. J., June 1, 1978).
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Figure 2. Plot of radial velocity versus phase for various Tevels in the 8.79 model
by Vemury and Strothers (1978). The bump on the descending side of the surface
velocity curve appears to be a surface disturbance and not a well defined echo from
the core obtained by Christy (1975).
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A hotter, bluer model is shown in Figure 4. With mass, luminosity and
composition structure the same as the model used in Figure 3, this 6000 K, 8.5 day
case, near the fundamental-first overtone transition 1ine, gives the bump on the
rising part of the velocity curve 1ike the Cepheids DL Cas (8.00d) and n Aql (7.18d).

A1l is not perfect, though. The Christy echo is absent and the bump appears
at all levels. However, it is at least more systematic than the bump of Vemury and
Stothers (1978) and is comparable to that found in Christy's models with similar
periods. The T5/Iy period ratio of 0.51 is correct for the Simon and Schmidt (1976)
hypothesis. The second overtone is indeed unstable for both the 5400 K and 6000 K
models if one feels that My should occur naturally rather than be induced.

Two final points should be noted. A prediction might be made that, for
Cepheids which are in the proper period range and could have bumps, perhaps one in
ten actually do not have them because they are on the rapid first evolutionary
crossing of the instability strip, before any helium enhancement can be established.
As discussed by Cox, Michaud and Hodson (1978), examples of this type of Cepheids may
be X Sgr (7.01d) and FN Aql (9.48d). For these homogeneous stars the bumps should
occur for much longer periods, from 13 to possibly 30 days, as for RU Sct (19.7d), AZ
Pup (23.2d) and X Pup (26.0d).

The proposed helium enhancement in yellow giants maintained by a helium poor
stellar wind, if stable enough against downward mixing, offers an adequate
explanation of the masses and behavior of bump Cepheids.
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Figure 3. Plot of observer's radial velocity versus time for each level of a surface
helium enhanced model (Y. = 0.78) at 7 Mgs 4744 L,, and T 5400 K, near the
fundamental red edge. Iéac?n level has been amplified and d1spfaced from ne1ghbor1ng
levels. WithT, = 12.5 and To/Mg = 0.495, a well defined bump is evident on the
falling side ofothe curve (rising side of 1ight curve) as predicted by Simon and
Schmidt.

Figure 4. Plot of observer’s radial velocity curve versus time for each level of a
surface helium enhanced model (Yg = 0.78).at 7 M@, 4744 Lg, and T%- 6000 K, near the

fundamental first overtone tr‘ans1t1on 11ne. Each 1eve1 has been amplified and
displaced from neighboring levels. With mg = and T, /ng 0.508, a well defined
bump is evident on the rising side of the curve fa111ng side of Tight curve).
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ABSTRACT

Using results from’ earlier studies of double-mode dwarf Cepheids by Cox, King
and Hodson (1979), hydrodynamic calculations have been undertaken for Al Vel. The
evolution theory mass of 1.8 Mg previously derived, together with a luminosity of 23
Ly and a Tg of 7500 K, give the observed period of 0.11 day and the observed period
ratio /Mg = 0.773. Although the observed T, was 7620 K, a cooler T, is used due to
the former's location at the fundamental pulsation mode blue edge. The composition
used is X = 0.70, Z = 0.01--a Z value lower than normal in order to make the period
ratio as large as that observed. The goal is to see if double-mode behavior, due to
either mode switching or a permanent state, can be predicted for the model. Progress
in converging the model to a periodic pulsation solution by the von Sengbusch-
Stellingwerf relaxation method is discussed.

* * * * *

Earlier studies of double-mode dwarf Cepheids by Cox, King and Hodson (1979),
have proposed that the observed period ratios of the two simultaneously pulsating
modes could be correctly predicted theoretically for stars of mass 1.1 to 2.2 M(9 in
their normal giant evolution. Some authors such as Bessell (1969); Petersen and
Jorgensen (1972); Jones (1975); Dziembowski and Kozlowski (1974); and Simon (1979a)
have concluded that the dwarf Cepheids are low mass stars, probably in a post-red
giant evolutionary stage. In most recent work, Breger (1976); Bessell (1974); and
McNamara and Langford (1975) suggested that the dwarf Cepheids or Al Velorum stars
were merely Targe amplitude § Scuti variables. Many observed quantities, such as
period distributions, Wesselink radii, space motions, metal abundances, gravities,
etc., support this suggestion. A further problem was that the period ratios were
more typical of the Tow mass population II stars. Our work (Cox, King and Hodson
1979) and that by Stellingwerf (1979) showed that the large observed period ratios of
0.763 to 0.778 could be obtained even with the normal heavy element composition, Z =
0.02. For Al Vel, which is the prototype variable with a fundamental period of 0.11
day, Cox, King and Hodson (1979) found that the best 1inear theory period ratio fit
of 0.773 is obtained with a 1.8 Mo, 23 Lo’ 7500 K stellar model having .a composition
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X =0.70 Z = 0.01, These parameters are consistent with both normal post-main
sequence evolution and linear pulsation theories.

~ Table 1 shows various physical parameters for all the known double-mode dwarf
Cepheids including our star AI Vel, which will be used for this nonlinear study. The
T, for Al Vel, 7620 K, is exactly at the fundamental radial mode blue edge. In order
to obtain a non-zero fundamental mode growth rate (cf. Cox, King and Hodson.1979), we
have used a To of 7500 K in this sutdy.

Period ratios for masses and compositions of interest are also found in Cox,
King and Hodson (1979) and are reproduced here in Table 2. The period ratios were
obtained for a constant period of 0.11 day, which represents a line of almost
constant radius for each mass in the Hertzsprung-Russell diagram. This line of
constant period is also a line of constant period ratio, and that ratio is given for
T values all across the instability strip between 7000 K and 8000 K.

The compositions that give the observed period ratio of 0.773 are the Carson
€312, Deupree IV, Deupree V and Cogan II mixtures. The observed period ratio can
also be obtained through depletion of the helium content by gravitational settling in
these high-gravity, slowly evolving stars. Avalue of Z = 0.01 seems required for
all except the controversial Carson C312 mixture; the Cox-Davis VI mixture has the
period ratio too low. Thus in our 50 zone model for nonlinear studies we have used
the Deupree IV composition with no surface helium depletion.

It is the purpose of this study to demonstrate double-mode behavior by
periodic nonlinear calculations. Linear theory analysis of the nonlinear periodic
solutions should show whether a given full amplitude mode is stable or unstable
against decay to another. As Stellingwerf (1975a,b) has discovered for RR Lyrae
variables and some 1.6 Me models, a region in the H-R diagram may exist where the
fundamental and first overtone modes have a tendency to decay to each other,
resulting in a mixed mode pulsation. However, permanent double-mode behavior
(changing only on an evolutionary timescale) for the 1.6 Mg case could not be
confirmed by Hodson and Cox (1976). Further, the RR Lyrae permanent double-mode
domain is clearly beyond the red edge. Therefore, we currently expect that mode
switching from F to 1H or vice versa alone could cause two simultaneous radial
pulsation modes for any double-mode variable such as the dwarf Cepheid AI Vel.

A problem exists in the use of mode switching as an explanation for the
behavior of the double-mode Cepheids. The switching time is approximately 102 years
while the evolutiontime as pulsators is 106 years, leading to an estimate of only
104 of the Cepheids which should exhibit double-mode behavior. However, about 25
percent of these stars actually do. A domain of instability toward each mode one
quarter the width of the instability strip is indicated, but no domain at all has
been found by nonlinear periodic calculations as yet. The latest deep helium
enrichment models for the double-mode classical Cepheids may give such a domain but
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Theoretical Masses, Radii, And Luminosities

For Double-Mode Dwarf Cepheids

Variable  Mo(d)  My/Mg T (K) MM Ry/R, L/, Qpld)
SX Phe* 0.05496 0.778 7850 .1+ 0. 1.3 + 5+ 1 0.0325
CY Aqr** .06104 .744: 7930 4 £ 0. 1.7 10 + 1 .0326
Z1 Mic . 0654 .763 7500 .4+ 0. 1.8 101 .0327
AE U Ma . 08602 773 7500 .6 £ 0. 2.2 14 + 4 .0328
RV Ari .09313 773 7500 + 0. 2.3 ¢ 14 = 4 .0328
BP Peg . 10954 772 7500 .8+ 0. 3.0 £ 25+ 5 .0328
Al Vel .11157 773 7620 .8+ 0. 2.9 ¢ 255 .0328
V703 Sco .14996 .768 7000 .9+ 0. 3.9 33+8 .0329
VX Hya 0.22339 0.773 6980 .2 £ 0. 4.8 ¢ 48 + 8 0.0330

* 1st crossing assumed

** 1st or third crossing

Te values for SX Phe, CY Aqr, AI Vel, and VX Hya from McNamara and

For V703 Sco, T, is from Jones (1975).

For all variables the deep

composition is Z = 0.01 with Y between .2 and .3 except for SX Phe

Z = 0.001 with interior Y between .2 and .3.

Feltz (1978).
interior

with
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Table 2. Double-Mode Dwarf Cepheid Period Ratios
1y = 0911 7000 < T, < 8000 K

Compositions (Ys,Z)

MM, C 312 C-D VI D 1V DV DIV I* CII

(.25, .02) (.28, .02) (.29, .01) (.24, .01) (.10, .01) (.195, .005)

1.5 0.768 0.765 0.770 0.770 0.773 0.773
2.0 774 .764 770 773 .769 J71
2.5 0.786 0.768 0.776 0.776 0.774 0.780

*YS down to 250,000 K
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the calculations have not yet been done. Certainly the resonance concepts of Simon
(1979b), if correct, also give very narrow double mode regions in the instability
strip.

To illustrate this situation, let us examine the best available picture for
RR Lyrae variables. Figure 1 gives Stellingwerf's (1975a) graph of growth rate
versus Te’ These data are very similar to the earlier results of von Sengbusch
(1974). The linear theory curves, based on studies of equilibrium models, are very
familiar, giving blue edges of the instability strip for the first two radial modes
similar to those of Iben (1971); Cox, King and Tabor (1973) and others. The
stability of the nonlinear solution is given for the overtone growing out of the
fundamental and for the fundamental growing out of the overtone. In a small region
either mode can exist at full amplitude. Except for those obtained in the red region
beyond the Deupree (1977) red edge at 6350 K, the full amplitude solutions are never
simultaneously unstable to switching from one to another.

The linear theory growth rates for Al Vel are given in Figure 2; the log T,
for our nonlinear model is 3.875.

With a growth rate of only a few parts in a million per period, really tight
convergence by the periodic Stellingwerf method has not been obtained. The velocity
curve at the 1imiting amplitude is given in Figure 3 for three of the last trial
periods calculated. The velocity amplitude is about 7 km/s. The 1ight curve is
given in Figure 4 for these same three trial periods with a My, range of 1.28 to
1.48. The stability of these solutions against decay to the overtone is -0.1% per
fundamental period. ]

Calculations for the overtone show that it is also stable, rejecting the
fundamental mode at a rate of 0.1% per overtone period. Thus, at 7500 K, either F or
1H behavior is possible.

What fraction of the & Scuti variables exhibit two or more modes? Nine
double-mode dwarf Cepheids are 1isted in Table 1. Fitch does not believe ZZ Mic
should be on the 1ist so there are probably only eight. Although more double-mode
stars exist among the 8§ Scuti variables, they are difficult to detect and then they
often display nonradial modes such as those found in 1 Mon. Fitch (1980) lists nine
of these. This provides a numerator total of approximately 20, with the denominator
being the number of all & Scuti variables. Breger's (1979) latest review gives only
130 variables, but actually 1/3 of all stars between A2 V and FO V vary. Thus, the
denominator should perhaps be in the thousands. The fraction of & Scuti variables
which exhibit two modes is probably less than 10-2, This indicates a much different
case than that of the more luminous classical Cepheids, one-quarter of which exhibit
double-mode variability.

Mode switching timescales for an evolving Al Vel variable can be obtained
from the formula given by Stellingwerf (1975b), corrected by a factor of v2:
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Figure 1. Composite growth rate diagram ggr a sequence of RR Lyrae models with M =
0.578 My, X = 0.7, Z = 0.001 and L = 2 x 10”2 ergs/sec.
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Figure 2. The growth rate for Al Vel calculated from linear theory.
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Figure 3. The 1imiting velocity amplitude of the periodic Stellingwerf method for Al
Vel. The last three trial periods are given. '
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Figure 4. The limiting 1ight curves of the periodic Stellingwerf method for AI Vel.
The last three trial periods are given.
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where n is the switching rate from one mode to another. Here we estimate the mode
switching rate for the kinetic energy to change from -2 x 10'3/H0 to +3 x 10‘5/n0 as
To changes from 7500 K to 7620 K (the F blue edge where Figure 2 data obtains). In
the 1H~> F case, this rate may be ten times slower per Iy, as shown in the RR Lyrae
models given in Figure 1. This implies that the 3 n/3T, rate for redward evolution
(1H > F) is 6 x 10-6 per K per year for our 0.086 day M;." From evolution tracks,
aTe/at is about 5 x 10°% K per year. Evaluation of the formula gives a mode
switching time scale of about 2.6 x 104 years.

With evolution times like 2 x 106 years to cross the instability strip, it
appears that 10-2 of all & Scuti stars might be seen in two modes simultaneously.
Those with larger periods should be going redward with increasing periods and
increasing Ty amplitude. At shorter periods, either Iy or I, amplitudes could be
growing, depending on the evolution direction in the S-shaped tracks on the H-R

diagram. The very rough theoretical expectation that 10-2

of all & Scuti variables
exhibit two modes agrees with the rather approximate fraction gleaned from
observations. No amplitude changes should be detectable over the available time span
of less than 50 years.

More study is needed in order to understand the double-mode behavior of Al
Vel and others 1ike it. Preliminary work indicates that they are all mode switching
at transition lines which, due to the differing surface helium content of the stars,

occur all across the instability strip.
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ABSTRACT

For nonlinear models of 0.4 Mg and 2.0 M, & Scuti stars, pulsation amplitudes
obtained in this region depend critically upon artificial viscosity parameters.
Models with limited viscosity attain huge amplitudes. Furthermore, it is found that
nonlinear stability properties depend primarily upon the amplitude. Determination of
the actual dissipation mechanism is thus crucial to our understanding of these
objects, and probably other main sequence pulsators as well. At present the most
likely mechanisms appear to be 1) dissipation in the atmosphere, corona and wind; 2)
turbulent dissipation in the convective zones; 3) magnetic fields.

1. INTRODUCTION
Observed stars in the Tower Cepheid strip generally show very complicated

behavior. Pulsation in a complex mixture of modes is not uncommon. Linear (small
amplitude) nonadiabatic stellar models indicate that as many as six radial modes are
expected to be unstable (Stellingwerf 1979) and nonradial modes are probably present
as well.

~ As an initial step towards understanding this phenomenon, several nonlinear
models have been studied in some detail. The final result is not encouraging: some
basic physical dissipation mechanism seems to be missing. The evidence for this
conclusion and various potentia1 solutions to this dilemma are discussed below.

2. NONLINEAR MODELS

A Tow mass model was computed with the parameters M = 0.4 Mg, Mpo1 = 2.55, Tq
= 7400 K, X = 0.7, Y = 0.295, Z = 0.005. This model provides a period rationy/fj =
0.773 as observed in Al Vel. The lowest four modes are unstable at small amplitudes;
periods and growth rates are given in Table 1 (cf. Stellingwerf 1979). ,

Periodic 1imit cycles were obtained in the fundamental and first overtone
modes. The fundamental 1imit cycle had amplitudes of 2K = 114 km/s, and M4 = 1.51
magnitudes. The limiting amplitude was caused by saturation of the Het driving, but

this amplitude is too large by about a factor of two. A nonlinear stability analysis
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indicated the presence of a slowly growing instability associated with the inner
boundary condition -- also found by Christy (1974) -- but showed no tendency to mode
switching.

' The first overtone Timit cycle had amplitudes of 2K = 92 km/s and AMy ;1 = 1.3
magnitudes, and was found to be stable, aside from the inner boundary condition
problem.

In this model the viscosity is that described in Stellingwerf (1975) with CQ
=4, a = 0.1. This form effectively restricts the viscous dissipation to regions of
strong shock formation. As a test of how additional viscosity might affect the
amplitude, the model was rerun in the first overtone with CQ =1, a=0 (i.e., the
classical "Christy” form). The 1imiting amplitude in this case was 2K = 40 km/s,
AMy,7 = 0.36. The viscous term contributed roughly one third of the total
dissipation and affected the amplitude profoundly. The amplitude now agrees with
observations, but is entirely arbitrary, and the viscous dissipation is unphysical.
A stability analysis of this limit cycle showed a positive switching rate of 0.12%
per period toward the second overtone, the most unstable mode. It seems unlikely
that this result is independent of the unreal dissipation.

A second model was run with the parameters M = 2M0, Mpo1 = 0.89, T, = 7000, X
= 0.7, Y = 0.28, Z = 0.02. This model resembles 8 Scuti, and is unstable in four
modes as shown in Table 2.

Table 1. Linear Periods and Growth Rates

Mode Period (d) Growth Rate (%/cycle)
0 0.1132 0.13

1 0.0875 0.72

2 0.0705 1.80

3 0.0591 0,90

4 0.0502 -2.20

5 0.0434 -5.70

The variation of driving and damping as a function of period was determined
by integrating one period at various initial amplitudes (F-mode). The results are
shown in Figure 1. Although these crude estimates suggest a limiting amplitude of
about 30 km/s (2K = 60 km/s), this is not caused by saturation of driving, but by an
increase in the damping. Both H and He* driving continue to increase at large
amplitudes.
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Table 2. Linear Periods and Growth Rates

Mode Period (d) Growth Rate (%/cycle)
0 0.1889 0.0013
1 0.1456 0.0168
2 0.1183 0.0621
3 0.0988 0.1072
4 0.0848 -0.3800
5 0.0744 -0.7200

Relaxation to the limit cycle showed that the model can readjust to avoid the
increase in deep dissipation. The amplitude increased to 2K = 160 km/s, AMp,y = 2.7,
but did not fully converge since the outer layers were approaching escape velocity.
Clearly some mechanism other than saturation must 1imit the amplitude to the observed
values (0M-0"T2). This "1imit cycle" was found to be stable. The huge amplitudes
could not result from a failure of the iterative scheme since a positive total work
integral was found at each stage of the calculation. A time integration would yield
the same result, even after roughly ten million periods.

Decrease of the viscous shift parameter o from 0.1 produced no effect until a
value of about 0.01 was reached. At this point, strong, deep damping is present and
the final amplitude drops to well below 10 km/s.

Decrease of the helium abundance to Y = 0.18 failed to reduce 2K below 50
km/sec.

The behavior of this model indicates a very serious deficiency in the theory,
a deficiency not apparent in linear analyses. Clearly, realistic amplitudes can be
obtained through manipulation of the viscosity, but this tells us nothing. What is
the actual mechanism?

3. DISCUSSION

Since growth rates for & Scuti models are very small, even a small amount of
dissipation, increasing with amplitude, could 1imit the pulsations. In terms of
growth rate, an additional contribution of n = -1.0 x 10-6 per period would suffice.
In view of this, many normally negligible effects must be considered. A few of these
were checked with numbers taken from the & Scuti model discussed above. The resu]tsé
presented when appropriate as the ratios of the corresponding n to the n=-1.0 x 107
above are as follows:

1. Molecular viscosity, atmospheric; fails by 10-10,

2. Radiative viscosity; fails by 10~7.
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Figure 1. Driving and damping terms as a function of amplitude for the 2 Mg ¢ Scuti
model discussed in the text. Here n = work in units of total K.E., and 1s shown
separately for the hydrogen ionization region, helium ionization region, and interior
("damp").  The dashed line is the sum of these three contributions.
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Bulk viscosity, ionization zones; fails by 1074 as long as photoionization
dominates. It could contribute if the collisional term becomes important,
since this is a slower process.

Reynolds stresses. In turbulent convective regions; estimates show that this
effect could be important. However, models have so far failed to support
this, as the convection is very weak.

Shocks, atmospheric dissipation. Again, this is a possibility, but models
have not clearly demonstrated that shock heating and emission high in the
atmosphere can stabilize the envelope.

Winds. A more promising idea is the direct loss of energy via waves
propagating into a stellar wind. Supersonic winds are exceedingly stable and
can convect energy very efficiently.

Magnetic fields. The amplitude-limiting effect of magnetic fields has

probably already been observed as the Blashko effect (long period modulation
of the Tight curve) in RR Lyrae stars. If true, then a more pronounced
influence would be expected in stars with lower pulsational excitation.

Many of these mechanisms represent very difficult mathematical problems. It

is, nonetheless, of some importance that this point be resolved. Not only does our

understanding of the Tower Cepheid strip variables rest upon it, but it could affect
other problems as well. A small reduction of the amplitudes of Cepheids, for

example, is certain to assist in computations of double mode stars. Accurate RR
Lyrae amplitudes are needed for comparison with globular clusters, etc. Until this

issue is resolved, accuracy cannot be claimed for either the computed amplitudes or
the computed modes of the Tower Cepheid strip variables.

This work is supported in part by NSF grant number AST 79-0116b5.
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A PROGRAM TO OBSERVE VERY LOW AMPLITUDE
RADIAL VELOCITY VARIATIONS IN & SCUTI STARS

W.D. Heacox

Lunar and Planetary Laboratory
University of Arizona

Tucson, Arizona

ABSTRACT

The University of Arizona Radial Velocity Spectrometer is probably capable of
attaining a resolution of 100 m/s or less on slowly rotating stars of blue magnitude
5.5 or brighter and pulsation periods of 0.02 days or greater in the ¢ Scuti
instability region of the H-R diagram. Such performance is approximately equivalent
to a photometric resolution of 10-3 magnitudes, and thus represents a possible means
of improving the detectability of & Scuti pulsations by an order of magnitude. The
instrument is briefly described and a high priority observing program is outlined.

1. INTRODUCTION

The University of Arizona Radial Velocity Spectrometer has been designed with
the goal of detecting the reflex orbital motion of solar-type stars due to the
presence of Jupiter-like planets. The required precision is about 10 m/s,
representing an improvement over existing instruments of more than an order of
magnitude. The applicability of this instrument to & Scuti observations derives. from
the pulsation amplitude leverage of about 90 km/s/magnitude in such stars (Breger
1979), so that a radial velocity precision of 10 m/s would be approximately
equivalent to a photometric precision of 10-4 magnitudes, greatly exceeding the
abilities of existing photometric instrumentation. We anticipate that the precision
actually obtainable on § Scuti-type stars will be only about 100 m/s for slowly
rotating stars and for pulsation periods no Tess than 0.02 days. This nonetheless
represents an improvement of an order of magnitude in the detectability of ¢ Scuti
pulsations, and suggests that application of our instrument to & Scuti stars may help
to elucidate mechanisms responsible for pd]sationa] instabilities in this region of
the H-R diagram.

2. THE INSTRUMENT
The University of Arizona Radial Velocity Spectrometer is described briefly
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in the following paragraphs; more complete descriptions have been published by
Serkowski (1978) and by Serkowski et al. (1979a, 1980).

The instrument is a slitless echelle spectrograph preceded by an
exceptionally. stable Fabry-Perot interferometer of finesse 10. The primary purpose
of the Fabry-Perot is the definition of well-separated spectral resolution elements
(i.e., transmission maxima) with well-defined wavelengths. The spectrum is scanned
by tilting the Fabry-Perot. The instrument is coupled to the Cassegrain focus via a
single fused silica optical fiber about 10 m in length subtending 2.5 arc seconds on
the sky, mechanically isolating the spectrograph from the telescope. The optical
fiber coupler is described in detail by Heacox (1980). The detector is a GE charge
injected device (CID) of narrow aspect ratio (TN 2201) preceded by an ITT proximity
focused intensifier (F-4111). Eight echelle orders, corresponding to a spectral
bandwidth of about 250 A centered at 4250 A, are focused on the detector. The
spectral resolution of the instrument is about 0.065 A. ‘

Wavelength calibration is provided by a hollow cathode discharge tube and by
an NO, absorption cell illuminated by a point source 1amp. The image scrambling
properties of the optical fiber coupler ensure illumination of the spectrograph by
the calibration sources that is nearly identical to that of starlight. Additional
calibration will be provided by daily observations of integrated sunlight; according
to the observations reported by Brookes et al. {1978) and Claverie et al. (1980) in
these proceedings, the radial velocity of integrated sunlight should be sufficiently
stable for this purpose.

In a prototype configuration mounted at the Cassegrain focus, the
spectrometer has observed the radial velocities of Arcturus and Venus with a
precision of between 10 and 25 m/s (Serkowski et al. 1979b). When the improved
instrument is completed in 1980 we expect to achieve a precision of 10 m/s in a
single 40 minute observation on a 1.5 m telescope of a slowly rotating GO dwarf of
blue magnitude 5.5 or brighter. Since stars of earlier spectral type contain less
radial velocity information in our passband than do solar-type stars, this precision
will be degraded somewhat in observations of stars as hot as & Scuti stars. In
summary, we expect the instrument to achieve a precision of 50-100 m/s in a 15 minute
observation on a 1.5 m telescope of a slowly rotating (vesin i < 20 km/s) dwarf or
subgiant of blue magnitude 5.5 or brighter in the spectral range A8-F5. This
precision will be further reduced by an uncertain amount in observations of dwarfs
earlier than A8 and of luminosity classes III and II.

3. A PROPOSED OBSERVING PROGRAM

Both photometric and radial velocity variations are observed in § Scuti
stars. For stars showing detectable variations of both types and with the same
period, the amplitudes in radial velocity (km/s) are considerably larger than the
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corresponding photometric amplitudes (magnitudes), probably by a factor of between 60
and 100 (Frolov 1975; Breger, Hutchins and Kuhi 1976; Breger 1979). It is not
certain that this relation can be extrapolated to the very small amplitude pulsations
considered here, although Breger, Hutchins and Kuhi (1976) argue that the mean ratio
of these amplitudes may be even higher for the intrinsically small amplitude main
sequence & Scuti stars. In any event, it seems likely that a radial velocity
resolution of ~ 100 m/s will constitute an improvement of an order of magnitude in the
sensitivity of measurements of & Scuti pulsations.

We propose to extensively observe selected known & Scuti stars to this
precision for at least two reasons. First, we would like to know the relation
between radial velocity and photometric amplitudes and phases for the different
frequencies observed in stars showing multiple modes in photometric variations. We
expect that such observations will shed some 1ight on the mode identifications and,
in particular, on the question of the existence of nonradial modes. Second, we hope
to discover new modes with amplitudes too small to be detected photometrically with
current instrumentation. This would at the very Tleast help resolve the conflict over
the existence of rotational m-splitting as opposed to perturbations due to duplicity.
While relatively bright, slowly rotating 8 Scuti stars are rather rare, there are
candidates available for such observation (e.g., 44 Tau).

We also propose to conduct a systematic search for & Scuti stars in an
unbiased sample of bright, sharp-lined stars which 1ie in the § Scuti instability
region of the H-R diagram. We estimate that nearly 100 such stars will be available
to our instrument, about half of them dwarfs or subgiants. We hope that the results
of such a survey will address the following subjects, among others:

1. The fraction of slowly rotating stars in this region of the H-R diagram that
pulsate;

2.  The fraction of such stars that show pulsation modes of various types and
multiplicities;

3. The duplicity rate amongst slowly rotating 6 Scuti stars;

4. The correlations (if any) of pulsation characteristics with stellar physical
parameters in slowly rotating, low amplitude 8 Scuti stars.

We anticipate that such a search will reveal that the § Scuti phenomenon is
much more common in slowly rotating stars than had been previously apparent. The
results of the search should be particularly valuable in determining the extent to
which diffusion is the mechanism responsible for the -distinction between pulsating
and non-pulsating stars of otherwise similar characteristics.

Thus far, limited telescope time and the necessity of extensive instrumental
development and testing efforts have precluded the possibility of applying the
spectrometer to any observational program other than that for which the instrument
has been specifically developed. If all goes well we hope to initiate a pilot
program of observations of a selected & Scuti star in 1980 and, if the results are
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encouraging, to expand to a program similar to that outlined above shortly
thereafter.
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PULSATION MODES IN B STARS WITH VARIABLE LINE PROFILES
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ABSTRACT

In this paper several observational characteristics of the line profile
variable B stars ("53 Persei variables") are discussed. These stars reside between
08 and B5 on the main sequence and extend perhaps to class I. We believe the 53 Per
variables are a separate group related to the classical g Cephei variables.

Line profiles of 53 Per variables exhibit periodic changes in line width and
asymmetry but not in radial velocity. These and various photometric signatures are
attributed to g-mode nonradial pulsations. Unlike the g Cephei variables the 53 Per
variables exhibit highly unstable periods which frequently change from one value to
another in a few days. Ratios of 2:1 among these periods are especially common, and
the total range in period can exceed a factor of ten in a single star.

Recently it has become possible to make a physical mode identification for a
pair of m-modes in 53 Per: ¢ = 3, m = -2 and -3. Additionally, there are
indications that the nonradial oscillations in these stars are excited in the
envelope rather than in the core. If so, an opacity~related mechanism might be
responsible.

Among the classical g Cephei variables, our profile observations of a few of
them can be simulated only by radial pulsation models. Spectra of several, if not
all, members of this group exhibit periodic "bouncing shells" in visible and/or
ultraviolet 1lines. The detection of these shells promises to furnish us with an
additional means of distinguishing between radial and nonradial pulsations in B-
stars.

1. INTRODUCTION

Two separate but related groups of stars, the line profile variable B stars
(hereinafter referred to as "53 Per variables") and the classical B Cephei stars will
be considered here. Both types of variables exhibit profile variations through a
pulsation cycle, but differences between the characteristics of these two groups are
great enough to minimize problems in classifying a particular star.

The 8 Cephei stars have pulsation periods in the range of 3.5 to 6 hours;
these periods are so stable that an ephemeris may be set up for them over decades or
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longer. Spectroscopically, the g Cephei variables exhibit variations in line
asymmetry. However, contrary to some earlier reports, many do not show variations in
line width; in those stars that do exhibit width variations, they occur nonuniformly
with phase.1 The B Cepheids show conspicuous 1light, color and radial velocity
variations. Many show periodic modulations of their 1ight and velocity curves,
indicating the presence of stable multiple periods (cf. Lesh and Aizenman 1976).

In contrast the 53 Per variables show smooth profile variations which
alternate in line width and 1ine asymmetry. They exhibit smaller 1ight variations
than do the g Cephei stars, and still smaller variations in color and radial
velocity. Their periods are long, ranging from 3.6 hours to 2.0 days, and are highly
unstable.

With the exception of the final section, this discussion will be limited to
various observational results obtained for the 53 Per variables and their theoretical
implications. However, details of modeling the profile variations with a nonradial
pulsation velocity field will not be presented, nor will a mountain of profile
fitting results which either have already been discussed elsewhere (e.g., Smith and
McCall 1978a; Smith 1978a,b) or soon will be.

2. INCIDENCE OF THE 53 PER VARIABLES

As Figure 1 indicates, our high resolution (0.1 A) Reticon observations
show2 that profile variability exists on the main sequence from 08 or 09 (10 Lac) to
B5 (53 Per, HR 7119), i.e., from about 7 to 22 Me' In terms of luminosity such stars
as 1 CMa (B3 II), and possibly Deneb (Lucy 1976; A2 1a) and p Leo (Bl Iab). 53 Per
variables may or may not be members of binary systems.

Unfortunately, it is possible to search for line profile variations only in
slowly rotating stars, since rotational broadening does not totally dominate the
profile. Photometric determinations of variability in faster rotators may be
undertaken at some future date.

Among the sharp-lined stars in the domain just described, all non-g Cephei
stars but two show variable profiles. One of these two profile-constant stars, 3 Cen
A, 1is the prototype 3He-rich star. Its constancy, along with the lack of variables

1. Nonuniform variations have been noted with photoelectric equipment in BW
Vul (Goldberg et al. 1974), 12 Lac (Allison et al. 1977) and ¢ Sco (Smith 1980). An
interpretation of the line width changes, apart from nonradial pulsations, is given
in Section 7-2.

2. A1l observations have been carried out using the coudé Reticon system on
the 107-inch telescope at McDonald Observatory, or photographically on the 82-inch
coudé photographic system. A number of 1979 profiles reported in Table 1 were also
obtained on the new coudé Reticon system attached to the 82-inch telescope. The two
Reticon systems have comparable speeds.
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among late B stars, hints at an exclusion between chemical peculiarities due to
diffusion (Hartoog and Cowley 1979) and nonradial pulsations. The other profile-
constant star is the quintessential BO V standard, t Sco, which may be a pulsating
star simply viewed pole-on.

3. 53 PER VARIABLES AS NONRADIAL PULSATORS
The following evidence supports the classification of 53 Per variables as
nonradial pulsators:

1. The detailed 1ine profile variations are smooth and periodic in time and
agree very well with predictions of a traveling wave model. This is an enormous
accomplishment of the traveling wave model. It should be noted for these profile
variations that free parameters cannot be continually adjusted to fit the different
1ine shapes. Smith and Stern (1979) have recently performed an extensive set of
quality control experiments to show that periods can be determined reliably from data
of this quality.

2. The periods are too long to arise from radial or pressure (p)-type nonradial
modes. They are also too short to be consistently explained by orbital motion in a
marginal SB2 binary. The periods in 53 Per exhibit a range of a factor of fourteen.
However, a large period range can be incorporated within. nonradial pulsation theory
for gravity (g)-modes if one is willing to accept singly-excited high overtones.

3. The dominant period appears to shift approximately every month to another
value. Period ratios of 2:1 are especially common, a fact which points to resonance-
coupling between pulsation modes. The nonradially pulsating ZZ Ceti variables
exhibit very similar characteristics. '

4. There is spectroscopic evidence that, as periods increase, the horizontal
motions on the disk of the star become more and more dominant, as expected for
nonradial g-modes (note the extended 1ine wings in long-period profiles in Figure 2).

5. The presence of a pair of close frequencies in the 1ight curve of 53 Per in
late 1977 suggests the rotationmal splitting of modes with two different values of m
(Buta and Smith 1979). The degree of this splitting agrees well with the observed
rotational velocity of the star.

6. The low color-to-1ight ratio in 53 Per suggests the dominance of a nearly
color-free contribution to the 1ight curve. The nonradial geometric contribution,
caused by the distortion of the star from a spherical shape, is the obvious
candidate.

4. PERIOD ANALYSIS

Any remarks about periods must be prefaced by stating that our spectroscopic
profile-variation analysis technique does not discriminate Tow-amplitude secondary
modes. However, because our single-mode solutions generally fit the data so well, it
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is probable that most of the pulsational energy in the outer stellar envelope is
usually restricted to one (k,t) mode.

Table 1 summarizes the current status of the period determinations for the
six best observed variables. With the possible exception of 10 Lac, the noteworthy
characteristic of these variables is that their periods change every month or so.
Smith and McCall (1978a) first pointed out this period transience for 53 Per but on
the basis of only ~ 6 profiles per three day observing run. Yhile we have no reason
to deny any of the periods quoted therein, we have been very closely monitoring the
behavior of another variable, 1 Her, to confirm the existence of this transience and
to see whether it extends to Tow amplitude stars as well. As Table 1 shows, the
transience is indeed ubiquitous. Even in a small amplitude star 1ike 1 Her, five
different periods have been found over a total of two observing seasons; four periods
have been observed on at least two runs.

At present period changes have also been followed during an observing run
three or four times. Each time a change occurs, it does so over a time span of two
or three days (e.g., Smith 1978a).

The extreme range of the periods is a second remarkable characteristic. The
median period in Table 1 is 11.5 hours. About half of all the detected periods lie
in the range of 7.3 to 15.4 hours. Theoretically, fairly high overtone values (up to
k = 25) are indicated by these long periods. Periods longer than approximately 15
hours require observations over several contiguous nights and are more difficult to
determine accurately. Still, periods on the order of a day have been found on
several occasions. Very short periods (< 3.5 hours) cannot be determined from our
data because of the phase-smearing that goes on during the finite observation time.
However, shorter periods than this would be unlikely because the 1imiting g-mode
period of a B star lies in this approximate area (Osaki 1976).

A third remarkable characteristic of these periods, already noted, is the
near-integral peridd ratios that frequently occur. 53 Per itself shows several such
coincidences, e.g., 4ug, 2wg, wg and wg/3, if wg corresponds to P = 14.6 hours.
There is also a slight preference for oscillations to change directly from a
frequency wg to wg/2 or to 2ug.

Not all period ratios involve magic numbers. For example, consider the
behavior of 1 Her during the spring of 1978. 1In April and July it showed its
familiar 13.9 hour period. In May and June it showed a 15.4 hour period for two
months or longer. These two periods are too far apart to arise from rotational
splitting, and too close together for one mode to be a harmonic of the other. A
possible explanation within the context of nonradial pulsation theory involves mode-
switching. For example, a change in the overtone value may be occurring (e.g., if 2
=2,k=6->7). Apicture begins to emerge in which oscillations rapidly transfer

energy from one mode to another for some inexplicable reason. However, they prefer
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Table 1. Summary of Observations on Severa] Line Profile Variables

Star Obs'd Periods P-Quality No. Runs/No. Profiles Ampl. (km/sec)

(hr) (Scale 1-3)
53 Per 3.59* 1 "~ 1/5 8
(B451v) = 4.50: 172 1/3 12
~7.29 2 2/4,5+ 9-12
11.43 2 1/7 12
14.6 2 2/8,8 7-10
45 3+ 2/7,7 10-12
Total: 9/49
1 Her 4.92 2 1/15 5
(B3v) 9.9 3 4/2,6,15,18 4-6
13.9 3 6/5,13,18,10 4.5
15.4 3 2/17,8 4
31 2 2/5,3 4
Total: 13/102
10 Lac 4.9 3 6/4,5,15,5,9,6 4-10
(09V) ? 1/2 28?2
Total: 7/46
22 Ori -~ 8.95 3 3/8,4,11 5
(B21V) - 4.5 3 4/5,11,3:,3 3-5
+14.1 2 3/3,3,7 5-7
+22.5 2 1.5/9
Total: 10.5/56
v Ori 11.5 3 3/4,4 5
(BOV) 23.5 2 1.5/10 4
? 1/7 ~ 2
Total: 5.5/25
r Cas 21.5 2 2/11,2 4
(B2v) ? 2/18,7

Total: 4/38

GRAND TOTAL: 316 OBSERVATIONS (as of February 1979)

Minus sign denotes retrograde mode.
"1.5" indicates two observing runs on the same month,
+ An underlined entry implies two periods were found in one set of observations.

* Period once observed simultaneously with another.
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to transfer this energy to some stray mode having a (sub)-integral value of the
initial frequency.

The transient behavior of modes in 53 Per is reminiscent of the large-
amplitude ZZ Ceti stars. As Robinson and McGraw (1976) and McGraw (1978) have
pointed out, these stars also exhibit transient long-period oscillations as well as
period ratios of 2:1. These authors have built a convincing case supporting
nonlinear coupling for mode-switching on short timescales. Perhaps these attributes
are common to all overdriven, nonradially pulsating stars.

There is also another property of these periods which may be worth noting.
This concerns the trend in the average periods in two well-observed stars, 53 Per and
t Her, during the last 2-1/2 years. As Figures 3 and 4 indicate, their periods were
rather short when observations began. As time progressed, the periods tended to
longer values. Obviously, we are dealing with an insufficient time base yet.
However, because both stars display these tendencies, they might be indicative of an
important pattern.

5. CONSTRAINTS ON THE ORIGIN OF THE PULSATIONS

The ultimate favor the observer can do for the theoretician is to furnish
clues as to why the observed phenomenon occurs at all. In this vein, it is suggested
that the nonradial g-modes are excited in the envelopes of B stars and not in their
cores.

Consider first the energy involved in a typical gy-oscillation. Given the
surface amplitudes observed in 53 Per and the eigenfunctions of Osaki (1975), Smith
and McCall (1978a) pointed out that the vibrational energy of a 10 My ZAMS star can
be as large as a few tenths of a percent of its gravitational energy. As an
additional complication, there exists the rapid change-over from one mode to another.
In order for the star to conserve its pulsational energy, one expects the amplitude
at the surface to be very different for different modes (i.e., the modes should
occupy very different energy states). However, it is an observational fact that the
pulsational velocity amplitude of a star remains the same at different times to
within 50 percent, regardless of its period. The implication is that the
oscillations themselves are localized and require less energy to shift from one state
to another. It also seems easier to understand the transience of the oscillations if
they are confined to the outer tenuous layers of the star.

An additional argument against a core-instability mechanism may be found in
the behavior of a very young nonradial pulsator, v Ori. This star has been observed
to have periods of either 11.5 or 23 hours on a few different occasions. According
to Osaki's (1975) propégation diagrams, the entire inner 50 percent of the mass of a
zero age main sequence B star is evanescent as far as the propagation of any
nonradial modes goes. It would therefore be difficult for oscillations in v Ori to
be propagated, to say nothing of being excited, in the star's core. However, one
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possible alternative explanation must be explored before the existence of core-
excited oscillations can be ruled out. Just as in quantum mechanics, the
eigenfunctions might still "tunnel" for some distance through an evanescent region,
particularly if 2 = 1 (Osaki, personal communication). Therefore, no firm
conclusions can be reached until the spherical harmonic index & that is present in v
Ori can be identified, presumably through the use of photometry and spectroscopy.
Still, the probable existence of nonradial oscillations in v Ori puts core-related
pulsation mechanisms on the defensive. It is time for the theoretician to begin
scrutinizing envelope-related processes, such as a modified x-mechanism.

6. MODE IDENTIFICATIONS

Last year Aizenman and lesh (1978) concluded that it was not yet possible to
identify the pulsation modes in 8 Cephei stars. Under normal circumstances the same
cautionary notes apply for the 53 Per variables. One cannot merely match theoretical
periods to observations and so determine k and ¢ values for an observed oscillation;
theoretical uncertainties in period estimates are legion, and the masses and ages of
field B stars are not known with accuracy. However, one clue concerning the
identification of the modes became apparent from the initial discovery of the 53 Per
variables: variations in line asymmetry and line width without concomitant radial
velocity changes are a.signature of a sectorial traveling wave (m = £2). The sense
of the profile variations with time (except for 22 Ori in 1977-78) indicates a
preference for m < 0. 3,4 Altogether, the observations consistently point to m = -2,
where £ is necessarily a small integer.

By combining light and color curves with the spectroscopy, as has recently
been done for 53 Per by Buta and Smith (1979) and Smith and Buta (1979),
complementary information can be used to identify the physical mode of an
oscillation. This is possible because the hills and valleys of a nonradially
pulsating object tend to cancel variations in light, while causing a smearing of the

spectroscopic line profile. Moreover, photometry provides the displacement produced
by a traveling wave, whereas spectroscopy furnishes its time derivative, the
pulsation velocity. Therefore, simultaneous observing programs are worth the
difficulty of implementation.

Next consider that light variations are caused primarily by pressure and
temperature changes. In most pulsating objects the geometric effects are small.

3. It is pertinent to note that Hansen, Cox and Carroll (1978) have found
that rotation produces a greater tendency to instability for the m = -% modes in a
nonradially pulsating star.

4. However, we now have a well documented case (22 Ori) (Smith 1980) of a
star pulsating in a m = +2 mode (1977-78) changing to the m = -%£ mode, a reversal of
the direction of the traveling waves. Perhaps the potential well for m = +¢ modes
exists but is simply too shallow for the star to continue in that mode for an
extended period of time.
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However, in 53 Per the period-pair observed by Buta and Smith (1979) is sufficiently
long, and the amplitudes sufficiently large, that nonadiabatic effects might well
render the temperature variations small compared to the geometric ones. Let us
examine the behavior of 53 Per in late 1977 and 1978 (Buta and Smith 1979; Smith and
Buta 1979). During that time this star showed a period of nearly two days. It also
showed a low color-to-light ratio, A(v - y)/av = 0.10, rather than the well-
determined value of 0.18 which is characteristic of ¢ =0 or ¢ = 1 pulsations. If
the geometric effects upon color changes are assumed to be small, it can be shown
that the geometric component is in fact responsible for most or all of the light
variations. It is then possible to integrate the spectroscopic amplitude and compute
a photometric amplitude which can be compared to the observed photometric amplitude.
Good agreement between the observed and computed photometric amplitude was found only
if & = 3; other ¢ values produced 1ight amplitudes which were incorrect by a factor
of three or more or even possessed the wrong sign. The obvious conclusion is that ¢
= 3 alone fits the light and profile data for 53 Per at that time.

Another aspect of the behavior of 53 Per during this time concerns its light
curve, which demonstrated the presence of two closely spaced frequencies. This is
reasonable if the pair is assumed to represent two rotationally-split modes. For the

splitting of modes, one can write (in the usual notation):

(v

Aw = am (1 - C)

sin i
rot )
R0 sin i

If am is known, this equation can be used to compare the frequency splitting Aw with
the spectroscopically determined rotational velocity, V.ot sin i. For 53 Per only
one value works: Am = 1. This value gives complete agreement between the observed
values Aw and Vg sin i if i = 60°, a reasonable inclination value. Values of am >
1 lead to nonphysical values for sin i and can be ruled out.

The above exercise does not merely provide a consistency check for the
hypothesis of rotational splitting of modes. It, and the clues furnished above, lead
to a complete description of the nonradial surface indices for the two observed
oscillations: 2 =3, m=-2and -3. Inview of the considerable prejudice against
odd g-values, it is ironic that the first mode identification of a nonradially
pulsating B star should prove to be just such a value, rather than a more widely
supported one such as ¢ = 2.

7. RECENT DEVELOPMENTS ON g CEPHEI STARS
Two interesting developments have recently arisen from studies of line
profiles of 8 Cephei variables (Campos and Smith 1980):
1. (At least) many B Cephei stars are radial pulsators. It was initially
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expected that nonradial pulsations would explain the large 1ine asymmetries observed
in g Cephei stars, but this was not found to be the case. Profiles that exhibit
asymmetry changes but small width changes over the pulsation cycle are the result of

rotation in the star ephancing small asymmetries due to radial pulsation {see Duval
and Karp 1978). B Cephei, 6 Ceti and y Peg are examples of stars which show this
property. Figure 5 depicts these variations and the fits for 8 Cep assuming a radial
pulsation. Profiles of & Cet and vy Peg have been modeled after radial pulsators as
well. However, no common set of nonradial parameters appears capable of reproducing
the detailed changes in shape and‘radial velocity. (A slightly different result
reported for 8 Cephei in Smith (1977) probably results from the use of data
reproduced on a poor scale.) Figukes 6 and 7 show the effect of increasing radial
pulsation amplitude and of rotational velocity on the profile at maximum radial
veiocity (maximum blue asymmetry). Note in Figure 6 that at radial velocity maximum
(minimum), the blue (red) wing becomes more and more depressed with increasing
amplitude. The radial velocity range increases at the same times In Figure 7, note
that increasing the rotational velocity produces a broader, more asymmetric 1ine
whose radial velocity measurement will not be changed much. When the Timit of large
rotational velocity is approached, the asymmetries decrease in size once again.

Based on color-to-light amplitudes, Stamford and Watson (1978a) have also come
to the conclusion that main 8 Cephei stars have active radial modes. None of these
findings dispute the possibility that nonradial pulsation may also be going on in 8
Cephei stars, especially in those with multiple periods. Indeed the close period
pairs in several g Cephei stars that exhibit beating suggest that one of the
oscillations is nonradial. Moreover, the surrounding in the H-R diagram of the g
Cephei stars by the 53 Per variables suggests an underlying instability to nonradial
pulsation in this entire range of the H-R diagram. It is quite possible that
nonradial pulsation actually excites radial pulsation in the g Cephei stars but that
the amplitude of the nonradial pulsation is exceeded by that of the radial pulsation
at the surface.

2. Bouncing shells are common in 8 Cephei stars. LeContel (1968) and Smith and
McCall (1978b) have reported the presence of weak shell components in the blue
spectral lines of v Peg. This shell appears to resonate regularly with the pulsation
cycle. Our Reticon observations indicate that a much stronger shell is present ino
Sco and is responsible for much of its profile variation. As Figure 8 shows, this
shell exhibits a redward emission component at some phases and grossly distorts the
underlying photospheric profile of Si III lines. The shell is also present in
ultraviolet spectra {Campos and Smith 1980).

There are several other g Cephei stars which show shell components in the
ultraviolet range (see the spectra of Lesh 1978). The following evidence from
Copernicus UV data is presented here for the first time and suggests the presence of
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a shell in B Cephei itself. As Figure 9 shows, strong ultraviolet profiles show only
blue asymmetries and no red ones at opposite phases (in contrast to the behavior of
visual line profiles). Moreover, at certain phases, fine structure components appear
in the core of the 1ine and remain there during the time the main shell component
moves upwards.

Stamford and Watson (1978b) have computed some promising models suggesting
that the profile variations of BW Vul (including its double-lobed structure at
certain phases) can be produced by a large amplitude "piston" in the subphotosphere
that drives shocks through the line formation region.

The relevance of shells to the study of nonradial pulsation is that they may
help discriminate which B-type variables do not exhibit nonradial pulsation signatures
at their surface. A picture is emerging in which shell ejection seems to be closely
linked to radial pulsation. If so, observations of key UV lines will provide an
opportunity to test for surface dominance of radial modes independently of the
analysis of photospheric profile variations. In summary, three criteria -- color-to-
light ratios, the character of photospheric profile variations, and the detection of
shells in the UV -- may soon be used to characterize the general type of pulsational
instability in the g Cephei stars.

I am indebted to Messrs. Buta and Campos for permitting me to exhibit results
of unpublished thesis work.
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THE STABILITY OF THE g CEPHEI STARS

M.L. Aizenman

Division of Astronomical Sciences
National Science Foundation
Washington, D.C.

1. INTRODUCTION

From an observational point of view, the 8 Cephei stars appear to be well-
understood, ordinary blue stars. Their spectral types range from B0.5-B2. Their
Tuminosity classes Tie in the range (II-1I1)-IV. The stars are, in general, slow
rotators. Both the light and radial velocity periods of these stars 1ie between
three and seven hours, with the amplitude of the 1ight variation usually less than
0.1 mag in the visible, and with radial velocity variations of less than 50 km/sec.
The 1ight curve lags the radial velocity curve by one-quarter period. If the
variation in Tuminosity is interpreted as being due to a periodic change in the
radius of the star, this phase lag means that these stars are brightest when the
radius is at a minimum. Conversely, minimum brightness would correspond to maximum
radius of the star. The periods of the radial velocity and luminosity variations are
identical. In about half of the known g Cephei stars, a modulation of the 1ight and
radial velocity variations is observed, and this has been interpreted as an
interference between two nearly equal periods. Changes in line width are observed in
all of the multiply periodic g Cephei stars and in some of the singly periodic stars.
The Tines are broadest on the descending branch of the radial velocity curve and
narrowest on the ascending branch. Approximately twenty g Cephei stars are now
known, and a complete observational review of these stars has been published by Lesh
and Aizenman (1978).

This class of stars occupies a well-defined "instability strip" in the
Hertzsprung-Russell diagram. Figure 1 shows the location of these stars in a
theoretical HR diagram computed by Lesh and Aizenman (1973). It is apparent that the
strip is approximately parallel to the main sequence. This strip is, in fact,
coincident with a region known as the "core-collapse zone," the "S-bend," or the
"hydrogen exhaustion phase." This is a region which is traversed by a star three
times in its evolution away from the main sequence: first in the core hydrogen
burning phase, again in the secondary contraction phase as the star adjusts its
structure to that of a thick hydrogen burning shell, and once more during the initial
phases of hydrogen shell burning. This region is also traversed by stars contracting
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towards the main sequence.

Despite the abundant observational knowledge available on the g Cephei stars,
they remain in some ways an enigma. The interest of these stars for theoretical
studies is obvious: we do not know why they vary. The early B stars have been
considered relatively simple and well understood. Models can be computed readily
enough. Nevertheless, we have been unable to obtain a consistent, simple explanation
for the variability of these stars.

2. THE INTERNAL STRUCTURE OF B STARS

From a comparison with evolutionary tracks, it is found that the masses of
the B Cephei stars lie between10and 20 MGL The only observational mass for a B8
Cephei star was obtained by Herbison-Evans et al. (1971) for o Vir A, who found a
mass of 10.9 + 0.9 Mg. They also found a radius of 8.1 0.5 Rg and a log (L/Lg)
4,17 + 0.10.

In this mass range, hydrogen is converted into helium via the CN cycle in a

convective core. As the star evolves away from the main sequence, the mass fraction
in the core decreases. Because of this, the star has a region of spatially varying
mean molecular weight. For stars in this mass range, material in such a region
maintains neutral equilibrium towards convection. There are problems, however, as to
what criterion one uses to identify neutral stability in a region of varying mean
molecular weight. 1In a region of constant chemical composition, neutral stability
against convection means the actual temperature gradient is equal to the adiabatic
temperature gradient. In a region where there is a gradient in the mean molecular
weight, neutral stability occurs only when'

- B denu
VEVd YTT3E dtnd

where the symbols have their usual meanings. In constructing a stellar model, a
question exists as to whether one should use this criterion or simply

V=Vad

Consider a situation wherein the actual temperature gradient 1ies between the
values given by these two equations. Addressing such a situation by using a local,
linear stability analysis, Kato (1966) showed that the material was unstable to small
perturbations. He argued that such an instability would mix the material, making the
second equation the relevant one to use. Both Gabriel (1969) and Aure (1971) argued
that these conclusions applied only on a local scale, and that a full global analysis
was required before one could draw such conclusions. They believed radiative daﬁping
in the exterior layers of the star could effectively cancel any destabilizing effects
from the interior. Mixing would not take place, and the first equation would then be
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Figure 1. The location of the 8 Cephei stars in the theoretical HR diagram. The
zero-age main sequence for a composition of (X = 0.69, Y = 0.25, Z = 0.06) and the
evolutionary track for a 10 Mg model are shown. The hatched area is the region
traversed three times by a star in the course of its early post-main sequence
evolution. After Lesh and Aizenman (1973).
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the appropriate form to use in massive stellar models. The question, however,
remains open.

The existence of the semi-convective region does not change the general
features of the evolution of the star from the main sequence. As the central core
decreases in mass, the overall radius and luminosity of the star increase. When the
mass fraction in the convective core drops to 0.03-0.05, the entire star begins to
contract, and during this contraction the increase in luminosity is almost entirely
due to conversion of gravitational potential energy into radiative energy. During
the latter stages of this contraction, nuclear energy generation shifts from the
center of the star to a thick shell: The inner core of the star begins to contract
more quickly than before and hydrogen-rich material in the outer layers moves in
towards higher densities and temperatures. This material begins to burn and results
in an expansion of material above the energy source. The expansion uses energy,
resulting in a slight drop in Tuminosity. As the shell establishes itself and begins
to move outward through the star, the star evolves towards lower effective
temperatures at an essentially constant Tuminosity.

3. ROTATION, MASS LOSS, AND THEIR EFFECT ON THE SEMI-CONVECTIVE REGIONS

There are a number of ways in which rotation may affect our calculations of
stellar structure. Rotation reduces the effective gravity at any point which is not
on the axis of rotation. Equipotential surfaces are no longer spheres because of
this centrifugal force. The radiative equilibrium equations change because the
radiative flux is not constant on an equipotential surface; this in turn can affect
stability towards convection. Finally, Cowling (1951) found that rotation can affect
the criterion for convective stability.

Kippenhahn, Meyer-Hoffmeister and Thomas (1970), in an examination of the
effects of slow rotation on a 9 M, star, tested the consequences of two different
assumptions about the distribution of angular momentum during evolution. In the
first case, 1ocal conservation of angular momentum was assumed in all radiative
regions, while solid body rotation and overall conservation of angular momentum were
assumed in the convective layers. In the second case, local angular momentum
conservation was assumed in regions of varying chemical composition while overall
conservation of angular momentum and solid body rotation were assumed in all
chemically homogeneous regions. The models were started on the main sequence with
the maximum angular velocity (& = 1.55 x 10-4 rad/sec) consistent with the
equilibrium of a 9 Mg star. The effect of the centrifugal force was equivalent to a
reduction in the stellar mass. The main sequence Tifetime slightly increased (about
4%). In- the second case, where @ was assumed constant in the hydrogen-rich envelope

(which slowly expands during the main sequence phase), the angular velocity decreased
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with time but the radius of the star increased. Since the ratio of centrifugal to
gravitational forces at the equator is proportional to 92R3, there was a slight
increase in the angular velocity which resulted in mass 1oss near the end of the main
sequence phase. This was suggested as a possible explanation for phenomena observed
in Be stars. The total mass loss was small, however, and could be avoided with a
slightly smaller initial velocity.

Endal and Sofia (1976, 1978) studied rotation on the post-main sequence
stages. A number of different assumptions were made concerning the redistribution of
angular momentum in the models. However, the angular momentum was assumed in all
cases to be constant on equipotential surfaces. The models were chosen so as to
bracket sets of physically plausible rotation Taws. All the models were started with
solid body rotation and an angular velocity characteristic of main sequence stars;
none of the models was in rapid rotation. Results were as follows: Rotation
lengthened the timescale of evolution. All the models were slightly less luminous
and redder than the nonrotating sequences. There was little noticeable effect in the
HR diagram. »

Several attempts at understanding the problem of mass loss have been made in
the past five years. We know that the hot Tuminous stars are losing mass, as
evidenced by resonance lines in the ultraviolet spectrum or the presence of hydrogen
emission in the visible spectrum. A paper by de Loore, De Greve and Lamers (1977)
analyzed the effects of various rates of mass loss, bracketing the observational

estimates, on massive stars.1

Irrespective of the mass loss rate, the evolution of
the star losing mass occurred at lower Tuminosity than that of a star that did not
lose mass. Furthermore, the end of core hydrogen burning occurred at lower effective
temperatures. The net effect was that the hydrogen core burning phase covered a
wider strip of the HR diagram. De Loore, De Greve and Lamers (1977) also found that
stars that lose mass enter the Hertzsprung Gap overluminous by factors of 1.3 to 5.
This difference was due to the fact that such a star has a different chemical
composition from a star of the same mass and effective temperature which has not Tost
mass. In the hydrogen shell burning phase, evolution is so rapid that the stars lose
very little mass, and they move toward the red giant region at nearly constant
lTuminosity. At a given luminosity, the masses are much lower than those without mass
loss.

Sreenivasan and Wilson (1978a) calculated nine evolutionary sequences for a
15 Mg star. These included evolution for various rates of mass loss, with and

1The mass loss rates of early type giants and dwarfs are, however, very
uncertain. Snow and Morton (1976) suggest that stars with Tog (L/Lg) < 4.3 do not,
with the exception of the Be stars, show significant mass loss. For example the BOV

star T Sco shows a mass loss rate of only 7 x 10-? Mo/ yr.
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without semi-convection. They found that, because of the long lifetime of the
central hydrogen burning phase, most of the mass loss occurred between the zero age
main sequence and the onset of the hydrogen burning shell phase. Without semi-
convection, the rate of evolution was slowed. The mass loss shifted the evolutionary
tracks to Tower luminosities and effective temperatures. The luminosity of the point
where shell burning occurred dropped. The mass contained in the hydrogen convective
core was smaller at a given central hydrogen content for sequences which were losing
mass, and this effect increased with increasing mass loss. The mass fraction of the
core was altered only slightly.

When semi-convection was included, this zone formed outside and in contact
with the convective core as soon as the model evolved away from the main sequence.
The mass fraction of this semi-convective zone reached a maximum of 0.12 when that of
the convective zone was 0.26. The semi-convective region disappeared shortly before
central hydrogen exhaustion.

Sreenivasan and Wilson noted that as the convective core died out, a detached
semi-convective zone formed and quickly grew to a maximum size of q ~ 0.25. The
hydrogen-burning shell source became established below this zone. After the hydrogen
burning shell source had formed, the model evolved towards the red giant branch on a
nuclear timescale, this contrasts with models without mass loss or semi-convection
which moved to the red giant branch on a Kelvin timescale. Sreenivasan and Wilson
also considered the effect of mass loss on the semi-convective region. They found
that mass loss greatly reduced the extent of both phases of semi-convection and the
effects of semi-convection were quite small.

The effects of rotation in addition to mass loss, and semi-convection were
also considered by Sreenivasan and Wilson (1978b) for the same 15 My star discussed
above. The authors explicitly incorporated the loss of angular momentum due to
enhanced mass loss caused by the centrifugal forces. The effect of rotation
increased the mass loss rate by a factor of 1.2 on the main sequence. As was to be
expected, the larger mass loss Ted to a luminosity even lower than in the model
without rotation, and increased the timescale of evolution. At the end of central
hydrogen burning, the enhanced mass loss factor decreased to 1.1. This was because
the rotational velocity had decreased from 350 km/sec on the zero age main sequence
to 150 km/sec at the shell burning phase. This decrease was caused by mass loss and
the net increase in the stellar radius.

Effects of the larger mass loss rate on the semi-convective regions were
demonstrated in an even greater decrease in the size of the semi-convective region in
contact with the convective core. There was also a decrease in the size and effect
of the detached semi-convective zone. Rotation appeared to increase the rate of mass
Toss by about 20% in the early evolutionary phases.
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4. EVOLUTIONARY THEORIES OF g CEPHEI INSTABILITY

We have noted that the g Cephei variables lie in a region that is traversed
by a star three times during its evolution away from the main sequence. Because of
this, it is tempting to ascribe the instability of the Cephei stars to something that
happens during normal stellar evolution and to assume that an internal change in the
structure of the star is the cause of its variability. For example, Schmalberger
(1960) speculated on the possibility that the g Cephei variables were stars in the
overall contraction phase of evolution, and that it was the readjustment of the
star's internal structure during this phase that led to the observed variability.

The only self-consistent method of examining such a hypothesis is to
construct a set of equilibrium models and test them for stability. This was done by
Davey (1973) for 10 Mg and 15 My stars, from stages before the zero age main sequence
to hydrogen exhaustion in the core, and through the early hydrogen shell development
stages. He made a complete nonadiabatic, linear analysis of the models and tested
the fundamental mode and the first overtone of each model for stability. While the
periods obtained from his models agreed with the periods of g8 Cephei stars (a
situation yielded by all models), no instability could be found in either the pre- or
post-main sequence phases. The fact that the star was not in strict thermal
equilibrium during the overall contraction phase was allowed for in the calculations,
but it had a negligible destabilizing effect.

Aizenman and Weigert (1977) tested a number of different models which
simulated contraction toward the main sequence. In the models, they varied the
initial abundances of Heg and C;», small abundances of which can halt the contraction
of the star towards the main sequence. This can occur in the region of the g Cephei
strip. In fact, Hez abundances ranging from 0.001 to 0.005 by mass (homogeneously
distributed throughout the star) define Hes burning main sequences which pass
directly through the region occupied by the 8 Cephei stars. Nonradial, quasi-
adiabatic calculations were performed on the models, and they were found to be
completely stable. In all instances it was found that the radiation damping of the
external layers comp]éte]y dominated the effects of local nuclear driving in the
exterior,

Thus calculations of the stability of ordinary stars evolving toward or away
from the main sequence and crossing the g8 Cephei region have not succeeded in
explaining the variability. More exotic models have been attempted. Forbes (1968)
pointed out that highly evolved stars which have lost considerable mass during the
red giant stages of evolution can return to the main sequence during the core helium
burning stage. Such stars are greatly overluminous for their mass. Davey (1973)
modeled a 10 Mg star with a helium burning shell source containing 0.1 Mg and
"removed" 75% of the mass from the outer regions to obtain a converged model of 2.5
Mg. The evolution of this star toward higher effective temperatures was
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characterized by two effective nuclear energy sources: a helium burning convective
core and a thin, hydrogen burning shell. An analysis of this model, however, showed
no tendency towards instability. Aizenman and Weigert (1977) also considered a model
in the vicinity of the g Cephei strip which had experienced mass loss and was
overluminous for its mass. A nonradial analysis showed that it was completely
stable. In fact the model with mass 1loss, because of its higher central
condensation, was more stable than models without mass loss.

An extensive set of calculations was carried out by Osaki (1975, 1976). In
his first paper, Osaki (1975) studied nonradial oscillations of a 10 Mg star in the
core hydrogen burning stage. He examined both the radial and the nonradial
quadrupole oscillations and found no instability. However, after reports of
instabilities found to high-order g-modes during the overall contraction phase
(Chiosi, 1974) and the initial shell burning phase (Aizenman, Cox, and Lesh 1975a),
Osaki (1976) undertook an analysis of this section of the HR diagram for high-order
g-modes. He did not find‘any instability for the low-order p-, f-, and g-modes, nor
did he find the instabilities claimed by Chiosi (1974) or Aizenman et al. (1975a).
He did, however, note that a spurious vibrational instability of the higher-order g-
modes occurred in evolved models as a result of a numerical inaccuracy. The
eigenfunctions of high g-modes in evolved models oscillate very rapidly and have many
nodes in the chemically inhomogeneous zone just outside the convective core. In
evaluating the stability integral, it is necessary to compute the term d(sT/T)/d 1n
ry if this is done by direct numerical differentiation at discrete mesh points in the
region of varying chemical composition (where there are many nodes), numerical
inaccuracy results. Osaki proceeded to derive an expression for this term, thus
removing the need for numerical differentiation. His results did not show any
instability for the overall contraction or initial shell-burning stage. Aizenman,
Cox, and Lesh (1975b) applied Osaki's technique to their results and found that
models which had previously been found to be unstable were stable. The difference
could be traced to the numerical differentiation technique that had been used
earlier.

Osaki carried his analysis beyond these numerical results. He noted that
eigenmodes of low frequency behave 1ike gravity waves in the region of varying
molecular weight, and have large amplitudes in this region. Thus the question was
whether or not these large amplitudes, combined with nuclear driving in the shell,
could overcome radiative dissipation. He found, however, that the least stable modes
were those such as gyp, and that even for such modes the damping was ten times as
large as the nuclear driving. The damping for these modes arose near the shell. The
lower-order g-modes had acoustic propagation properties in the envelope. As a
result, these modes were stable because of radiative dissipation in the envelope.
Osaki analyzed his results and found that the growth rate for @ mode in the shell
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region was always negative if there was no nuclear burning and the temperature
gradient was subadiabatic. If there was a source of nuclear energy, there was large
radiative dissipation in the region of varying molecular weight for short-wavelength
modes. The longer wavelengths could be driven in this region, but they faced the
radiative dissipation in the envelope. O0Osaki concluded that nuclear-driven
vibrational instability of nonradial g-modes was unlikely, provided that the
temperature gradient was subadiabatic.

It is clear then that the region of varying molecular weight is of prime
interest in this discussion. It is a region that forms immediately after the star
leaves the main sequence, it is the region where nuclear burning begins to take
place, and it is a region where destabilization effects can occur.

Discussions of the semi-convective region began with Schwarzschild and Harm
(1958), who showed that, for stars with masses greater than 10 Mgy, the temperature
gradient became superadiabatic in the zone of varying chemical composition as the
star evolved away from the main sequence. They treated this zone by adjusting the
chemical composition to make the actual temperature gradient equal to the adiabatic
temperature gradient (Schwarzschild criterion). However, in determining the onset of
convection in a zone of varying chemical composition one must take into account the
effect of a gradient of mean molecular weight (u); this changes the criterion for
convective neutrality (Ledoux criterion). There has been considerable discussion as
to which criterion should be used. This problem of convection is, moreover,
intimately related to the stability of g-modes. As we mentioned earlier, while Kato
(1969) argued in favor of g-mode oscillations causing a mixing of the inhomogeneous
region, Gabriel (1969) and Aure (1971) argued that on a global scale such
oscillations would not occur because they would be damped by the outer radiative
region. This problem was reanalyzed by Shibahashi and Osaki (1976a). In the Tlocal
analysis of Kato, the inhomogeneous region was stable against ordinary convection.
In the regions outside this zone there was very strong damping. A straightforward
analysis showed that the conclusions of Gabriel and Aure must hold for g-modes having
Tow 2 and Tow frequency. However, the possibility existed that an eigenmode that was
trapped in the semi-convective region would become overstable if its value of 2 was
high enough. In the analysis by Shibahashi and Osaki of a 15 M0 and 30 MG star, some
modes were found to be unstable. For the 15 M, star, all modes with ¢ < 15 were
stable. For the 30 Mé star, all modes with 2 <8 were stable. The e-folding times

of these oscillations were found to be of the order of 103 to 104 years. Some mixing
could be expected to occur, since the e-folding was shorter than the evolutionary
timescale of the stars. As a general rule, the modes having higher % were more
unstable. Shibahashi and Osaki suggested that some form of overstable convection
exists for stars more massive than 15 Mg in the core hydrogen burning phase, since
molecular and radiative viscosities are not important. Thus, in their opinion, the
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Schwarzschild criterion would be preferable to the Ledoux criterion. But eveything
depends on the particular model in question, and they believe that the correct
physical criterion for convection cannot be expressed uniquely in the form of a local
criterion.

Gabriel et al. (1975) and Scuflaire et al. (1976) have found unstable g-modes
for a 30 Mg star evolving away from the main sequence. Their unstable modes have & =
1 and 2 = 2. The cause of this difference is not known. The question now arises as
to whether this instability is the cause of the variability seen in g Cephei stars.
The periods can be matched easily enough. But the only unstable modes, those trapped
in the M-gradient zone, possess amplitudes which are extremely small at the stellar
surface.

Shibahashi and Osaki (1976b) extended their calculations to the stage at
which a hydrogen burning shell developed in the star. 1In this case, nuclear burning
was taking place inside the semi-convective region, and the stability of such a
situation was examined. Their analysis led them to expect overstability only for low
order g-modes with moderately large &, and indicated that overstability could occur
only in the earliest stages of shell hydrogen burning, if at ail. A few modes for 11
<& <14 were found to be unstable for the 40 M, star. A single mode was unstable
for the 20 Mg star.

Van der Borght (1978) also considered this problem and did a detailed local
analysis of the stability of a semi-convective nuclear burning shell. His
conclusions were that the onset of nuclear reactions in hydrogen burning shells could
be responsible for overstable oscillations which would cause periodic variations in
Tuminosity.

Of course, arguments concerning semi-convection lose much of their impact if
mass 1oss is a factor in the g Cephei stars. The papers by the groups in Italy and
Canada have shown that, irrespective of the way in which semi-convection is treated,
it disappears in models that are losing mass in the early evolutionary stages.
Therefore, if mass loss is a factor, Sreenivasan and Wilson (1978c) conclude that the
g Cephei phenomenon cannot be attributed to the presence of semi-convection.

What can we conclude from the discussion of the semi-convective zone and the
hydrogen shell? Essentially, the idea that these zones are the cause of the
instability looks extremely promising at first glance. The detailed calculations do
not seem to bear this out. While these zones may be destabilizing if one uses a
local analysis, radiative damping appears to remove any hope of actually obtaining an
unstable mode which would fit into the observational framework. Nevertheless,
further calculations on the effects of semi-convection combined with the hydrogen
burning shell are needed before this idea can be conclusively excluded from further
consideration.
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5. ROTATION

The effects of rotation on the vibrational frequencies of a star have been
studied for quite some time and a number of general results are known. Essentially,
there are two main cases of interest to us: If the perturbations are such that the
configuration maintains axial symmetry (i.e., 8f'/h¢ = 0), then the effects of
rotation are always proportional to h (Ledoux and Walraven 1958). A more
interesting case, however, occurs when the perturbations are not axially symmetric.
Here, there are terms that are linear in the angular rotation frequency and, if the
rotation is slow enough, terms involving the square of this frequency can be
neglected.

The best known result for axially symmetric perturbations is the one
concerning the "pseudo-radial oscillation." Here one assumes that the fundamental
mode of pulsation for the homo]ogdus, compressible, uniformly rotating star can be
approximated by holding the relative radial component (§r/r) constant in space,
obtaining the well-known result

o2 = 418 (3y - 4) + §0%(5 - 3y)
(Ledoux and Walraven 1958).

For non-axially symmetric oscillations, we have the result concerning the
splitting of the degeneracy that exists for nonradial oscillations in the nonrotating
case. For slow rotation the vibrational eigenfrequencies become
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where o9 is the frequency of oscillation. The results can be generalized to more
realistic stellar models. A recent paper by Hansen, Cox and Van Horn (1977) has
extended the non-axially symmetric case to include the effects of differential
rotation. They find that (in the inertial frame) '
6 =0, - m(l-C - Cl)ﬂo

where 9 is the rest frequency, the quantity C is an integral which represents the
behavior of the eigenfunctions in the nonrotating star, 90 is the angular velocity of
rotation, and Cy is a term which can account for small effects arising from
differential rotation. This analysis also assumes that the rotation of the star is
sufficiently slow that centrifugal forces can be neglected (92 terms are dropped),
implying implies that the equilibrium and pulsation properties of the nonrotating
model can be used.

N
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In a second paper, Hansen, Cox and Carroll (1978) have computed (using the
Cowling approximation) the vibrational stability of nonradial modes of rotating
stars. The approximations made are the same as in the earlier paper. Their result
is extremely interesting. They find that prograde modes (m < 0), which travel in the
same direction as the star's rotation, are less stable than when rotation is not
occurring. On the other hand, retrograde modes (m > 0), which travel in a direction
opposite to that of rotation, are more stable when rotation is included. The reason
for this difference is not clear at the present time. It is quite possible that this
effect is relevant to the explanation of the 1ine profile variable B stars.

A paper which has provoked considerable discussion since its publication is
that of Papaloizou and Pringle (1978). They addressed the effects of rotation on
nonradial modes, and specifically considered the low frequency g-modes through the
use of a method of successive approximations. Rotation introduces a new set of
modes, known as the toroidal modes, which have frequencies approximately equal to the
rotation frequency (the frequency is zero in the nonrotating case). In fact, to
first order, the eigenvalues of these modes are

2mQ

o= -mA¥ Iy

In this approximation, one assumption is that £ = p' = 0 (i.e., the radial component
of displacement and the Eulerian pressure variation are zero). The next order of
approximation yields

o = -m9+2’—(-§—m—_?—1)-+ 0(93)
Thus,” the actual structure of the star does not affect the eigenvalues until terms of
order 93 are included in the calculations. For slow rotation, the frequencies of the

toroidal modes are essentially independent of the structure of the model.

It is interesting to note a comment made by Ledoux (1958). In analyzing the
results of the compressible model, he stated that for the axially symmetic mode there
is an additional solution which is directly proportional to the angular rotation
frequency. He discarded this solution as spurious and referred to an earlier
analysis (Ledoux 1949). The spurious solution is, in fact, the toroidal solution
obtained by Papaloizou and Pringle. The result Ledoux obtained in 1949 is consistent
with that of Papaloizou and Pringle because the solution is independent of structure
through terms including g2, '

It is not clear what role the toroidal modes play in the pulsation of early
type stars, but Papaloizou and Pringle believed that they may be widely applicable.
For example, they suggested that these modes may be the ones observed in the ZZ Ceti
stars.

Papaloizou and Pringle also carried out a similar analysis of the effects of
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rotation on the asymptotic g-modes. Here the only assumption made in the zero order
approximation was that p' = 0. The calculation yielded (in the rotating frame), for
high 2, with g >> &

= - +
g =-mQ 2 Qco

where % is the eigenfrequency of the nonrotating star. If the rotation frequency
was such that @ << ogp the usual result was obtained:

¢ ~0o_m@
0 m

In both the toroidal and the g-modes, the Eulerian pressure, density and
temperature variations are zero to order Q. To this order, there would be no light
variations seen in the star. Higher order approximations have p' # 0. However, the
problem must be analyzed in more detail. It is still too early to attempt to make an
identification of modes or even periods based on this analysis.

In considering the B Cephei phenomenon, Papaloizou and Pringle suggested that
an instability in these stars could be driven by a particular type of Kelvin-
Helmholtz instability. This instability arises in the region in which the angular
velocity of the rotating material changes rapidly over a short radial distance. The
authors argued that such a shear in the angular momentum profile could be maintained
by evolutionary effects and/or tidal interactions, making possible the driving of the
observed oscillations by this instability. They did not expand on this hypothesis,
so it is difficult to see if this effect could actually occur. Sreenivasan and
Wilson (1978c) used this idea to suggest that the g Cephei stars have lost a
significant amount of rotation in their outer surface layers, have been subject to
the Papaloizou and Pringle Kelvin-Helmholtz instability, and have subsequently
ejected a shell or lost enough mass to form a shell. They suggested that the B
Cephei stars are precursors of the Be shell stars.

Finally, we turn to a theory, proposed by Osaki (1974), that attempts to
explain the g8 Cephei stars in quite a different way. This theory makes use of the
fact that, if a convective region is in rotation, the nonradial modes associated with
this region (known as g minus modes) are complex. In the absence of rotation, these
modes hve an exponential growth rate. If the rotating star has a normal mode of
oscillation whose eigenfrequency matches the oscillatory behavior of the convective
region, the energy of the overstable convective motion may be coupled to the entire
star. QOsaki found that a resonance could take place with the nonradial f-mode. The
period of this mode was close to that observed in the 8 Cephei stars. Another
requirement of the theory was that the rotation period of the convective core be of
the order of a quarter of a day. Osaki concluded that this mechanism could explain

some of the characteristics of the 8 Cephei stars. While the theory has certain
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attractive features, its requirements have to be considered as "ad-hoc" in nature,
for this reason, this theory has never been generally accepted as a viable
explanation of the 8 Cephei stars.

6. THc BEAT PHENOMENON

As we have noted in our introduction, approximately half of the B Cephei
stars exhibit the beat phenomenon. Chandrasekhar and Lebovitz (1962) suggested that
this phenomenon might be due to the effects of rotation on the oscillations that were
the cause of the light and velocity variations. They proposed that if the ratio of
specific heats in the star had a certain value, then a degeneracy (i.e., resonance)
could occur between the fundamental radial mode of oscillation and the nonradial
quadrupole oscillation modes. If rotation were taken into account, one would have
two nonradial modes characterized by slightly different frequencies. These two
frequencies would be the ones observed in the beat 8 Cephei stars.

In a series of papers, Clement (1965a, 1965b, 1966, 1967) examined this
suggestion and found that if one assumed uniform rotation, the mechanism gave a
frequency much too small to match the observations. This mechanism required angular
velocities that were three to four times larger than the observed velocities. But if
a reasonable differential rotation law, such as that given by Stoeckly (1965), was
used, the existence of the two frequencies could indeed be explained by this rotation
effect. Clement found that surface velocities of the order of 40 kms/sec would match
the observations. He concluded that while the particular rotation law chosen had no
special validity, the hypothesis of differential rotation was not inconsistent with
the observations.

Osaki (1971) also suggested a variation of the basic Chandraskhar-Lebovitz
mechanism. The beat phenomenon was interpreted as being due to the interaction of a
2 =2, m = 2 nonradial mode and a radial mode. Deupree (1974a) analyzed models of 8
Me’ 10 Mo’ and 12 Me and found that one could expect a degeneracy to exist between
the radial fundamental and at least one higher nonradial overtone. In comparing the
results with observations, he found that the stars which gave no indication of being
binaries seemed to match the Chandrasekhar-Lebovitz hypothesis quite well. However,
those stars that were binaries could not be explained on this basis (T Sco and 16
Lac).

We also note that Deupree (1974b) carried out an analysis that examined
nonlinear nonradial adiabatic pulsations of a 10 Mg star. Of interest to us here are
his results for two modes with nearly equal periods. Deupree examined a model which
had solid body rotation with a surface equatorial velocity of 5 km/sec. The initial
velocity distribution was taken to resemble either the radial fundamental mode or the
nonradial £ = 2 f-mode. His numerical analysis showed that the two modes maintained
approximately equal amplitudes, which was interpreted as being indicative of the
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existence of an energy interchange between the two modes.

Fitch (1967, 1969) suggested that the beat phenomenon is due to a modulation
of the radial pulsation by a tidal deformation.

An interesting explanation of the double periodicity was proposed by Kato
(1974). Since most of the stars that exhibit double periodicity are spectroscopic
binaries, he wondered if the binary nature of these stars has something to do with
the presence of a double period. We should note that it is not true that all of the
double period variables are binary systems (g Canis Majoris is a good
counterexample). Kato considered a situation where the difference of the frequencies
of the normal modes is close to the frequency of the tidal wave induced by the
secondary. In such a case, a resonance interaction and excitation of oscillations
could be expected. Specifically, Kato considered quadrupole oscillations (2 = 2)
which have slightly different frequencies associated with m = 2, 0, or -2. The
choice of these particular values of m was governed by the tidal deformation effects.
The resonance condition was that the difference between the m = +2 and m = 0
frequencies must equal twice the frequency of the tidal wave. It must be remembered
that if this type of resonance is being considered, and if both of the nonradial
oscillations are stable, then energy cannot be supplied to the system by the tidal
effects of the secondary. However, if one of the two oscillations is excited by some
mechanism, then the other can be amplified by the tidal resonance.

Another type of resonance occurs when two completely unrelated modes of
oscillation happen to have frequencies very close to one another. An example of such
a situation would be the fundamental radial mode and gravity modes having £ = 2. The
theory also requires that the difference in the azimuthal "quantum number" between
the modes be two, this being a consequence of the fact that the tidal wave induced by
the secondary has two components. We know that this coincidence of frequencies takes
place in the late core hydrogen burning phases. Under these circumstances it is
possible for the pulsation modes and the tidal wave to interact. Kato (1974) derived
the above conditions under which energy can be supplied to the pulsation modes from
the tidal wave.

The latter mechanism depends explicitly on the requirement that the g Cephei
stars which exhibit the beat phenomenon be members of binary systems. This is
clearly not the case. Kato recognized this problem but argued that this mechanism
would work even if the mass of the secondary was small, opening up the possibility
that it simply had not been detected. But, as the author noted in his review of this
theory (Kato, 1975), a remaining weakness is that there is no explanation of why the
mechanism works preferentially at any particular evolutionary stage of the star.

In conclusion, it appears that the beat phenomenon seen in many g Cephei
stars remains unexplained.
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7. INSTABILITIES IN THE OUTER ATMOSPHERE

In the preceding sections we have discussed mechanisms that are associated
with the interior of the star.” As has been previously shown, these are not the
instability mechanisms responsible for the variability of the classical Cepheids and
RR Lyrae stars. ‘

The mechanism which drives these stars is the envelope ionization mechanism.
This mechanism has its origin in the following physical concept: If, at some
instant, the luminosity in the interior of the star is decreasing outward, then more
heat is flowing into the bottom of a shell than is flowing out of the top. This
means that the shell is gaining heat. If the phasing of these heat gains is phased
properly, a Carnot heat engine results which can drive an oscillation. It can be
shown that regions in the stellar envelope containing hydrogen and helium in
different stages of ionization can have the proper phasing for driving pulsations.
The theory is completely discussed by Cox (1974). The results, however, are readily
summarized: Oscillations are primarily driven by the Hell ionization zone in the
envelope, with some contribution from hydrogen ionization.

When we turn to the B Cephei stars, we find that this mechanism simply does
not work, probably because the temperatures of the g Cephei stars are too high. The
HeIl ionization zone lies too close to the surface to be very effective. Underhill
(1966) suggested that the ionization zones of heavier elements such as carbon,
nitrogen and oxygen might play a role, but the abundances required for this to work
make it appear unlikely.

One would think that the envelope ionization mechanism had been thoroughly
examined and that 1ittle more would have to be said about it with regard to the B
Cephei stars. This is not the case. There have been a number of recent studies
concerning the outer envelope and the possibility that it could be the region which
harbors the basic destabilization mechanism. In a rather general fashion, Aizenman
and Weigert (1977) noted that the treatment of the Hell jonization region and the
envelope opacities had a strong effect on the results they obtained for their
nonradial analysis. In their paper they made the following comment: "It is evident,
therefore, that a careful treatment of the outer envelope is required.” In fact, a
nonadiabatic treatment is absolutely necessary. We have found that changes in the
manner in which the outer convective zone (He II ionization) is treated, shallow
though it may be, have a decisive effect on the stability results." They found that
this region could make some of the lower g-modes unstable. Stability was also
strongly affected by the the opacity and its thermodynamic derivatives. Essentially,
the point was that the accuracy of quantities such as opacity and its thermodynamic
derivatives, while quite adequate for computing the equilibrium configuration, was
not sufficient for pulsational studies. '

A similar effect had already been noted by Stothers (1976b), who calculated
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the stability of both radial and nonradial modes for stars of 10.9 M0 and 15 Mo. He
used the Carson opacities in his calculations because these opacities exhibit a
"bump” due to the ultimate ionization of the CNO elements at moderate temperatures
and densities. In an earlier paper, Stothers (1976a) found that this bump excited
radial pulsations in high mass main sequence stars. Since this bump was more
prominent at lower densities, he thought that lower mass stars might also lose
stability as they evolved away from the main sequence. To test this hypothesis, he
calculated new equilibrium models using the Carson opacities and found that, if these
opacities were correct, the g Cephei stars would have to be in the core hydrogen
burning phase. Also, his stability results differed very little from results found
by many others using usual opacities. If the observed pulsations were assumed to be
radial oscillations, se of either the Carson or the Cox-Stewart opacities indicated
that the g Cephei stars were first overtone oscillators.

‘Stothers found that none of the radial or nonradial modes were unstable. He
did find a tendency for a beat phenomenon to exist in the sense that the two lowest
nonradial p-modes fo: & = 2 had rather close periods. His conclusion was that semi-
convection did not seem to play a role in destabilizing modes if the Carson opacities
were used. However, Stothers pointed out that future improvements in stellar opacity
calculations might lead to larger CNO bumps in the intermediate mass range, and this
would enhance the « (opacity) mechanism in some of the models.

Stellingwerf (1978) recently put forth an interesting proposal concerning
helium ionization driving in B Cephei stars. Essentially, Stellingwerf suggested
that the actual driving mechanism for the g Cephei stars may be the presence of a
slight "bump" in the opacity which occurs at 1.5 x 10% °k.  He argued that this bump
represents the coincidence of the frequency maximum of the radiation flux and the
opacity edge due to Hell ionization. Since the radiation field at this temperature
is optimum for Hell ionization, an opacity bump can occur even though Hell is nearly
ionized. The driving is caused by the variation of the opacity temperaturé
derivative. In the models which Stellingwerf computed, there was a clear tendency
for driving, but he found no déstabilization of the stars. An examination of this
mechanism throughout this region of the HR diagram, indicated that the instability
increased at lower luminosities, with maximum driving occurring at lower effective
temperatures for Tower luminosities. The locus of maximum driving was shown to run
parallel tc the observed g Cephei variables, but about 0.1 inlog Tags to the red.
Stellingwerf believed that improved models could easi]x remove a shift of this
magnitude.

Periods given by Stellingwerf's models were too long for a radial fundamental
mode. He noted that his mechanism would not work on overtone pulsations, but argued
that the results of Jones and Shobbrook (1974) could reconcile the observations with

his theory. However, the work of Jones and Shobbrook does not explain this
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discrepancy. It almost certainly contains a systematic error since it is based on an
astrometric distance to the Scorpio Centaurus association which has been criticized
on statistical grounds. Stellingwerf also offered the work of Watson (1972) as a
possible substantiation of his theory. This can be questioned, however, on the basis
of Watson's Q values, which are much higher than those found by any more recent
authors. They may have resulted from the manner in which Watson treated the hydrogen
1ine profiles used to drive his abnormally high values of log g. In any case, at the
present time the observations are not consistent with a radial fundamental
oscillation driven by the proposed Stellingwerf mechanism.

Recent work by Cox and Stellingwerf (1979) about the role of radiation
pressure in determining the position of driving regions in the HR diagram is of
interest here. The study was motivated by Hell ionization effects on the opacity
derivatives described above. The authors concluded that, if the g Cephei stars are
indeed destabilized by an envelope mechanism, there would be an instability strip for
these stars which would be more vertical than the Cepheid strip due to radiation
pressure. In fact, the slope of such a strip could even have the same sign as that
of the main sequence. The authors also showed that a period-luminosity relation
would exist in which the increase in the luminosity with increasing period would be
enhanced by radiation pressure.

The important point to note here is that the presence of an envelope
ionization mechanism would indeed give a slope that would be parallel to the main
sequence. However, other mechanisms could also account for this phenomenon. Any
destabilizing mechanisms that were a function of the evolutionary stage of the star
(such as the presence of a shell source) would also result in an instability strip
that would be parallel to the main sequence. The fact that the envelope ionization
mechanism and radiation effects predict a strip with possible slope does not argue in
favor of preferring this mechanism to any other.

We conclude this section by mentioning the "u-mechanism" proposed by Stothers
and Simon. According to this theory, the g Cephei stars are members of close binary
systems in which the original, more massive star, having evolved and expanded during
core hydrogen burning, has reached its Roche Tobe. It then begins to lose mass to
the secondary star. The secondary first accretes the envelope material and then the
helium-rich material from the core. If sufficient helium is available and if the

mass of the secondary exceeds 6 M this layer of helium raises the effective

>
temperature. Radial pulsations can, an fact, be energized by the hydrogen reactions
taking place in the core. The instability results from the fact that the addition of
heavier material on the outside of the star leads to a lower mass concentration. The
central pulsation amplitude is then increased and the nuclear driven pulsations at
the center of the star become sufficient to destabilize the star. The mechanism, if

applied to all g Cephei stars, requires that all of them be binaries.
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This particular theory has been the subject of considerable criticism.
Plavec (1971) found that many of the binaries suggested as possible 8 Cephei
candidates on the basis of this theory would not be satisfactory. The star «
Virginis, which is a g8 Cephei star, does not satisfy the criteria required by this
theory (Smak 1970). Also, the abundances of the g Cephei stars seem completely
normal (Watson 1971). The conclusion is that there is no evidence to indicate that
the Stothers and Simon mechanism actually takes place in the B Cephei stars.

8. SUMMARY

We have presented a short summary of the observed properties of the g Cephei
stars and discussed recent analytical work dealing with them. 1In spite of the
intensive efforts by a number of independent groups, the origin and cause of the 8
Cephei phenomenon remain unknown.

REFERENCES
Aizenman, M.L., Cox, J.P. and Lesh, J.R. 1975a, Ap. J., 197, 399.

Aizenman, M.L., Cox, J.P. and Lesh, J.R. 1975b, Multiple Periodic Variable Stars,
IAU Colloquium no. 29, Budapest.

Aizenman, M.L., Weigert, A. 1977, Astron. Astrophys., 56, 459.
Aure, J.-L. 1971, Astron. Astrophys., 11, 345.
Chandrasekhar, S. and Lebovitz, N.R. 1962, Ap. J., 136, 1105.
Chiosi, C. 1974, Astron. Astrophys., 37, 237.

Clement, M.J. 1965a, Ap. J., 141, 210.

Clement, M.J. 1965b, Ap. J., 141, 1443.

Clement, M.J. 1966, Ap. J., 144, 841.

Clement, M.J. 1967, Ap. J., 150, 589.

Cowling, T.G. 1951, Ap. J., 114, 272.

Cox, J.P.. 1974, Reports on Progress in Physics, 37, 565.

Cox, J.P. and Stellingwerf, R.F. 1979, preprint.

Davey, W.R. 1973, Ap. J., 179, 235.

de Loore, C., De Greve, J.P. and Lamers, H.J.G.L.M. 1977, Astron. Astrophys., 61,
251.

Deupree, R.G. 1974a, Ap. J., 190, 631.

Deupree, R.G. 1974b, Ap. J., 194, 393.

Endal, A.S. and Sofia, S. 1976, Ap. J., 210, 184.

Endal, A.S. and Sofia, S. 1978, Ap. J., 220, 279.

Fitch, W.S. 1967, Ap. J., 148, 481.

Fitch, W.S. 1969, Ap. J., 158, 269.

Forbes, J.E. 1968, Ap. J., 153, 491.

Gabriel, M. 1969, Astron. Astrophys., 1, 321.

Gabriel, M., Noels, A., Scuflaire, R. and Boury, A. 1975, Mem. Soc. Roy. Sci. Liege,



95

6 Serie., 8, 273.
Hansen, C.J., Cox, J.P. and Carroll, B.W. 1978. Ap. J., 226, 210.
Hansen, C.J., Cox, J.P. and Van Horn, H.M. 1977, Ap. J., 217, 151.

Herbison-Evans, D., Hanbury Brown, R., Davis, J. and Allen, L.R. 1971, Mon. Not. R.
Astr. Soc., 151, 161.

Jones, D.H.P. and Shobbrook, R.R. 1974, Mon. Nat. R. Astr. Soc., 166, 649.

Kato, S. 1966, Publ. Astron. Soc. Japan, 18, 374.

Kato, S. 1974, Publ. Astron. Soc. Japan, 26, 341.

Kato, S. 1975, Multiple Periodic Variable Stars, IAU Colloquium no. 29, Budapest.

Kippenhahn, R., Meyer-Hoffmeister, E. and Thomas, H.C. 1970, Astron. Astrophys., 5,
155. '

Ledoux, P. 1949, Mem. Soc. Roy. Sci. Liege 9, Chapter V, Section 4.
Ledoux, P. and Walraven, Th. 1958, Handb. Phys., (Berlin: Springer), 51, 353
Lesh, J.R. and Aizenman, M.L. 1973, Astron. Astrophys., 22, 229.

Lesh, J.R. and Aizenman, M.L. 1978, Ann. Rev. Astron. Astrophys., 16, 215.
Osaki, Y. 1971, Publ. Astron. Soc. Japan, 23, 485.

Osaki, Y. 1974, Ap. J., 189, 469.

Osaki, Y. 1975, Publ. Astron. Soc. Japan, 27, 237.

Osaki, Y. 1976, Publ. Astron. Soc. Japan, 28, 105.

Papaloizou, J. and Pringle, J.E. 1978, Mon. Nat. R. Astr. Soc., 182, 423.
Plavec, M. 1971, PASP, 83, 144,

Schmalberger, D.C. 1960, Ap. J., 132, 591.

Schwarzschild, M. and Harm, R. 1958, Ap. J., 128, 348.

Scuflaire, R.; Noels, A., Gabriel, M. and Boury, A. 1976, Astrophys. Space Science,
39, 463.

Shibahashi, H. and Osaki, Y. 1976a, Publ. Astron. Soc. Japan, 28, 199.
Shibahashi, H. and Osaki, Y. 1976b, Publ. Astron. Soc. Japan, 28, 533.

Smak, J.I. 1970, Acta Astron., 20, 75.

Snow, T.P. and Morton, D.C. 1976, Ap. J. Suppl., 32, 429.

Sreenivasan, S.R. and Wilson, W.J.F. 1978a, Astrophys. and Space Science, 53, 193.
Sreenivasan, S.R. and Wilson, W.J.F. 1978b, Astron. Astrophys., 70, 755.

Sreenivasan, S.R. and Wilson, W.J.F. 1978c, NASA/Goddard and Los Alamos Conference
on Stellar Pulsation Instabilities.

Stellingwerf, R.F. 1978, A. J., 83, 1184,

Stoeckly, R. 1965, Ap. J., 142, 208.

Stothers, R. 1976a, Ap. J., 204, 853.

Underhill, A. 1966, The Early Type Stars. Dordrecht.
Van der Borght, J. 1978, personal communication.
Watson, R.D. 1971, Ap. J., 169, 343.

Watson, R.D. 1972, Ap. J. Suppl., 24, 167.



MULTIPERIODICITY AND NONRADIAL OSCILLATIONS OF
THE g8 CEPHEI STAR 12 LACERTAE

M. Jerzykiewicz
Wroclaw University Observatory
Poland

1. INTRODUCTION

Over a quarter of a century ago Ledoux (1951) made an attempt to explain the
complex radial-velocity and line-profile variations of g Canis Majoris, a classical
"beat" g Cephei star, in terms of the first order rotational splitting of an ¢ = 2
nonradial oscillation mode. He identified the Tonger of the two periods observed in
this star with the m = 2 retrograde traveling wave and the shorter one with the m = 0
stationary oscillation. However, this model was not entirely successful. Although
it accounted for the close frequency beating and the 1ine profile variations, the
phase relation was wrong in that the computed lines turned out to be broadest on the
ascending branch of the corresponding velocity curve, and not on the descending
branch as observed (the m = -2 prograde wave yielded the correct phase relation, but
associated the broadening with the shorter period, contrary to what is observed.)

In spite of this difficulty, Osaki (1971) further investigated the
possibility that the "beat" phenomenon and the line profile variations in the
multiperiodic g Cephei stars might be due to 2 =2 oscillations in the presence of
slow rotation. He confirmed Ledoux's result that a superposition of a stationary
oscillation upon a traveling wave produced modulation of the velocity amplitude in
the "beat" period, with the line profile variation caused mainly by the traveling
wave. O0Osaki computed rotational velocities for several B Cephei variables from the
observed "beat" periods under the assumption that the £ = 2, m = -2 and m = 0
oscillations were both excited. He found them to be consistent with the measured v
sin i values, provided that the stars were seen nearly equator-on. However, there
was an exception: for g Canis Majoris, the computed v was 9 km/sec, while the
observed v sin i has been found to be 28 km/sec {McNamara and Hansen 1961), a
difference which is difficult to explain.

Thus, the evidence that multiperiodic g Cephei stars are undergoing nonradial
oscillations has been somewhat circumstantial. A proof that one of these variables,
12 Lacertae, is indeed a nonradial oscillator was recently provided by Jerzykiewicz
(1978) through a frequency analysis of the star's light and radial velocity
variations. The present paper summarizes work which has led to two additional



97

conclusions: a demonstration that at least two modes of different & are
simultaneously excited in 12 Lacertae, and the identification of one of them as a
rotationally split & = 3 oscillation.

2. FREQUENCY ANALYSIS OF THE LIGHT VARIATION

12 Lacertae shows cyclic variations in brightness, radial velocity and line
profiles. The average cycle-length is equal to about #119309. The amplitude varies
smoothly from one cycle to another. In each cycle the 1ight maximum occurs near the
middle of the descending branch of the velocity curve. At the same phase, the
spectral lines are most diffuse, while on the ascending branch they are sharpest.

The first modern frequency analysis of the light variation of 12 Lacertae was
carried out by Barning (1963). He used blue magnitude observations secured by a
number of workers in the course of the international campaign organized in 1956 by de
Jager (1963). Barning was able to represent the 1light variation of the star as a sum
of four sine-wave components with periods of @193089, ﬂ197358, @182127, and 2585
(the first two of these were already known). The relative amplitudes amounted to
1.000, 0.337, 0.315, and 0.319, respectively. The first three components accounted
for the cycle-to-cycle amplitude variation, while the last one arose from long-term
changes in the mean brightness of the star. However, the standard deviation computed
after the data were whitened with the four components was approximately @702, a value
considerably larger than the mean error of a single observation, estimated by de
Jager to be between 0005 and OP010. From this, Barning postulated the presence of
other periodicities or, in addition to the regular pattern, erratic changes in the
brightness of 12 Lacertae.

In order to determine which of these two possibilities is correct, the 1956
international campaign observations have been re-analyzed in the present work.
Several data of poor quality were eliminated from the 1956 observations, and yellow
rather than blue magnitudes were used for this analysis as they are less subject to
the effects of systematic errors.. In all, 909 observations taken con 25 nights over
an interval of 759 were selected. The data were reduced to a common zero point by
adding carefully determined nightly corrections. From an inspection of this
material, the mean error of a single measurement was estimated to be between CY005
and 0M010.

The results of the analysis, schematically shown in Figure 1, can be
summarized as follows. At least six sine-wave components are present in the light
variation of 12 Lacertae, so that the star's frequency spectrum is in fact much more
complex than has been hitherto realized. Frequencies of the three strongest
components are very neér]y identical to those found by Barning (1963), but the
remaining three frequencies represent new findings. Simple relationships were also
found to exist between some of the frequencies. For example, the primary, the
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fourth, and the tertiary frequencies (wl, wg, and wgz, respectively) form an
equidistant triplet. Moreover, the fifth component frequency, wg, turns out to be
equal to w; + wg. No obvious relations were found between w; or wg and the
corresponding remaining frequencies.

A comparison of the six-term synthetic light-curve with observations showed a
satisfactory agreement for all nights. The sample displayed in Figure 2 includes the
first night, JD 2435683, and also the last one, JD 2435758. On JD 2435708 one can
see a skew light curve, with a steeper descending branch adequately represented by
the solution. The largest amplitude of the light variation occurred on JD 2435710,
while on JD 2435757 the amplitude was the smallest observed in 1956. The nights JD
2435722 and JD 2435752 are shown as examples of a poor fit and of a rather large
scatter, respectively.

The standard deviation of the six-term solution is equal to 070088, falling
within the range of the mean error of a single observation as estimated above. Thus,
short-period components fainter than about OP0030, which might still be present in
the data, would be very difficult to separate from the periodogram noise. It should
also be noted that the present analysis could not yield any periods Tonger than about
5 due to the nightly data corrections mentioned above.

3. THE RADIAL VELOCITY VARIATION

The most extensive spectrographic investigation of 12 Lacertae was carried
out by Struve (1951). On twenty nights during the interval from July 16 to September
24, 1950 he secured 258 spectrograms of the star. Nearly one-half of these were
obtained with the coudé spectrograph of the 100-inch Mount Wilson reflector at a
dispersion of 10 A/mm, and over sixty with the Mills three-prism spectrograph of the
Lick Observatory at about the same dispersion but with lower resolving power. The
remaining spectrograms were taken at a dispersion of about 50 A/mm with Cassegrain
instruments of the Mount Wilson and McDonald Observatories. All spectrograms were
measured by Struve and radial velocities were derived.

In order to determine whether the sine-wave components found in the Tight
variation of 12 Lacertae have their counterparts in the star's radidl velocities, a
six-term trigonometric polynomial, with the same frequencies as obtained in the
preceding paragraphs, was fitted to the above-mentioned data by the method of least
squares. The velocity amplitudes resulting from the solution are shown as a function
of frequency in Figure 1 (bottom) for ease of comparison.

The five strongest components present in the light variation can be seen to
occur in the radial velocities with amplitudes considerably greater than their mean
errors. However, the faintest component has an amplitude of only twice the mean
error, making its presence in the data questionable. As with the Tight variation,
the primary component is about three times stronger than the secondary one. However,
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Figure 1. The frequency spectra of 12 Lacertae determined from the 1956
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velocity observations of Struve (1951) (bottom). The frequencies are numbered in
order of decreasing Tight amplitude.
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the second component in the velocity variation is somewhat stronger than the fourth
with the fourth somewhat stronger than the tertiary. This 1is unlike the
relationships exhibited in the 1ight variation, wherein the secondary and tertiary
components were roughly equal, with the fourth being much fainter. These differences
indicate that the velocity to light amplitude ratios are, perhaps, not the same for
all components. However, the differences may have been caused by a small change of
the frequency spectrum of 12 Lacertae between 1950 and 1956. They might also be due
to the fact that the observed radial velocities are not properly averaged over the
stellar disc because of the difficulties of measuring the wavelength shifts from
spectral 1ines with asymmetric and variable 1ine profiles. Also, the observed
differences between the velocity and light cycles may have resulted from a
combination of the above effects.

The standard deviation of the six-term radial velocity solution equaled 5.1
km/sec. This value resulted from observational errors, including the unknown
systematic effects caused by Struve's (1951) use of four different spectrographs, and
from any radial velocity changes not taken into account in the solution, e.g.,
possible long-term velocity variations. Unfortunately, it does not seem possible to
determine the relative importance of these factors. However, the amplitude of any
unevaluated velocity variation is probably not greater than 2 km/sec.

4, IDENTIFICATION OF THE FREQUENCIES: THE TRIPLET

A natural explanation for the wj, wg, w3 equidistant triplet is that it
corresponds to first order rotational splitting of an £ € 3 mode with three values of
m forming an arithmetic progression. As Dziembowski (1977) has shown, the ¢ > 3
oscillations produce little 1ight and radial velocity variation because of averaging
over the stellar disc, and therefore can be excluded. Even so, for ¢ < 3 fourteen
possible rationales exist for the wy, wyg, w3 triplet. Fortunately, the 1ine profile
observations of 12 Lacertae can be used to 1imit the number of possibilities. Osaki
(1971) found that a phase relation between the radial velocity and line width
variations consistent with the observations (cf. § 1) could be obtained if the
dominant oscillation in 12 Lacertae was prograde. Osaki favoredang =2, m= -2
interpretation, but offered no proof of the uniqueness of this solution.

It can be demonstrated that, out of the fourteen above-mentioned
possibilities, the strongest component in the 1ight and radial velocity variations of
12 Lacertae corresponds to a prograde wave only in the case of the ¢ = 3 mode for
which all m < 0 oscillations are excited and al1 mz O ones are quiescent. In the
remaining thirteen cases, particularly those with ¢ = 2, there is either no profile
variation associated with the w; component (if'this component is identified with the
stationary oscillation, m = 0), or the phase relation between the radial velocity and
line profile variations is wrong (a retrogrede wave, m > 0). Consequently, the
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frequencies wy, wg, and wg should be identified with ¢ = 3, m = -1, -2, and -3,
respectively.

This identification of the wy, wg, w3z frequencies rests on the assumption
that the w; component, the strongest one in both 1ight and radial velocity frequency
spectra (cf. 88 2 and 3), also dominates the line profile variation. This assumption
is strongly supported by the observations. In fact, should the 1ine profiles vary
mainly with one of the other frequencies, including wy, their much smaller radial
velocity amplitudes (cf. Figure 1) would cause the phases of, for example, the most
diffuse lines to slide all over the velocity curve. This is not borne out by the
observations, which consistently show these phases to be near the middle of the
descending branch.

Given the above identification of the triplet frequencies, the angular
velocity of rotation (R) of 12 Lacertae can be obtained from the observed values of
the frequencies using Ledoux's (1951) first order rotational splitting formula. It
turns out to be 2 = 1.085 rad/d, if the splitting coefficient C is assumed to be
equal to 0.1. Some justification for this choice is furnished by the work of Hansen,
Cox and Van Horn (1977), who computed C for massive zero age main sequence models.
In the case of a 10 M0 model and & = 2, they obtained C = 0.104 for the p; mode and C
= 0.067 for the py mode.' For the evolved models, which are more nearly applicable to
the g8 Cephei variables, and for 2 # 2, these coefficients can be expected to be
somewhat different, making the above-mentioned value of @ uncertain. Despite the
uncertainties, however, and using the radius of 8.8 Ry derived from the star's
position in the H-R diagram (Sterken and Jerzykiewicz 1980), one gets v = 77 km/sec
for the equatorial velocity of rotation of 12 Lacertae. Then, from v sin i = 29
km/sec, as observed by McNamara and Hansen (1961), it follows that the aspect angTe i
= 22°. However, since McNamara and Hansen obtained v sin i from measurements taken
at the sharp-line phases, i = 22° is probably a lower limit. In any case, it can be
concluded that 12 Lacertae is seen more nearly pole-on than equator-on. Finally, it
should be pointed out that, with @ = 1.085 rad/d, the ratio of the oscillation
frequency to the angular velocity of rotation is approximately 30. Thus, the
rotation is indeed slow, justifying the assumption of first order splitting.

5. THE REMAINING FREQUENCIES
The position of the wy, frequency in the frequency spectra described in 5§ 2

and 3 indicates that it must correspond to a different harmonic mode than the wy, w4s
wg triplet. It can therefore be due to either a radial mode (2 =0), or to a
nonradial mode with ¢ € 2, and any value of m, jeee, Im] €1 forpg=1, or |m| <2
for & = 2.

One possibility, viz., & =1, m = -1, might bring some order into an
otherwise rather confused picture. If this identification was true, all waves
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traveling in the direction of the star's rotation and corresponding to odd & *3
would be excited. Why 2 = 2, m < 0 oscillations, among others, should remain
quiescent is not at all clear, however. Perhaps the 2 = 2, m < 0 traveling waves
are, in fact, excited in 12 Lacertae, but the small value of the aspect angle (cf. §
4) reduces the corresponding component amplitudes, rendering their detection
difficult. '

The identification of the two faintest components is also somewhat uncertain.
The fact that the combination frequency wg = w; + wy was found in the 1ight and
radial velocity variations of 12 lLacertae, rather than the usual 24y, ©p + wy, etc.,
may be due to a geometric effect of the aspect angle or to an accidental resonance
between w{ + wg and an eigenfrequency. If the former effect is responsible for the
relationship, a determination of the aspect angle could be attempted. However,
nonlinear calculations to at least the second order in the displacement would be
necessary to evaluate the latter possibility.

The faintest component frequency, ¥g, probably corresponds to an overtone
oscillation. Unfortunately, this identification cannot be entirely conclusive
because, at this time, the only extensive calculations of nonradial eigenfrequencies
for evolved massive models (Baker and Dziembowski 1969) do not include £ = 3 modes.

6. SUMMARY

12 Lacertae undergoes nonradial oscillations in the presence of slow
rotation. Moreover, oscillations of two different harmonic degrees, %, are seen to
be simultaneously excited in this star. These conclusions were derived solely from
the frequency spectra of the light and radial velocity variations. A definite
identification of the wy, Wy, and w3 frequencies in terms of spherical harmonics has
been made by making use of the line profile observations. These frequencies
correspond to £ =3, m= -1, -2, and -3 oscillations, respectively. Therefore, by
identifying the wp frequency with an 2 =1, m = -1 harmonic mode, which is one of
several possibilities, all prograde oscillations with odd £ ¢ 3 are found to be
excited in 12 Lacertae.

Furthermore, from the value of the rotational splitting in the wy, wg, w3
triplet, and the observed projected velocity of rotation, the aspect angle is
estimated to be 22°. Although this result is somewhat uncertain, primarily because
accurate values of the splitting coefficient C for massive evolved stars are not
available, it indicates that 12 Lacertae is seen more nearly pole-on than equator-on.

Inview of these results, a simple solution to the discrepancies that have
been encountered in the case of g Canis Majoris (cf. § 1) can be suggested: the two
short periods (P and P, in the notation of Struve 1950) correspond to oscillation
modes of different 2. Since it is the period of the 1ine profile variations, and
because of the observed phase relation with the corresponding radial velocity curve,
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P> should be identified with a prograde wave. However, the £ = 2, m = -2 mode, as
suggested by Osaki (1971), is only one of several possibilities. In a recent study
of the light and radial velocity variations of 8 Canis Majoris, Shobbrook (1973)
found a faint short period component in addition to Py and Pp; this component, if
confirmed, may help to limit the number of these possibilities.

The Tack of detailed calculations for nonradial oscillations of evolved
massive stars has hampered the explicitness of much of the above discussion. It is
also because of this circumstance that no attempt was made here to determine the
classification of the vertical properties of the modes which may correspond to the
frequencies observed in 12 Lacertae.

* * * * *

The author gratefully acknowledges financial support from the University of
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1. INTRODUCTION

As a result of a photoelectric search program carried out among bright early
B stars (Jerzykiewicz and Sterken 1977), and a subsequent detailed photometric and
spectrographic investigation (Jerzykiewicz and Sterken 1978), four new B Cephei
variables have been found. A list of B Cephei stars has also been compiled
(Jerzykiewicz and Sterken 1978), including variables discovered recently by Balona
(1977); Haug (1977); and Jakate (1978a). Using the published uvby and 8 photometry,
the positions of these stars in the c, - B8 and the log P - g planes, it was
demonstrated that the g Cephei variables fall within a well defined instability strip
and that they do not obey a unique period-luminosity relation.

In g8 2 and 3 of the present paper the main results of Jerzykiewicz and
Sterken (1978) are briefly reviewed. The g Cephei instability strip in the log Ta -
Mpo1 diagram is defined in § 4. A comparison with the theoretical evolutionary
tracks is made in § 5. Finally, in 8 6 the earlier conclusion of Jerzykiewicz and
Sterken (1978) concerning the period-luminosity relation is confirmed.

2. THE NEW g CEPHEI VARIABLES

A summary of observational results on the four new B Cephei variables is
given in Table 1. The stars are arranged in order of increasing primary photometric
period. The MK classification in column four is from Hiltner, Garrison and Schild
(1969).

The results listed in columns five and six are based on the photometric
observations obtained on 15 nights during the interval from 27 November to 15
December 1977 at the European Southern Observatory, Cerro La Silla, Chile. The
instrumentation used was the simultaneous four-channel uvby spectrograph-photometer,
attached to the Danish national 50 cm reflecting telescope. The spectrographic
observations, the results of which are summarized in the last two columns of Table 1,
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Table 1. Observed Properties of the New B Cephei Stars
Primary 2K
HD HR m, MK Period u Range Lines km/s
68324 3213 5™ B1 1vn 09108 + 0%005 0M005 - 0M018  very 20
broad
64722 3088 5.7 B1.51v 0.1154 + 0.0001 0.014 - 0.035 very ?
broad
63949 3058 5.8 Bl1.5 1V 0.1182 + 0.0001 0.008 - 0.015 ? ?
64365 3078 B2 IV 0.1927 + 0.0001 0.010 - 0.040 sharp 9.5

6.0
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were taken on two nights, 27/28 and 28/29 November 1977, at the coudé focus of the
ESO 152 cm telescope. The dispersion was 12.3 A/mm. Baked Kodak I1a0 plates were
used. The spectrograms were measured with the Grant spectrocomparator of the Max
Planck Institut fur Astrophysik in Heidelberg.

The u observations of HD 68324 are shown in Figure 1 as a function of
heliocentric Julian day. The 1light amplitude is variable from night to night. The
primary period can be estimated as od108 + 090005. The change of the mean
brightness, seen on JD 2443482, may be due to light-variability of the comparison
star, HD 68243,

The spectrum of HD 68324 is characterized by very broad H and Hel 1ines.
Campbell and Moore (1928) noted the broadness of the lines and the probable
variability in velocity. In Figure 2 the radial velocities of HD 68324 on JD
2443476, determined from the hydrogen 1lines HY to Hjg, are plotted against
heliocentric Julian day. Although the scatter is rather large, variation on a time
scale close to the primary photometric period can be seen clearly. The 2K range can
be estimated at 20 km/s ‘and the y-velocity equals 38 km/s. The CalIl K line yields a
mean velocity of 12.9 + 1.0 km/s.

The b observations of HD 64722, the second variable in Table 1, are displayed
as a function of heliocentric Julian day in Figure 3. The least-squares frequency
analysis of these data gave 091154 + odooo1 (estimated mean error) for the primary
period of the 1ight variation. A unique figure could not be obtained for the
secondary period, however. Two values, which are separated from each other by one
cycle per sidereal day, fit the data equally well: 081168 + 090002 and 091323 +
#l0002. More observations are needed to decide which of these periods is
the correct one. It should also be kept in mind that more than two sine-wave
components may be present in the variation of HD 64722.

Figure 4 gives the radial velocities of the star on JD 2443475, determined
from the mean of the hydrogen Tines Hjg, Hg, Hc, H, and Hg. The uncertainty of these

values is rather high, approximately 4 km/s, because the broadness of the lines
renders them difficult to measure. Even so, the data shown in Figure 4 indicate that
the radial velocity of HD 64722 varies on a short time scale. Unfortunately, these
observations were taken on the night when the star's 1ight variation was at a minimum
(cf., Figure 3) and therefore it should not be surprising that no well-defined radial
velocity curve can be seen.

The third star in Table 1, HD 63949, was found by Jerzykiewicz and Sterken
(1978) to be constant inb Tight to within 0010, and was therefore used as one of
the comparison stars for HD 64365. As it turned out, however, the star is certainly
variable on a time scale of about three hours, with the maximum u range equal to
0%015. The u observations of HD 63949 are shown in Figure 5, plotted against
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heliocentric Julian day. The variation can be seen clearly on all nights. The range
is not constant; it seems to reach a minimum of OF008 on JD 2443490,

From all u observations we determined the primary period of the light
variation of HD 63949 to be 0@1182 + 0d0001. No attempt has been made, however, to
derive the secondary period, since the data are probably not extensive enough for
this purpose.

The last star in Table 1, HD 64365, shows a spectacular amplitude modulation,
This can be seen from Figure 6, where the u observations of the star are displayed as
a function of heliocentric Julian day. The least-squares frequency analysis of these
data yielded #1927 + looo1 as the best value of the primary period. The secondary
period is equal to either 091680 + 090003 or 092019 + 090003. Clearly, more
observations are needed before any extensive frequency analysis of the star's 1light
variation can be undertaken.

The spectrum of HD 64365 shows a large number of well-defined sharp lines.
The radial velocities of the star obtained from spectrograms taken on JD 2443476 are
displayed in Figure 7 as a function of phase of the primary photometric period.
Phase zero was arbitrarily set at JD 2443476.0. All velocities shown are mean values
from about 30 lines of Hel, NII, CII, SiIII, OII and H, except one value (open circle
in Figure 7), which was determined from a broken plate on which not all of the lines
could be measured.

As can be seen from Figure 7, the velocity curve of HD 64365 on JD 2443476 is
very nearly sinusoidal in shape. The 2K range is 9.5 km/s, and the y-velocity is
equal to about 31 km/s. The Call K line yields the mean velocity of 21.1 + 0.7 km/s.

Since no photometry of HD 64365 was obtained on JD 2443476, little can be
said about phase relation between the 1ight and radial velocity variations of the
star. The vertical arrow in Figure 7 indicates the phase of maximum 1ight, computed
according to the following elements:

Max. u light = J, 2443480.713 + 0%1027 E, (1)

which best fit the observed u light maxima. The horizontal bar shows an estimated
uncertainty of this computed phase. 4

Thus, all these new B Cephei stars display variable 1ight ranges. Three of
them exhibit primary periods which are considerably shorter than any of the hitherto

known objects of this type. However, they are "normal" as far as their MK type is
concerned. The two of them for which we have high dispersion spectra show very broad

lines, while HD 64365 is a’sharp-line star.

3. THE Co - B AND log P - g DIAGRAMS
Jerzykiewicz and Sterken (1978) presented a list of B Cephei stars, compiled
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according to the following criteria: (1) convincing evidence of light variability
within a period shorter than nine hours, and (2) spectral type B3 or earlier, with
supergiants and emission line objects excluded. The list is reproduced here in Table
2. One variable, HD 61068, which was discovered recently by Lesh and Wesselius
(1978) from satellite UV observations, has been added. The stars are arranged in
order of increasing right ascension. The MK classification in column five is from
Lesh (1968); or Hiltner, Garrison and Schild (1969) for the Catalogue of Bright Stars
objects; from Feast (1958) for NGC 3293 variables; from Schild (1970) for NGC 4755-F;
and from Garrison, Hiltner and Schild (1977) for HD 80383. The sixth column of Table
2 provides the primary photometric period P according to the most recent work, which

is referenced in the last column.

The g Cephei stars are plotted in Figure 8 in the ¢, - 8 plane; the four NGC
3293 variables are excluded, as uvby photometry is not available. In addition, 25
early-type stars found to be non-variable by Lynds (1959), Jerzykiewicz
(unpublished), and Jerzykiewicz and Sterken (1977, 1978) are shown. The c, indices
were computed by means of the iterative procedure of Crawford (Crawford and Barnes
1974). A1l published uvby data were taken into account; if two or more sets of uvby
colors were available for the same star, a straight mean of the corresponding c,
indices was computed. Likewise, all available g values were used in forming a mean
for each star. In a number of cases the data used by Jerzykiewicz and Sterken (1978)
were supplemented by g values of Deutschman, Davis and Schild (1976). No corrections
for duplicity were applied to either c, or 8, except for g Crucis (see below).

As can be seen from Figure 8, the B Cephei stars occupy a well-defined strip
in the ¢, - 8 plane, approximately parallel to the zero age main sequence. The ridge
1ine of the strip runs about 07025 in B above the zero age relation of Crawford
(1978). Except for V986 Ophiuchi, the 8 Cephei stars fall within the interval -0007
< ¢, < +0M13.  The Tow Tuminosity end of the strip seems to be well-defined.
However, the position of the high Tuminosity end depends on whether V986 Ophiuchi is
considered to be the same type of object as the remaining ones.

The boundaries of the g Cephei strip in the interval -0707 < Cq < +0M13 are
shown in Figure 8 by broken lines. The upper boundary is defined, in order of
decreasing luminosity, by 19 Monocerotis and o Lupi, and the lower one by HD 63949 =
HR 3058, HD 80383, and 16 Lacertae. The overall width of the strip, measured in 8
from the lower to the upper boundary, is 00025.

Perhaps the most striking feature of Figure 8 is that only seven constant
stars are contained within the g Cephei strip, as compared to the 33 8 Cephei
variables. Moreover, in the interval -0T07 < Cq < +0M13, where most of these
variables are located, the constant stars which 1ie inside the strip fall close to
the strip's boundaries. The only exception is HD 74273 = HR 3453. However, the
range of published B values for this star (Lindemann and Hauck 1973; Deutschman,
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Davis and Schild 1976; and Shobbrook 1978a) is nearly ("030, making the mean rather
uncertain. The conclusion, as previously stated by Jerzykiewicz and Sterken (1978),
is that, in the interval -0107 < ¢
separated from the g Cephei variables. In other words, the g Cephei strip may well

< +0™13, the constant stars are probably

represent an instability region in the sense that all stars which fall within it
become g Cephei variables.

The fact that a number of stars plotted in Figure 8 are double does not
change the above conclusions. In the c, - B plane, aduplicity correction moves a
point along a line very nearly parallel to the ridge line of the g Cephei strip (cf.,
the arrow in Figure 8). Moreover, of all variables located close to either end of
the -0707 < ¢, < +0713 interval, only g Crucis is double. A duplicity correction was
applied to this star, using the value computed by Shobbrook (1978a).

The g indices of the g Cephei stars are plotted in Figure 9 against log P,
where P is the primary photometric period. The filled circle farthest to the right
corresponds to B8 Centauri and the open circle indicates where this star would fall if
the radial velocity period determined by Lomb (1975) was used instead of Balona's
(1977) photometric period. Stars which were discovered to be g Cephei-variables by
Jerzykiewicz and Sterken (1978) (cf. Table 1) are represented by filled triangles.

The diagram shows a considerable amount of scatter. As can be easily seen, a
number of points would deviate by more than OP010 from any straight line fit.
Moreover, the difference in 8 between stars occupying the extremes of the period
range is probably insignificant, especially if V986 Ophiuchi is disregarded. From
these facts Jerzykiewicz. and Sterken (1978) concluded that the concept of a unique
period-luminosity relation appears to be inapplicable to the g Cephei variables, and
that it should be abandoned.

4. THE g CEPHEI STARS IN THE THEORETICAL H-R DIAGRAM

In order to get the effective temperature scale for the c, colors, a linear
relation was derived between ¢, and 6, = 5040/T, from stars for which Code et al.
(1976) have determined empirical effective temperatures. Stars with T, > 12200K
were used, but supergiants were omitted. The c, indices were computed from the uvby
colors taken out of the Lindemann and Hauck (1973) catalogue. Duplicity corrections
as determined by Davis and Shobbrook (1976) were applied to the c, values of 8
Crucis, a Virginis, and § Scorpii. Assuming that the Co indices are error-free and
assigning weights to A according to the mean errors given by Code et al. (1976), the

following equation was obtained by means of the least-squares method:

6, = 0.282 ¢  + 0.203, (2)
+0.014 +0.004

where the numbers underneath the coefficients indicate their mean errors. Equation
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(2) agrees well with the mean relation between Co and 9, derived by Davis and
Shobbrook (1976).

From Equation (2) and the mean c, indices effective temperatures of the g
Cephei and constant stars were computed; however, for 8 Canis Majoris, 8 Crucis, a
Virginis and ¢ Centauri, T, values were taken directly from Code et al. (1976).

The visual absolute magnitudes M, were derived from the mean g indices using
the calibration of Crawford (1978). Finally, the bolometric absolute magnitudes were
computed as My, = M, + BC, with the bolometric corrections obtained from fhe above-
mentioned effective temperatures and the empirical calibration, BC versus T,, of Code
et al. (1976).

The g Cephei variables (filled circles) and constant stars (open circles) are
plotted in the theoretical H-R diagram in Figure 10. Also shown are Crawford's
(1978) zero age main sequence, the ridge 1ine of the g Cephei instability strip
(rightmost solid 1ine), and its boundaries (broken lines), all transformed from
Figure 8. V986 Ophiuchi (Tog T, = 4.506 and M., = -9"25) is not shown.

As can be seen from Figure 10, the g Cephei instability strip in the
theoretical H-R diagram extends over Mp,; from -570 to -7U'5. Only V986 Ophiuchi has
lTuminosity considerably exceeding the latter limit. The ridge line of the strip runs
approximately 25 above Crawford's zero age main sequence. The width of the strip in
log Tq is approximately 0.055.

Thus, the extent and location of the g Cephei phenomenon in the temperature-
lTuminosity plane seems to be quite well defined. This is not a new conclusion, of
course. However, this definition may be more precise, as it is based on more numerous
samples of 8 Cephei stars and on more recent temperature and luminosity calibrations
than those of Percy (1970); Watson (1972); Lesh and Aizenman (1973a); and Balona and
Feast (1975). '

5. THE EVOLUTIONARY STATUS OF THE g8 CEPHEI STARS

Watson (1972) and Lesh and Aizenman (1973a), using evolutionary tracks
computed with Cox-Steward opacities, found that the 8 Cephei variables occupy a
region in the H-R diagram traversed three times by a 10 to 15 Mg star in its early
evolution: once in the core hydrogen-burning phase, once in the secondary
contraction phase, and once in the shell hydrogen-burning phase. Although, Lesh and
Aizenman concluded that the g8 Cephei stars are in one of the two later stages of
evolution, Watson maintained that most 8 Cephei stars are core hydrogen-burning
objects. This difference of opinion has been caused by the fact that Lesh and
Aizenman found many non-variable B stars in their g8 Cephei region, whereas Watson
believed that 8 Cephei variables and constant stars separate in the H-R diagram.
Watson's work was criticized by Lesh and Aizenman (1973b) on the grounds that, of his
28 non-variable stars, only four fall in the same spectral-type range as the 8 Cephei
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variables. However, the conclusion of Lesh and Aizenman (1973a) is also
questionable, because their non-variable stars were objects which have never been
checked for 1ight variability. The result that constant stars do avoid the g Cephei
strip in the H-R diagram (cf., Jerzykiewicz and Sterken 1978 and also § 3 and Figure
10 of the present paper) appears to be the first one of this kind based on an
extensive sample of stars that have been carefully investigated photometrically for
variability. A similar conclusion has been reached recently by Jakate (1978b), who
investigated the position of a number of g Cephei and constant stars in the [u - b] -
g plane. However, Jakate's results with respect to the extent and position of the
instability strip (cf. Jakate and Sterken 1979) differ from those of Jerzykiewicz and
Sterken (1978).

The determiﬁation of the evolutionary status of the B Cephei stars is further
complicated by the circumstance that the position of the B Cephei strip in relation
to the theoretical evolutionary tracks depends on the opacities used, as has been
pointed out by Lesh and Aizenman (1973a), Stothers (1976), and others. Figure 10
illustrates the evolutionary tracks of 10, 12, 14 and 16 Mg models with an initial
chemical composition of X = 0.70 and Z = 0.03, computed by de Loore et al. (1978). A
modification of Paczynski's (1970) stellar evolution program, using Cox-Steward
opacity tables, was employed. The leftmost open triangle and open square represent
the zero age models of Stothers (1976) for M equal to 10.9 and 15 Mgs respectively.
In these models Carson's radiative opacities were used and the composition was X =
0.73 and Z = 0.02. The rightmost open symbols indicate the evolution of the
corresponding models to a point near the end of the core hydrogen-burning phase (X, =
0.064). »

As can be seen from Figure 10, it is not possible to infer which of the three
above-mentioned evolutionary phases most B Cephei stars are currently in, assuming
the adequate representation of early B star evolution by the tracks of de Loore et
al. (1978). If, on the other hand, Stother's (1976) evolutionary tracks are more
nearly appropriate, a number of B Cephei variables would be found in the core
hydrogen-burning phase. In both these cases, however, the zero age models fall
considerably below the observed zero age main sequence of Crawford (1978). It is
thus clear that, until this discrepancy is removed, any conclusion concerning the
evolutionary status of the B Cephei stars will be somewhat questionable.  One
consequence of this problem is the uncertainty by at least 2M9 of masses for B Cephei
stars obtained from a comparison with the presently available theoretical models.

It should be mentioned that Lesh and Aizenman (1973a) used Z = 0.06 in their
model calculations in order to increase the opacity. This removed the discrepancy
between the theoretical and observed zero age main sequences. By following the same
procedure, most B Cephei stars are found to be in the core hydrogen-burning phase.

Attempts to determine the evolutionary status of the B Cephei variables have
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been often made in the hope of unearthing clues to the unknown excitation mechanism
presumably operating inside them. We would Tike to point out that, in view of the
observed separation of their locations in the H-R diagram, the evolutionary history
of the B Cephei variables may be relevant in this context only insofar as it results
in carrying their progenitors into the instability strip. In other words, we believe
that the search for a possible excitation mechanism should be concentrated in the
envelopes of the g Cephei stars, and not in their cores.

An investigation of the evolutionary status of the g Cephei variables has
been recently carried out by Shobbrook (1978a,b). Shobbrook (1978a) maintains that
in the c, - 8 plane the width of the 8 Cephei strip does not exceed 07003 in 8, i.e.,
0715 in luminosity, a value very much smaller than 1725 we found. The main reason
for this discrepancy comes probably from the fact that Shobbrook could not take into
account most of the variables which we used for determining the boundaries of the g
Cephei strip, because they were discovered after his analysis had been completed.
Moreover, Shobbrook believes that there are constant stars within the g Cephei strip.
This conclusion is also contradicted by our results. Therefore, Shobbrook's (1978b)
statement that all these variables must be very near the end of the core hydrogen
burning phase appears to be unfounded.

6. THE PERIOD-LUMINOSITY RELATION

In Figure 11 the absolute bolometric magnitudes of the 8 Cephei stars are
plotted as a function of log P, where P is the primary photometric period. A
straight line, fitted to the data by the method of least-squares, is also shown. It
has the following equation:

-3.9 log P - 9.0 = Mbo], (3)

1.3 1.0 0.8

where the numbers underneath the coefficients indicate their mean errors, while the
one beneath the righthand side is the standard deviation of the solution. After
adding a log T, term we obtained the following equation:

-0.05 log P - 0.042 log Te +4.08 = Mbo1 (4)
*0.03 +0.003 +0.04 +0.14

These results clearly confirm our earlier conclusion (cf. Jerzykiewicz and
Sterken 1978 and § 3 of the present paper) that the g Cephei stars do not obey a
period-luminosity relation. Indeed, in the case of equation (3) the standard
deviation is much greater than any reasonable estimate of the mean error of the My,
values. Adding a 109 T, term results in decreasing the standard deviation
considerably; however, the coefficient of 1og P then turns out to be of the same
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order of magnitude as its mean error, so that equation (4) actually represents the
ridge line of the g Cephei strip, and not a Tog P - Tog Te- Mpo1 relation. As we
have already pointed out (Jerzykiewicz and Sterken 1978), the lack of a period-
Tuminosity relation lends support to the idea that the primary photometric periods of
B Cephei variables may correspond to a variety of nonradial oscillation modes.
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16 LACERTAE: AN ECLIPSING SYSTEM WITH A g
CEPHEI PRIMARY

M. Jerzykiewicz
Wroclaw University Observatory
Poland

ABSTRACT

A model is presented of the 16 Lacertae system which is shown to be an
eclipsing variable with a 8 Cephei primary.
1. INTRODUCTION

The 12@097 single-line spectroscopic binary 16 Lacertae, the primary
component of which is a well-known B8 Cephei star, was recently found by Jerzykiewicz
et al. (1978) to be an eclipsing variable. In the present paper a model of the
system of 16 Lacertae is derived from observations. Moreover, it is shown that
fairly accurate values of the primary component's radius and mass can be obtained
from precise photometry of the eclipse.
2. OBSERVATIONS

The discovery that 16 Lacertae is an eclipsing system was a by-product of
frequency analyses of two extensive series of photoelectric observations of the star.
The first series consisted of over one thousand B magnitudes obtained by the author
on 31 nights in the summer and autumn of 1965 at the Lowell Observatory. The second
series included about five hundred blue-color observations secured by Jarzebowski,
Jerzykiewicz, Le Contel and Musielok in the autumn of 1977 at the San Pedro Martir
Observatory of the National University of Mexico, the Mt. Chiran station of the Haute
Provence Observatory, and the Bialkow station of the Wroclaw University Observatory.
Both these data series can be represented by synthetic 1ight-curves, having the form
of a sum of three sine-wave components with frequencies of 5.9112, 5.8551 and 5.5032
cycles/day. However, in 1965 the component amplitudes were equal to 07020, d"010 and
dP011, respectively, whereas in 1977 they amounted to only 07008, OP005, and O7007.
It is unclear whether this result indicates that the oscillations of 16 Lacertae are
dying out, or that in 1977 we observed a minimum in a Tong-term variation of the
oscillation amplitudes. This question can only be answered by future observations.

The eclipse of 16 Lacertae can be seen clearly after the intrinsic 1ight-
variations are removed. This is shown in Figure 1, where the deviations from the
above-mentioned 1965 and 1977 synthetic light-curves are plotted as a function of the
orbital phase, computed according to the following elements:
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Minimum Tight = JDg 2439054.575 + 12909684 E (1)
"~ +.005 +.00003

A11 observations with orbital phase within the interval 0.95 to 0.05 are shown.
Points represent the 1965 data obtained on seven nights, while open circles
correspond to observations taken on one night in 1977 at Mt. Chiran and San Pedro
Martir (1eft and right of the mid-eclipse phase, respectively). The improved value
of the orbital period in equation (1) was derived by forcing the 1965 and 1977 data
to agree along the ascending branch of the light-curve.

It can be estimated from Figure 1 that the total duration of the eclipse is
somewhere between (334 and (740, and that the depth of the eclipse amounts to 07037
o%o003.

According to the spectroscopic orbital elements of Fitch (1969), the orbit of
16 Lacertae is very nearly circular (e = 0.035 + 0.03), with Ky = 23.0 + 0.6 km/sec,
apsin i=3.82x 106 km, and the mass-function f(M) = 0.0152 Mo' From this value of
the mass-function one gets the mass ratio My/My < 0.2, if i > 559 and My > 6 Mo
Thus, for any value of M; even remotely consistent with the primary's MK type of B2
IV, it follows that the mass of the secondary is approximately 1 Mg, and that a; + ap
amounts to at least 3.0 x 107 km. Consequently, unless the radii of the components
are very much greater than their main-sequence values, it can be concluded that the
system is a detached one with the secondary contributing a negligible fraction of the
total light.

3. A MODEL OF THE SYSTEM OF 16 LACERTAE

In view of the preceding conclusions regarding the secondary component's mass
and the dimensions of the system, a solution based on a simple spherical model was
attempted. The contribution of the secondary to the total light of the system was
neglected. The mean radius of the primary was taken to be Ry = 5.8 Ry, which is
consistent with Tog T, = 4.354 and Mp47 = -5M00. These values were obtained for 16
Lacertae by Sterken andAJer‘zykiewicz (1979) from the photometric indices c, and B
using recent empirical calibrations of the temperature, bolometric correction, and
absolute magnitude scales for the early-type stars. The mass of the primary, M; = 10

M@, also used in the solution was derived (Sterken and Jerzykiewicz 1979) by
comparing the star's position in the H-R diagram with Population I evolutionary
tracks. This comparison showed that the primary is still in the core hydrogen-
burning phase. Finally, a cosine law of 1imb darkening was assumed, with the 1imb
darkening coefficient equal to 0.4

From these data it is possible to get a unique solution for a given R, and

At, i.e., the secondary component's radius and the duration of the eclipse,
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respectively, provided the spectroscopic orbital elements are considered. The
procedure is as follows. A rough initial value of i, the inclination angle of the
orbit, is assumed. This allows computation of approximate mass ratio and dimensions
of the orbit, a; and a,, from the spectroscopic elements and M;. A better value of i
is then obtained from the equation:

2 2.2

2. _ R At)
cos"i =~ - s 2
az PZ (2)

where R = R1 + Rz, a=ap +ap, and P is the orbital period. Equation (2) holds for
spherical components in a circular orbit, so that it is appropriate in the present
context. With this better value of i the calculations are repeated. It was found
that the solution converges very rapidly for almost any initial value of i.

A number of solutions were obtained in this way for different R, and At. The
results are summarized in Figure 2, where computed depth of the eclipse (at the mid-
eclipse phase) is shown plotted against the ratio of the radii, k = Ro/Ry, for three
values of At: 0‘.135, 0437 and 0d40. As expected, for a given k the depth of the
eclipse increases with At. Moreover, for each of the three At, the depth of the
eclipse increases rapidly, until k equal to about 0.25 is reached; at this point the
eclipse depth becomes insensitive to k. For At = @135 none of the solutions is deep
enough to represent satisfactorily the observed 07037 eclipse. On the other hand,
the computed 07037 eclipse for At = 0940 turned out to have a flat bottom, contrary
to what is observed. The solution for at = 0937 and k = 0.22 (filled circle in
Figure 2) fits the observations quite well. This can be seen from Figure 1, in which
the solution is shown with a solid line.

A model of the system of 16 Lacertae corresponding to this solution is
illustrated in Figures 3 and 4. In Figure 3 the position of the inner Lagrangian
point is also indicated. Clearly, the system is a detached one. The eclipse is a
partial transit. At the mid-eclipse phase (cf. Figure 4), about 80 percent of the
disc of the secondary is projected onto the primary. The secondary, having a mass of
1.25 Mo and radius of 1.28 Rgs 18 probably a normal late F or early G dwarf.
Unfortunately, there is little hope that its spectrum will ever be seen.

As far as the author is aware, the system of 16 Lacertae has by far the
smallest mass ratio among all presently known unevolved binaries.

4. DISCUSSION

The accuracy of the model derived in the preceding paragraph is difficult to
ascertain. Much depends on the precision of the photometry, but errors in the
spectroscopic elements are also a factor. The situation is further complicated by
the circumstance that the photometric and spectrographic observations had to be freed
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Figure 1. The primary eclipse of 16 Lacertae. The deviations from the intrinsic
light-variations are plotted against phase of the 12709684 orbital period. All
observations were taken in the blue region of the spectrum. The 1965 and 1977 data
are shown with points and open circles, respectively. The line corresponds to the
solution derived in § 3.
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Figure 2. The computed depth of the eclipse of 16 Lacertae at the mid-eclipse phase
for three values of the total duration of the eclipse. This depth i$ shown as a
function of R,/Ry, the secondary to primary radius ratio. The calculations were
performed wit?h the primary component's mass and radius equal to 10 Mg and 5.8 Ry,
respectively. A cosine law of 1imb darkening was assumed, with a 1imb darkening
coefficient of 0.4. Solutions left of the open circles correspond to total eclipses.
The filled circle indicates the adopted solution.
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Figure 3. The system of 16 Lacertae in projection on the tangent plane of the sky.
The secondary is shown at the greatest elongation (left) and in the conjunction with
the primagy at the mid-eclipse phase (right). The dimensions of the system are a; =
3.84 x 10° km and ay = 30.7 x 10° km. The inner Lagrangian point is indicated witk a

Cross.

W,=125 R,=128

Figure 4. Thg-system of 16 Lacertae at the mid-eclipse phase. The components'
masses and radii are in solar units, and i is the inclination of the orbit to the
tangent plane of the sky.
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from the intrinsic variations, due to the oscillations of the primary, before they
could be used to investigate the eclipse and the orbital radial-velocity variation.

In addition to these observational errors, the radius and mass of the
primary, used as data in the solution, are also subject to a number of uncertainties.
Most important of these are probably the systematic effects in the empirical
calibrations of the temperature, bolometric correction, and absolute magnitude
scales. The mass of the primary also depends on the reliability of the theoretical
evolutionary tracks used to derive it. Unfortunately, there is no straightforward
way to quantify all these uncertainties. What can easily be done, however, is to
examine hqw the solution would change if the values of radius and mass of the primary
were arbitrarily taken to be somewhat different than those used in the preceding
paragraph.

Figure 5 shows how the computed depth of the eclipse depends on R;. The
calculations were performed with At = 0937 and Mp = 10 Mg. The limb darkening
coefficient was assumed to be 0.4. As can easily be seen, the solutions are rather
sensitive to Rj. In fact, if the eclipse photometry was the main source of errors,
the radius of the primary could be determined to within 0.2 R,

The sensitivity of the computed depth of the ec11pse to My is 1ess
pronounced. This is shown in Figure 6, which is based on computations with At =
0ﬂ37 Ry = 5. 8 R o’ and a 1imb darkening coefficient of 0.4. However, the mass of 10
My for the primary is probably correct to within + 1 Mg, if all the other parameters
of the system are not very much in error.

Thus, if Ry or M; were changed by more than about +4 and 10 percent,
respectively, the solution would no longer fit the observations. Since the radius
and mass of the primary, estimated from its position in the H-R diagram, are probably
much less certain than this, the problem can be reversed: values of Ry and M; should
be assumed that make it possible to derive a satisfactory model of the system.
However, Ry and M; are not independent parameters of the model, e.g., if the mass of
the primary was increased by as much as 2 Mg, @ satisfactory solution could still be
obtained, provided that Ry was also increased. Therefore, the above-mentioned values
of $0.2 Ry and x1Mgy are lower limits of the actual uncertainties with which the
radius and mass of the primary can be determined by comparing the observed eclipse
with the computed solution. Hopefully, future observations, especially photometric,
will bring these uncertainties close to their lower limits.

Once this is accomplished, accurate photometry of the eclipse of 16 Lacertae
could be used to investigate the variations of the star's radius due to its
oscillations. In conjunction with simultaneous radial velocity measurements, such
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Figure 5. The computed depth of the eclipse of 16 Lacertae at the mid-eclipse phase
shown as a function of Ry/Ry, for three values of Rj. Symbols are the same as in
Figure 2.
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observations may yield data to study the temporal changes of the surface geometry of
the star, making possible the determination of its oscillation mode.

* * * * *
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LINEAR, NONADIABATIC PULSATION CALCULATIONS FOR MODELS OF
UPPER MAIN SEQUENCE AND 8 CEPHEI STARS

H. Saio, J.P. Cox, C.J. Hansen and B.W. Carroll
Joint Institute for Laboratory Astrophysics
National Bureau of Standards and University of Colorado

ABSTRACT

Equations for linear nonadiabatic pulsation and the method of their solution
are discussed in some detail. The numerical results presented concern mainly 7 Mo
stellar models in early evolutionary phase. A driving zone at a temperature of 1.5 x
105 K was found to be present for both radial and nonradial modes, but no net
pulsational instability was observed. Effects of rotation on pulsation frequencies
and on stability are also discussed.

1. INTRODUCTION

We have considered the general problem of small nonradial, nonadiabatic
oscillations of spherical stars. Such oscillations must obey the mass, momentum,
energy, and flux equations and the two equations, which, together, comprise Poisson's
equation. For spherical stars, it is both customary and adequate to assume a
separation of the pulsation variables into spherical harmonics, as follows:

/f' 56:0,t fi( .
(raosgot)h,_Qrn) Y(e,9)e'" (1)
8f(r,0,4,t) sf(r)

where f represents any physical variable; a prime denotes the Eulerian variation; &f
denotes the Lagrangian variation; r, 6 and ¢ are the usual spherical polar
coordinates; Y@ denotes a spherical harmonic; and o denotes the (complex) pulsation
angular frequency. The real component v, op, gives the pulsation period for the mode
considered:

n= (2)
%R
The imagjgary component of v, oy, gives the "damping time" t, for the perturbation
(lsf] « e 17):
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=L (3)

Three vectors are involved in the analysis: &r (Lagrangian displacement);
v¥' (negative of the Eulerian variation of the force per unit mass, with ' being
equal to the Eulerian variation of the gravitational potential ¢), and F' (Eulerian
variation of the net energy flux). Assuming the separation of variables described in
equation (1), the two transverse components of each of these vectors involve only
algebraic relations. Therefore, each vector differential equation (momentum, flux,
and force per unit mass) becomes a scalar differential equation. The resulting
system of differential equations is of the sixth spatial order in, for example, the
dependent variables P' (Eulerian variation of total pressure), o' (Eulerian variation
of density p), 8r (radial component of 6r), %', dv'/dr (spatial derivative ofyp'),
and &s (Lagrangian variation of specific entropy s). However, in nonadiabatic
oscillations, each dependent variable is complex, resulting in a system of the sixth
order in complex variables.

In treating radiative transfer, a type of Eddington approximation (Unno and
Spiegel 1966) has been used which yields

oo (A g9

Frad = (st vJ> (4)
where

BooF 4+ P , (5)

rad conv

x is the opacity, and J is the mean 1nten§1ty, given by

_ac 4, 1 ds
J—4'ITT +4'm< dt (6)

Here T is the local temperature, a and ¢ are the radiation constant and velocity of

1ight, respectively, and t is the time. The following assumption was made regarding

ﬁionv’ the Eulerian variation of the convective flux:

8(V - Fegny) =0 - (7)

The varfables actually used in the calculations were the Dziembowski-1ike

variables
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Ye = 7 Ye = [
5 Cp » 76 L{r rad

where g is the local gravitational acceleration, p is the specific heat per unit
mass at constant pressure, and sL(r) is the Lagrangian variation of the radiative
interior luminosity L(r). The differential equations are then

dy.
L= £, (r; Yyseeoa¥g)s T =16 (9)

dr 1 ’

where f; are complicated functions which will not be reproduced here. In place of

the actual angular oscillation frequency, o, a dimensionless frequency, w, was used.
The relationship of these two quantities is given by:
2 _ 02R3
w GM

(10)

There are six boundary conditions, three at the center and three at the
surface. Physically, the three central boundary conditions are that the three
divergences involved, V+8r, Vv-.vy', and v+ F', all remain finite. A similar
situation is found with respect to the first two divergences when considering linear,
nonradial, adiabatic oscillations. The three surface boundary conditions are that
8P/P be finite; that ¥' andvVy', the gravitational force per unit mass and its
gradiant, be continuous across the (perturbed) surfaces; and that there be no
incident flux on the top of the atmosphere, as discussed by Ando and Osaki (1975).
Again, the first two of these are the same as for linear, nonradial, adiabatic
oscillations.

The normalization adopted is

yp =1 (11)

at the surface.

The above equations and boundary conditions, together with the above
normalization condition, constitute an eigenvalue problem for the (complex)
eigenvalue o (or w).

As a check on the accuracy of the numerical calculations that were performed,
the work integral was also evaluated. Agreement withoj to 0.5% was obtained.

The surface phase lags were also computed for the various modes investigated.
It was found for all the modes that maximum 1ight coincided very closely with the
instant of minimum stellar radius, as is actually observed in the g Cephéi stars.
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The results of the calculations have been expressed in terms of a "normalized
growth rate,' n'. This quantity, introduced by Stellingwerf (1978), is defined as
follows:

. Mffpdvdm W, - W
N O7 1 PR (12)

where W, and W_ (both > 0) are, respectively, the areas under the positive and
negative portions of the work curve. Thus, if driving alone was occurring with no
damping, n' = +1.00; conversely, in a situation of damping only, with no driving, n'
= -1.00.

The above techniques have been applied to several kinds of stars, as
discussed below.

2. UPPER ZERQ AGE MAIN SEQUENCE MODELS

Several models of the upper zero age main sequence have been examined for
linear, nonradial, nonadiabatic pulsations using the techniques described in s 1. (A
previbus investigation by Aizenman, Hansen and Ross (1975) was made using an
adiabatic analysis and a simple opacity; this analysis yielded quasi-adiabatic
stability results.) The models examined here had masses of 7 Me’ 12 Mo’ and 20 Me‘
The modes investigated were: py, Py, T, g1+, and g2+ for 2 = 25 py and gl+ for 2 =
1; and py, f and gl+ for & = 3.

The opacity was obtained through the use of Stellingwerf's (1975) formula for
T <10% K, and Iben's (1975) formula for T> 107 K; for 106 K < T < 107 K, the
two formulae were smoothly joined together. The nuclear reaction rates were those of
Fowler, Caughlan and Zimmerman (1975). The Schwarzschild criterion was used in
semiconvective regions.

The periods were found to be the same as those computed adiabatically when
calculations were taken to five significant figures. Also, throughout almost the
entire model, the eigenfunctions were practically the same as those computed
adiabatically. '

As we had expected, the models were found to be stable in all cases.

3. MODELS FOR g CEPHEI STARS

In 1979, Stellingwerf discovered a new driving mechanism that is operative
for radial pulsations and possibly other modes. Called the "bump mechanism,” it is
based on a local change in slope or "wiggle" of the opacity as a function of
temperature at a given density. This wiggle occurs approximately at a temperature
where the peak of the Planck function is observed to coincide with the ionization
potential of He' (54.4 ev). This coincidence occurs at about 1.5 x 105 K; this is
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near the temperature required for an jonization zone to produce pulsational
instability in the g Cephei stars (Cox 1967). Stellingwerf (1979) showed that this
bump mechanism would be more effective for stars with small mass concentrations than
for highly centrally concentrated stars.

Using models of B Cephei stars, Stellingwerf (1978) calculated their
stability against radial pulsations using the bump mechanism as the destabilizing
mechanism. Although he found that driving occurred in the vicinity of 1.5 x 10° K.
The bumb mechanism did not quite destabilize the models when currently estimated
opacities were used. However, by artifically enhancing the opacities in the relevant
region (to a degree well within the presently estimated uncertainties), he was able
to produce pulsational instability in his models.

One of Stellingwerf's (1978) most interesting results was his finding that
the locus of maximum instability on the Hertzsprung-Russell (H-R) diagram had a
"backward" slope (opposite in sign to the slope of the Cepheid instability strip)
almost exactly parallel to the mean line defined by the observed g Cephei variables.
Stellingwerf (1978) suggested that this "backward" slope was a result of radiation
pressure, a conjecture which proved to be correct (see below). However, his locus of
maximum instability is lower by v 0.1 in log T, than that observed for the g Cephei
variables (Te = effective temperature); this is illustrated in Figure 1, on which are
also plotted some evolutionary tracks and the positions for some observed g Cephei
stars.

In a subsequent investigation it was shown by Cox and Stellingwerf (1979)
that the "backward" slope was actually a result of radiation pressure. Since the
bump mechanism is an "envelope ionization mechanism" (Cox 1974), all the usual
principles relating to this kind of process should apply. It is particularly
important that the internal energy lying above the driving region be of the same
order as the energy radiated by the star in a pulsation period:

<c. T>am
v - . 1
mL ’ (13)

where c, is the specific heat per unit mass at constant volume, T denotes the
temperature in the driving region, Am is the mass lying above the driving region, T
is the pulsation period of the star, and L is the equilibrium luminosity of the star.
Radiation has a marked effect upon Cy» as is shown by the relation (Cox and

Giuli 1968):

c =c 8-178

v v.g 8 (14)

where S g 1S the contribution to c, due only to gas, and B = Pg/(Pg + Pr) is the

ratio of gas to total (gas plus radiation) pressure. Thus, a radiation pressure of
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The Tocus of maximum instability of observed g Cephei variables along with
evolutionary tracks for several models.
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only 10 percent (g8 = 0.90) can almost double Cye Adopting equation (13) as the
instability condition, and making a few other simplifying assumptions, Cox and
Stellingwerf (1979) derived the following relation for the slope of the locus of

maximum instability on the H-R diagram:

aLnL = 2]-1(4 - C) (15)
anT, ~ (w-Tes +y) +uw + T-n-u(2-12/2)
where
782 + 168 - 8
WYY GE- ) (16)

The quantities y, £, n and y are defined by the following proportionalities and
relations:

It is apparent that, for values of g only slightly less than unity, the quantity aé +
Y becomes small or negative which can render %%ﬁ¥?‘ positive, in agreement with
Stellingwerf (1978). e

Physically, radiation pressure puts more internal energy above any given
level in the envelope. This consequently permits the condition for instability,
equation (13), to be satisfied at a smaller radius and higher effective temperature
than if radiation were not taken into account.

Cox and Stellingwerf (1979) also discussed the period-luminosity (m-L)
relationship which should apply to the g Cephei stars if these pulsations are
"driven" by an envelope ionization mechanism. Because observations have shown that
several periods may occasionally be present in any one g Cephei star, Cox and
Stellingwerf (1979) suggested that the bump mechanism might also drive certain
nonradial oscillations in this class of stars. The primary intent of this portion of
our investigation was to test this conjecture.

The vibrational stability of some of the evolutionary models against small,

nonradial oscillations was tested by the methods described in 8 1. In particular,
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the 7 Mg and 12 My models were examined in evolutionary stages 0, 1 and 2 as shown in
Figure 1. An attempt was made to test a 12 My model in stage 5 or 6; however, in
these stages, the models had become so centrally concentrated that those calculations
which had yielded results for the less centrally concentrated models failed to
converge in this case. This may be due to the fact that the structure of the
eigenfunctions becomes very complicated in such highly centrally concentrated models
(Osaki 1977), particularly in the inner region where many nodes appear.
Consequently, we have no results from our models in the interesting region occupied
by 12 Mg models in stage 5 or 6.

0f the successful calculations, the 7 Mg model in stage 2 comes closest to
the Stellingwerf maximum instability locus shown in Figure 1. Accordingly, we have
presented some results for this model (stages 0, 1 and 2, for the py> f, and 91+
modes) in Table 1. Values of the normalized growth rate n' are given and "estimated
corresponding values for purely radial oscillations are provided for comparison.

On the basis of these results, nonradial modes appear to be driven by the
bump mechanism about as strongly (or as weakly, depending on one's viewpoint) as the
purely radial modes. However, until further results are available, particularly for
stage 5 and 6 of the 12 My model, this must be an extremely tentative conclusion. At
least the 7 My models in stages 0, 1 and 2 showed definite driving in the vicinity of
1.5 x 10° °K, where the bump mechanism is located (see Figure 2).

One point seems relatively clear: the 12 Mg model in stages 0, 1 and 2
showed very Tlittle driving of nonradial oscillations due to the bump mechanism. We
may therefore conclude that any driving of nonradial oscillations due to the bump
mechanism is 1ikely to be bound closely to the dashed 1ine in Figure 1 applying to
radial oscillations. Thus, the widespread excitation of nonradial oscillations in
the general regions of the g Cephei stars found by Smith and ‘McCall (1978) probably
cannot be accounted for by this mechanism. [M. Smith (e.g., Buta and Smith 1979 or
Smith 1980 paper presented at this conference) has referred to these stars as the 53
Persei variables."] \

4. EFFECTS OF SLOW ROTATION ON NONADIABATIC, NONRADIAL FREQUENCIES

It is well known that slow rotation will cause those frequencies of non-
axisymmetric modes which are characterized by a given "latitudinal" spherical
harmonic to be split into. 22 + 1 “sublevels." If the angular rotation velocity @ is
constant throughout the star, this splitting is usually expressed as follows:

e =, toe (18)
' =-me(1-C), (19)

where subscript o denotes the nonrotating fraction and the magnitude of the quantity
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Table 1. g Cephei Partial Results (Nonradial)

7 Mg, & =2
Stage  Mpg1 Mode  Per. (hr.) n' n' (radial)
Py 1.613 -0.58
0 -3.4 f 2.110 -0.59 -~ -0.3
9 3.499 -0.79
Py 2.441 -0.56
1 -3.7 - f 3.103 -0.51 -~ -0.4
9 4.506 -0.58
P 3.668 -0.61
2 -3.96 f 4.515 -0.46 ~ -0.4

9] 5.826 -0.41
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Figure 2. Calculation showing driving in the vicinity of the Tocation of the bump
mechanism for a 7 Mg model.
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C depends upon the structure of the star. The value of C also depends on the
eigenfunction appropriate for the particular mode of oscillation; this eigenfunction
may be derived entirely on the basis of adiabatic theory (i.e., no nonadiabatic
effects need be taken into account). In addition, it can be shown that C can be
calculated by use of the eigenfunctions appropriate to the nonrotating state of the
star. This fact derives ultimately from the existence of a variational principle for
linear, adiabatic, nonradial oscillations. In other words, an error of order ¢ in
the eigenfunctions will only produce an error of order e in the eigenvalue.

The above splitting arises solely from the Coriolis forces, and would be
present even in a star that is rotating so slowly that departures from sphericity are
negligible.

The question then arises as to the relative stability of these various
‘sublevels, a question which does involve nonadiabatic effects. An attempt to answer
this question was made by Hansen, Cox and Carroll (1978), who calculated the
appropriate stability coefficients by use of quasi-adiabatic approximation involving
only the adiabatic eigenfunctions. Interestingly enough, they found that the
sublevels corresponding to prograde (m < 0) azimuthal running waves were slightly
less stable than retrograde (m > 0) waves.

In an attempt to improve upon this situation, we have tried to compute this
splitting and the associated stability of the sublevels on the basis of nonadiabatic,
nonradial oscillation theory. However, attempts to derive an integral expression
analogous to C in equation (19), but involving only the nonadiabatic, nonrotating
eigenfunctions have been relatively unsuccessful. We suspect that the reason for

this failure is that a variational principle for nonadiabatic, nonradial oscillations
does not exist. Therefore, we fear that the nonadiabatic eigenfunctions for the
(sTowly) rotating configuration must first be computed in order to obtain the desired
stability information. Nevertheless, an integral expression, such as that referred
to above, should serve as a valuable check on the final results. Work is now in

progress on this project.
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IMPORTANCE OF STUDYING g CEPHEI STARS IN
OPEN CLUSTERS AND- ASSOCIATIONS

S.M. Jakate and C. Sterken'
tAstrofysisch Instituut
University of Brussels
Belgium

ABSTRACT

Beta Cephei stars which are located in clusters and associations can be used
to gather information on their evolutionary phase when they are placed on the color-
magnitude diagram. A tentative study is presented which attempts to use this idea to
answer several important questions concerning g8 Cephei stars.

1. INTRODUCTION

Beta Cephei stars in clusters and associations are of special interest
because the position in the color-magnitude diagram of these variables may provide
information about their phase of evolution.

Jakate (1978) demonstrated that the position of the small "gap” in Tuminosity
vs. temperature graphs, which corresponds to the core hydrogen exhaustion phase in
the post main-sequence evolution of an open cluster, could be used to determine the
evolutionary state of the B Cephei stars belonging to the cluster. He applied this
technique to NGC 4755 and NGC 3293 and found that the g Cephei stars belonging to
these clusters 1lie below the gap observed by Feast (1958). From this, he concluded
that these B Cephei stars are in the core-hydrogen burning phase of their evolution.

Although there are only two such open clusters known which contain g Cephei
stars, eight of these variables are found within approximately five associations and
subgroups. Jakate's technique could not be applied to these associations, because of
the difficulty of determining the position of the gap in their thinly populated
color-magnitude diagrams. Therefore, it was decided to determine the Tuminosity
lTevel of the gap theoretically from published evolutionary tracks. This allows a
comparison of the positions of the B Cephei stars belonging to the associations.

Several attempts have been made in the past to find observational parameters
that can be used to separate g Cephei stars from non-variables in various planes
(e.g., Lesh and Aizenman 1973; Watson 1972; Jones and Shobbrook 1974; Shobbrook
1978). In a recent review paper, Lesh and Aizenman (1978) concluded that there is no
obvious observational parameter that uniquely separates the variables. Part of the
reason for this failure could be that the "other B stars" used for this purpose were
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never checked for constancy. For example, several of the "other B stars" of
Shobbrook's (1978) sample have been identified as "slow" variables in recent surveys
(Balona 1977, Jerzykiewicz and Sterken 1977).

Jerzykiewicz and Sterken (1978) and Jakate (1979) plotted the positions of
known g Cephei stars and of several stars verified to be constant in the cy-8 and fu-
bl-g planes respectively. It is evident from these plots that the g Cephei
instability strip has a finite width and that constant stars, in general, seem to lie
outside this strip. These diagrams are analyzed further in Section 4 and are used to
list some associations and clusters which should be searched for new g Cephei stars.

2. ISOCHRONES AND NGC 4735

Evolutionary tracks of stars between 5 and 20 Mg (Xx,Z = 0.70, 0.03), as
calculated by de Loore et al. (1979), were used to obtain three sets of isochrones of
ages 5, 7, and 9 x 106 years. These isochrones were then used to establish the
lTuminosity level of the beginning of the "gap" or, in other words, the end of the
core hydrogen burning phase. This level was assumed to be the point at which the
first increase in temperature takes place during the post main-sequence evolution of
a star. Isochrones obtained on the Tog Te-Mpo7 Plane were converted to the c,-8
plane using a Tinear relation between c, and ©4 = 5040/To; this relation was given by
stars for which Code et al. (1976); Schild, Peterson and Oke (1971); and Underhill,
Divan, and Prevot-Burnichon (1979) determined effective temperatures. A lTinear
relation between ©, and the bolometric correction was determined with the data of
Code et al. (1976), and the g-M, relation given by Crawford (1978) was used. These
isochrones extend only to the beginning of the gap.

Figure 1 shows the comparison of NGC 4755 and the isochrones on the Cy-B
plane. The position of the gap, as given by Feast (1958), is also indicated. The
uvbyg photometry data for the cluster is from Perry et al. (1976), who estimated its
age (from three data/information sources) to be 7 + 1 x 108 years. The observational
zero age main sequence (ZAMS) (Crawford 1978) lies considerably above the theoretical
main sequence, a discrepancy which has been discussed by Lesh and Aizenman (1973);
Shobbrook (1978) and others.

It is clear from Figure 1 that the two g Cephei stars, F and IV-18, are below
the observational and theoretical gap. This finding confirms the results of Jakate
(1978), who concluded that the g Cephei stars in NGC 4755 are going through their
core hydrogen burning phase.

3. B CEPHEI STARS IN ASSOCIATIONS

Table 1 1ists associations and clusters known to contain B Cephei stars. NGC
3293 (Balona 1977) was omitted because no. uvbyg photometry is available. With the
exception of NGC 4755, the stars in Table 1 were derived from the list of confirmed B
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Cephei variables given by Shaw (1975); NGC 4755 was taken from Jakate (1978). The
quantity A, is the difference in 8 between the brightest and faintest g Cephei
members of an individual association or cluster; Ac, is defined in a similar manner.
Masses, determined by comparing the evolutionary tracks with the location of the 8
Cephei stars, are given in the next column. The last column gives the masses for
some of these g Cephei stars as determined by Lesh and Aizenman (1978).

The sources of uvbyg photometry and membership criteria in Table 1 are:
Glaspey (1971) for Upper Sco, Lower Cen and Upper Cen; Perry et al. (1976) for NGC
4755; and Crawford and Warren (1976) for the Lacerta OBI associations. The
associations, subgroups and clusters listed in Table 1 are given in order of
increasing age, as determined by comparison of their Co-B diagrams; generally, this
order is in agreement with comments found in the three sources mentioned above.
However, the overall age spread of these associations is small; in particular, Upper
Sco, Lower Cen and NGC 4755 seem to be of about the same age.

Figures 2 and 3 show Co-B diagrams for the individual associations; a
comparison with the set of isochrones is also provided. The positions of the g
Cephei stars are indicated for each case. All of the fainter g Cephei members of
these associations are clearly below the gap including some of the brighter members.
In these diagrams, the brighter g Cephei member of an association is expected to
occupy an ambiguous position very close to the gap; this is because it is the star
which could be at the end of the core hydrogen burning phase (e.g., « Lup and 8 Cru).

The quantity A, seems to be constant (48, = .015 .003); this is probably a
reflection of the mass range, at a given cluster age, of stars going through the B
Cephei phase. If, in fact, these B Cephei stars are in their core hydrogen burning
phase of evolution, it can be assumed that there are two definite points (arbitrarily
designated a and b) on the evolutionary track of a massive star between which it goes
through the g8 Cephei phase; the later point is probably close to the end of the core
hydrogen burning phase. It must be noted that this conclusion is based upon a
relatively small number of associations and clusters, but the fact that this quantity
(Asa) seems consistent with the width of the observational instability strip is
striking.

Accepting this hypothesis, an estimation of the duration of the g8 Cephei
phase as suggested by this data on clusters and associations may be attempted. Let
us assume the mean age of the cluster to be 7 x 106 years and the mean mass of its
faintest g Cephei member to be 13 Mg If we further assume that this faintest member
is at position "a" in its B Cephei phase, then it has 2.5 x 106 years before reaching
position "b" or the end of its core hydrogen burning phase. It is interesting to
note that, with reference to its mean mass of 13 Mg, this is about 25% of its total
lifetime off the main sequence. This estimate is in agreement with the frequency of
occurrence of B Cephei stars determined for a complete mass range of 8 to 20 Mgy
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Table 1.

Beta * Mass From

Cephei AB, Aco Mass Lesh and

Members Aizenman

(1978)

o Sco 16 14
Upper Sco .017 127

8 Oph 12 12

B Cru 17 > 15
Lower Cen .016 .083

e Cen 13

F 16
NGC 4755 .01 .080

1v-18 13
Lacerta 0B 1Ib 12 Lac 14 13
Lacerta 0B 1, 16 Lac 12 14

a Lup 14 14
Upper Cen .012 .011

§ Lup 12

* From the 1ist of confirmed Beta Cephei stars, Shaw (1975) except

for NGC 4755 (Jakate 1978).
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Figure 2. c,-8 diagram for Upper Sco, Lower Cen and Lac OB1 (1b) associations.
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(e.g., Percy 1974 and Shaw 1975).

The above discussion should be considered to be preliminary because of
limited data available. However, it should be sufficient to further stress the
importance of studying g Cephei stars in open clusters and associations.

4, OBSERVATIONAL INSTABILITY STRIP /

Two aspects of the observational instability strip for g Cephei stars are
discussed in the literature: the width of the strip and the presence of non-
variables within it. Due to the existence of different kinds of variables in this
part of the H-R diagram (Smith 1977), it is rather important that the non-variables
used to define the strip are constant stars and not just “other B stars"” or "non-g
Cephei" variables.

The [u-b]-g and c,-B diagrams (Jakate 1979; Jerzykiewicz and Sterken 1978;
Sterken and Jerzykiewicz 1980) have demonstrated the finite width of the
observational instability strip and the visual location of the constant stars outside
of this region. It was thought that the separation obtained between the g Cephei
stars and the constant stars was not related to the indices employed in these cases,
but was instead due to the fact that "constant stars" were used rather than "other B
stars." This procedure was justified mainly because both ¢, and [u-b] are reddening-
free indices and are related to the effective temperature of B stars. However, the
instability strip, in the case of the c,-g diagram, is significantly wider (a =

.025) than the strip on the [u-b]-g plane (Ag = .015). This prompted us to check for
the eventual “discrimination" property of the c,-8, Q-8 and [u-b]-g planes.

This test was attempted for two clusters: NGC 4755 and h and -x Persei.
Figure 4 shows plots of c,-8, Q-8 and [u-b]-g for NGC 4755. The photometry data are
from Perry et al. (1976) and the information on constant stars and on g Cephei and
other variables is from Jakate (1978). The number of B Cephei stars expected on the
basis of Co-B and Q-g diagrams is significantly larger than that expected from the
[u-b]-g diagram. It is again evident that the instability strip in the c,-8 and Q-8
diagrams is more densely populated and includes approximately three times more
constant stars than the [u-b]-g strip. The information on the variability of the
stars in NGC 4755 is based on only two nights of observations (Jakate 1978).

Similar diagrams are presented for stars in h and x Persei (Figure 5). The
photometry information is from Crawford (1970) and that on the nature of the
variability is from Percy (1972). However, the errors on the indices used are large
(see error bars in the figure).

We could not find an explanation of the apparently greater efficiency of the
[u-b]-g diagram, particularly when the errors in co,Q and [u-b] do not differ
significantly and both are good indicators of effective temperature. The
verification of [u-b] as a more selective parameter for characterizing g Cephei stars
could have large implications for the study of these stars. For example, the
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traditional technique for determining g Cephei evolutionary phases by comparing the
theoretical evolutionary tracks with the Tocation of the instability strip (Lesh and
Aizenman 1973) depends not only upon the chemical composition and the opacities used
(Stothers 1976), but also upon the form of the H-R diagram used to represent the
strip.

The purpose of this paper was to stress the importance of studying g Cephei
stars in clusters and associations for various reasons. We believe that a systematic
study of stellar variability in open clusters and associations will provide insight
into the following questions:

Are all the g Cephei stars in the core hydrogen burning phase of evolution?

Where does the 8 Cephei phase begin and end?

Does the [u-b] index really discriminate better than other formerly used
indices?

The results presented in this paper should be considered as tentative due to
insufficient data. Figures 6, 7, 8, and 9 give [u-b]-g diagrams for some interesting
clusters and associations in which we plan to search for g Cephei stars.

* * * * *

This investigation was supported by the National Foundation of Collective
Fundamental Research of Belgium (F.K.F.0.) under no. 2.9009.79 (SMJ) and no.
2.0028.79 (CS).
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ABSTRACT

A discussion of the long period R Coronae Borealis stars is presented. The
constraints on theoretical models imposed by their age, kinematics and distribution
led to difficulties in formulating an evolutionary sequence to the formation of this
type of star. Several types of models are investigated and the results given.

1. INTRODUCTION

The R Coronae Borealis stars and other hydrogen-deficient carbon stars (Hd C
stars) are usually assumed to have masses less than or approximately equal to one
solar mass in order to be consistent with their extreme old disk/bulge kinematics and
distribution. The common pkesumption is that mass loss which bares the helium core
has been important in the evolution of these stars; binary mass transfer is the
suspected mechanism, despite the lack of any evidence for duplicity in these stars.

Paczynski (1971) argued that RCrB stars cannot result from ordinary evolution
and mass 10ss {whatever the mechanism). His structural studies gave two
requirements: the total mass, carbon core plus helium envelope, must be in the range
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0.8 My to 2 My (Mo = solar mass). To provide a core at any stage of ordinary
evolution which has the requisite total mass and which has a sufficiently massive
helium envelope (or the potential for it) requires an initial total mass = 5 M.
Such a mass is in severe contradiction with the kinematics. Paczynski (1978)
suspects a process involving a hot bottom envelope (Scalo, Despain and Ulrich 1975)
wherein the hydrogen-rich red giant envelope is convected downward to the vicinity of
the hydrogen-burning shell and converted entirely to helium. When occurring quickly
at an advanced stage of evolution, such a process would not affect the net lifetime
of the star appreciably and would accommodate a low mass consistent with the
kinematics.

An important question thus arises as to whether the masses of RCrB stars are
<1 Mg or significantly above that 1imit. In the latter case, the evolution is even
more anomalous than suggested by Paczynski. The RCrB stars must actually have lived
longer than indicated by their kinematics. Wheeler (1978, 1979) has suggested that
excess helium and an increased lifetime may be related phenomena and that these
shared properties may be traced from blue stragglers through helium stars to Type I
supernovae.

One of the most effective ways to establish the mass of the RCrB stars, and
hence the existence of an anomalously long lifetime, is through an examination of the
observed pulsational properties. Preliminary studies of the linear and nonlinear
pulsations of helium stars have been undertaken by Trimble (1972) and by Wood (1976).
We are systematically restudying this problem, using more recent and higher estimates
of the effective temperature (RY Sgr) and of the high carbon abundance. The
requirements that the stars have the proper pulsation period (v 40 days) while being
both pulsationally unstable and dynamically stable (see § 3 for meaning of this term)
may give tight theoretical constraints on the mass, lTuminosity and effective
temperature of these stars. Of the approximately thirty known RCrB stars, at least
three of them are observed to have Cepheid-1ike pulsations superimposed on their
longer period brightness variations. These are RY Sgr, UW Cen and RCrB.

2. LINEAR MODELS

Envelope models of stars with masses between 0.8 My and 3 My and with
luminosities in the range from 3 x 103 Ly to 2 x 104 Ly (Le = solar luminosity) have
been investigated. Linear nonadiabatic calculations with the techniques described by
Castor (1971) have been used to identify a number of these models with periods close
to the observed values. The full hydrodynamic equations with radiation flow treated
in the diffusion approximation were used. Opacity and equation of state data are
taken from the Huebner et al. (1977) opacity library for a mixture of 0.90 helium and
0.10 carbon by mass (referred to as HE9C1l). Since these library opacities are
available only for temperatures of 12,000 K or greater, the Stellingwerf (1975)
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opacity formula has been used for lower temperatures. Because of the small amount of
mass contained in these lTow temperature layers, the use of this formula should have
little effect on periods and stability, but could have some effect on the limiting
amplitude of light and velocity variations.l

Figure 1 is a plot of log n, (n0 = fundamental period) as a function of log
Terf (Toff = effective temperature). The approximate locations of two of the variable
stars, RY Sgr and RCrB, are indicated. We note that it is only for the higher
luminosities that we are able to attain the observed periods near the effective
temperatures for these stars. The T ¢e value for RY Sgr (7100 K + 500 K) was
recently determined by Schonberner (1975). Even at the higher luminosities, we would
predict a somewhat Tower effective temperature than those observed.

Figure 2 summarizes the linear fundamental blue edge data. For comparison,
the fundamental blue edge for normal composition Cepheids (X = 0.70, Z = 0.02) with
evolutionary masses is approximately 700 K cooler than the edge indicated for the 2
Mg and 3 My models. The important thing to note is that, for large L/M (as in the 1
Mg case), the blue edge is considerably bluer than for the higher masses. This leads
to a rather extensive range in T ¢¢ for which pulsational instability might be
expected. As we will see, however, it may well be that at these large L/M values the
models may, in fact, be unstable in the sense that they tend to throw off the outer
envelope. This will be discussed in § 3. For the models that are pulsationally
unstable, the growth rates tend to be quite large, with kinetic energy e-folding
times that are typically one period or even less.

3. NONLINEAR MODELS -

A sequence of models at L/Lg = 1.13 x 104 (Mpo1 = -5.38) was studied, using
the nonlinear theory. The masses investigated were 1.2 Mg, 1.4 Mg, 1.6 M, and 2.0
Me' The Teff was fixed at 6300 K. This value, although somewhat lower than that
observed for RY Sgr, was chosen in order to assure that the models were to the red of
the blue edge of the instability strip. In all cases, a velocity distribution was
imposed on the equilibrium model which had the same radial distribution as the linear
model adjusted to give 10 km/s at the photosphere. Table 1 1ists the models along
with their periods and 1imiting amplitude behavior.

The 1.2 My and 1.4 My, models were dynamically unstable in the sense that the
pulsations grew rapidly and appeared to lead to ejection of some of the mass.
Unfortunately, it was not possible to follow this process since the large

compressions in the outer layers caused a reduction of the integration timestep to

1Subsequent calculations have shown that the opacity and equation of state in
these outer regions can have a fairly important effect on periods.
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composition of HE9C1, Y = 0.9 and X, = 0.10 is used for all models. Approximate blue
edges are indicated and the positions of two of the pulsating RCrB stars are shown.
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Figure 2. Blue edges are shown on the Hertzsprung-Russell diagram. Three of the
RCrB stars are indicated. Although XX Cam is not known to pulsate 1ike RY Sgr and
RCrB, its position in the H-R diagram seems to be quite close to that of RY Sgr.
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Table 1. Nonlinear Models at L/Ly = 1.13 x 10% and Tef = 6300 K

ki
Mass n(days) Mpor BR/R BVpagial (km/s)
1.2 Mg 44 - - -

1.4 43 - - b

1.6 39 2Mo 0.17 27

2.0 36 2M2 0.23 40
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such an extent that the calculation could not proceed. Figure 3 shows the growth of
the photospheric radius variation for the 1.4 Mg model. The radial velocity of the
photosphere reached a maximum value of about 50 km/s. The escape velocity for this
mass and radius is about 80 km/s. Figure 4 shows the radial velocity behavior of the
1.6 Mgy model. For this model and the 2 M, case a stable limit cycle is attained. We
note that the variations are not as smooth as those of the more massive Cepheids (for
example, see King et al. 1973). The magnitude of the radius and velocity variations
are in reasonable agreement with observations; however, the 1ight variation is
considerably larger than observed and quite ragged in appearance, as noted by Trimble
(1972). This may be due to an incorrect treatment of radiation in the outer layers,
or may suggest the existence of running waves which, if taken into account, could
lead to a decrease in the light variation. These questions remain for future
investigation.

4. CONCLUSIONS

There are several interesting results to be found in these preliminary
calculations: (1) there is qualitative agreement between these results using newer
opacities and the earlier ones of Trimble (1972) and Wood (1976); (2) models with
sufficiently large L/M have a very hot blue edge for their instability strip; (3)
very large L/M values lead to dynamically unstable models which appear to eject mass
and therefore may not be realistic descriptions for the pulsating RCrB stars; and (4)
for the sequence studied, it appears that a reasonable mass could be~ 1.5 My, The
fact that this is above the Chandresekhar 1imit strengthens the suggestion made by
Wheeler (1978) that these hydrogen-deficient carbon stars may indeed by among the
precursors of Type I Supernovae.
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SOME COMMENTS ABOUT g CEPHEI STARS

'H. Saio and J.P. Cox
Joint Institute for Laboratory Astrophysics
National Bureau of Standards and University of Colorado

The excitation mechanism of g Cephei stars has been an enigma for a long
time. We will discuss here a few conjectures in connection with this problem.

Some B Cephei stars are plotted in a period luminosity plane (Figure 1) where
periods, effective temperatures and absolute magnitudes were obtained from Lesh and
Aizenman (1978), and bolometric corrections were obtained from the table by Code et
al. (1976). The periods belonging to a multiperiod g Cephei star are connected with
a horizontal line. Theoretical relations for some modes of oscillation in the
instability strip are also described (l1ines of constant Q, where Q is the "constant"
in the period-mean density relation). This figure shows that several modes of
oscillation are probably excited in many cases and that many of those have Q values
less than that of the fundamental radial oscillation.

Recently, Stellingwerf (1978) suggested that a possible driving mechanism
might be found in the opacity bump near the He ionization zone. Although driving by
this opacity bump is not great enough to excite radial oscillations (Stellingwerf
1978) or nonradial oscillations (Saio et al. 1980) in the massive stars, the locus of
maximum instability of this mechanism in the H-R diagram is almost parallel to the 8
Cephei instability strip. The effective temperatures in this locus for the
fundamental radial mode are, however, lower than the effective temperatures in the
instability strip of 8 Cephei stars by about 0.1 in the logarithm.

Cox and Stellingwerf (1979) discussed some consequences of the condition of
maximum instability by this driving mechanism in the envelope. After some
manipulation of equation (1) in their paper, we have for a given equilibrium
Tuminosity:

QTe5 ~ constant, (1)

for maximum instability. Equation (1) suggests that, in the H-R diagram the locus of
maximum instability for the bump mechanism has a higher effective temperature for the
modes with smaller Q values. The smallest Q value in Figure 1 is less than that of
the fundamental radial pulsation by a factor of approximately 2. Therefore, the
locus of maximum instability for the modes with the smaller Q values has a higher
effective temperature than that for the fundamental radial mode by 0.06 in the
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logarithm. This may imply that 8 Cephei stars prefer modes with smaller Q values
than the Q value for the fundamental radial oscillation.

If the oscillations of g8 Cephei stars are excited only by the bump mechanism
in the envelope of the star, the width of the instability strip might be as large as
Alog T, 2> 0.06 as discussed above; this is contrary to the observed narrowness of the
instability strip for g Cephei stars (e.g., Lesh and Aizenman 1978; Sterken and
Jerzykiewicz 1980). Moreover, the observed instability strip shows the existence of
a lower limit to the luminosity of 8 Cephei stars which cannot readily be explained
by an envelope driving mechanism.

Comparison of the instability strip with evolutionary models in the H-R
diagram suggests that the instability strip almost coincides with the location of the
hydrogen exhaustion phase ("S-bend" phase), and that the lower limit to the
Tuminosity of g Cephei stars corresponds to the evolutionary track of ~ 10 M, models.
In the hydrogen exhaustion phase of stars with 10 My to ~ 20 My, semiconvective and
fully convective zones appear and grow rapidly in the region with a gradient of mean
molecular weight (e.g., Simpson 1971, Sreenivasan and Wilson 1978). As pointed out
by Sreenivasan and Wilson (1978), the appearance of these zones modifies the chemical
composition in this region and hence causes a rapid change of structure. The
interesting coincidence between the observed instability strip of 8 Cephei stars and
the rapid appearance of semiconvective and fully convective zones in the hydrogen
exhaustion phase tempts us to conjecture that the oscillations of g Cephei stars may
be excited by a combination of the bump mechanism in the envelope and the rapid
change of structure caused by the appearance ‘of a convection zone in the hydrogen
exhaustion phase. With this conjecture we can explain the narrowness and lower
Tuminosity cutoff of the instability strip because of the requirement of the
evolutionary phase and the associated lowest mass.

Also, this conjecture may suggest the existence of an upper limit to the
lTuminosity of B Cephei stars; the extent of this Timit is presently uncertain. The
evolutionary models with 30 M, by Simpson (1971) and with 20 My by Chiosi and Summar
(1970) show that, for stars with such high masses, a semiconvection zone appears in
the early phase of core hydrogen burning and exists continuously alse in the hydrogen
exhaustion phase. Since in these stars the rapid appearance of convective and
semiconvective zones does not occur, we can expect that oscillation is not excited in
these stars. It is interesting to note that the luminosity of gl CMa (the most
lTuminous 8 Cephei variable in the 1978 H-R diagram by Lesh and Aizenman) is nearly
equal to the luminosity at the "S-bend" phase of the models with ~ 20 M.

In summary, we are suggdesting that the instability of the g Cephei stars may
be due to a combination of envelope driving (perhaps via the "bump" mechanism) and
driving (in some manner, such as that suggested by Vandakurov 1977) in the deep
interior due to a rearrangement of the internal structure.
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OBSERVATIONAL EVIDENCE FOR GLOBAL OSCILLATIONS OF THE SUN: A REVIEW

H.A. Hill

Department of Physics
University of Arizona
Tucson, Arizona

ABSTRACT

The results of many observations have been interpreted as evidence for global
oscillations of the sun. The periods found in these analyses range from minutes to
hundreds of years. The shorter period oscillations are usually interpreted as the
normal modes proper whereas the longer period features may be manifestations of
superpositions and/or nonlinear coupling of these normal modes. The work done to

date in this broad area is reviewed.

1. INTRODUCTION

The general consensus is that phenomena exist on the sun which are to varing
degrees periodic in time. There have been investigations where the periods
considered range from minutes (Deubner 1976) to hundreds of years (Wolff 1976) and
include the well known eleven year solar cycle. Over the various subsets of this
period range, evidence has been put forth, at differing confidence levels, in support
of conjectures that global oscillations are manifested in the various observations.
In each case, the sought after signature in the observations is the exceedingly long
term stability expected for such global oscillations.

The demonstration of the existence of global oscillations has been quite
difficult for several reasons. In the case of very short period and the well
observed five minute mode, it has not been possible to observe the phase of these
oscillations over long enough times to clearly establish a global character (cf.
Gough 1980a). At the other end of the spectrum, a long period phenomenon observed
in, say sunspot number, may be understood as the result of beats between individual
global oscillations. This leads to the unsettling situation where the postulated
global oscillations producing the beats are not directly observed and furthermore,
for these types of phenomena it is currently not understood how such oscillations
affect the primary observable. In the intermediate range where one presumably has a
better chance of directly detecting an oscillation directly over long periods of
time, the observations are extremely difficult. This is because any global
oscillations present in this period range must have small amplitudes.
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A discussion of the observational evidence for global oscillations can be
conveniently broken into two parts: 1) a discussion of the long term stability of a
periodic phenomenon and, 2) the solar origin of the phenomenon. The latter problem
has arisen because of the apparent small signals associated with global oscillations
in the intermediate period range. In some cases, it is quite apparent that the
phenomenon is solar but it is difficult to identify the global character. In others,
it has been easier to establish the long term stability of a periodic feature but
quite difficult to establish the origin as solar. During the latter part of the
seventies, both of these general problems have received considerable attention and
many interesting developments have been reported. It is these developments that are
addressed in the following sections.

2. REPEATED PHENOMENA

The number of reported periodic features with apparent Tong term stability in
the period range from five minutes to ~ 100 years is quite large. Should a
significant fraction of these be real, then the oscillation spectrum is very rich and
bodes well for the seismic sounding of the sun. The period range has been extended
to several hundred years because such an observed period could possibly be the direct
manifestation of a global mode or possibly beats between two or more shorter period
global modes.

3. FIVE MINUTE OSCILLATIONS

Those solar oscillations having a period of around five minutes are the best
documented. The initial evidence for their existence was first reported at the
LLAU. Symposium no. 12 in 1960 (Leighton 1960). They may be observed by monitoring
brightness changes of the continuum radiation (i.e., the radiation not associated
with spectral Tines), by observing intensity changes in the spectral lines (which
could be due to temperature changes in the atmosphere produced by the oscillations),
or by studying surface velocities using the Doppler shifts of spectral lines.

These solar oscillations typically manifest themselves as a small scale (less
than 5000 km) velocity field in the solar photosphere and low chromosphere. The
motions are predominantly radial with a period of about 300 sec. The lifetime of a
given oscillation, as measured by the decay of the velocity-time autocorrelation
function, is only about two periods of oscillation.

The five minute oscillations have often been analyzed theoretically as a
purely atmospheric phenomenon (Noyes and Leighton 1963; Souffrin 1966; Stein 1967;
Kahn 1961; Whitaker 1963; Uchida 1967; Thomas, Clark and Clark 1971). These analyses
have treated the photosphere as a rigid boundary or as a layer with an imposed
turbulent boundary condition. Within the atmosphere both acoustic waves and gravity
waves have comparable frequencies although the spatial characteristics are distinct;
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because most observational work has dealt primarily with frequency characteristics of
the five minute oscillation, some controversy over the actual nature of the waves has
resulted. Interpretation of these particular oscillations as acoustic modes is
presented in the first four of those papers mentioned above while the last three have
treated the oscillations as gravity modes. Frazier (1968) first offered persuasive
evidence that at least a major portion of the oscillating power of the five minute
oscillations is in the form of acoustic modes.

A different class of models based upon trapping of acoustic waves below the
photosphere has been considered in some detail by Ulrich (1970), Leibacher and Stein
(1971), and Wolff (1972). These models offer an explanation for the existence of
wave motions in a layer of the quiet solar atmosphere and in a frequency band where
waves are essentially nonprogressive. Similar results have been obtained by Ando and
Osaki (1975), who treated these oscillations as global nonradial modes.

The "modal" character of these overstable subphotospheric oscillations is
theoretically characterized as a concentration of power along ridges in a figure
where the axes are k and w (referred to as the k-w diagram), k representing the
horizontal wavenumber and w the eigenfrequency. Despite extensive work, this "modal”
character has only recently become evident in observations, primarily because of the
large accumulation of data necessary for the computation of k-w spectra with adequate
statistical stability. ‘

The first clear resolution of the observed power into ridges on the k-w plane
is found in the work by Deubner (1975). On the basis of further work of this nature,
Rhodes, Ulrich and Simon (1977) have concluded that the five minute oscillations
clearly represent nonradial p mode oscillations in the solar envelope.

Are these five minute oscillations global modes? Deubner, Ulrich and Rhodes
(1979) and Claverie et al. (1980) have examined observationally the long term
stability of these modes and found coherence times at least as long as the length of
the observation (i.e., 9 hours). However, as discussed by Gough (1980a) this is not
sufficiently long to demonstraté the global character of these modes. More
observational work is required before this question can be answered.

4. OSCILLATIONS WITH PERIODS BETWEEN FIVE MINUTES AND ONE HOUR

The proof of the existence of solar oscillations with periods between five
minutes and approximately one hour would be significant since these oscillations
might represent low order p and g modes. With the introduction of a new
observational technique used at SCLERAl, the first evidence was obtained which
indicated that large scale oscillations in this period range could be detected (Hill

1SCLERA is an acronym for the Santa Catalina Laboratory for Experimental

Relativity by Astrometry jointly operated by the University of Arizona and Wesleyan
University.
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and Stebbins 1975). Observations at SCLERA using these techniques (basically time
sequences of solar diameter measurements) have continued to indicate the existence of
oscillations of this character (Hill, Stebbins and Brown 1976; Brown, Stebbins and
Hil1 1978; Hi1l and Caudell 1979; Caudell et al. 1980).

These periodic phenomena have proven difficult to study. The oscillations in
the observables are relatively small making it quite difficult to confirm the SCLERA
results by alternate observational techniques and also quite difficult to
discriminate against various sources of noise (for review, see Hill 1978). The long
term stability or more exactly, phase coherence, has been fairly well established
observationally (Hill and Caudell 1979; Caudell and Hill 1980; Caudell et al. 1980)
and discussed by Gough (1980a). This result has been interpreted as strong evidence
for the solar origin and ‘'global character of the oscillations.

Confirmation of the results from SCLERA have been sought by several
investigations (cf. Hi11 1978 for review). It now appears that the work of Claverie
et al. (1980) does represent a confirmation at the shorter end of this period range.
The mean spacing of the periods from 6 to 9 minutes reported by Hill, Brown and
Stebbins (1976), (published in Table 2.1 of Hi11 1978) agrees within an experimental
error of 3% with the mean spacing reported by Claverie et al. (1980) [taking into
account the sensitivity of the SCLERA work to only even & in contrast to both even
and odd % sensitivity of the results of Claverie et al. (1980)].

It has been possible to demonstrate phase coherency for a number of the modes
in this period range (Hi11 and Caudell 1979; Caudell and Hi11 1980; Caudell et al.
1980). To date the phase coherency has been established for 12 modes over a period
of 23 days. This coherency in phase is the best evidence currently available which
simultaneously points to the solar origin of the oscillations and the global
character. Particularly it is quite difficult for effects in the earth's atmosphere
to produce such phase coherency. In this regard it has been possible to make use of
the phase coherence to measure the contributon of the earth's atmospheric
differential refraction to these observations (Knapp, Hill and Caudell 1980) and to
show that this noise is an order of magnitude below the observed oscillations.

5. OSCILLATIONS WITH PERIODS NEAR 2haom

Oscillations with periods near 2M40M have been detected using velocity
observations by Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay
(1976). The reported amplitude is of the order of 1m/sec which is near the 1imit of
observing technology. This has posed considerable difficulty in clearly establishing
the oscillation as a solar feature.

The primary thrust in this region has been furnished by the group at the
Crimean Observatory. They reported in 1978 (Kotov, Severny and Tsap 1978) that the
oscillations were observed in 1974, 1975, and 1976 and shown to be phase. The
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initial attempts at Stanford (Dittmer 1977) to confirm these results from the Crimea
were unsuccessful. After the initial work, staff from these two observatories have
worked together in an effort to resolve their divergent results. This collaborative
effort has been successful to date with the publication in 1979 (Scherrer et al.
1979) of a cautious announcement of the confirmation of the oscillation at 2haom,
This is indeed a significant result.

Scherrer et al. (1979) published a rather impressive figure which suggests
the phase coherence of the oscillations from 1974 through 1978. This is strongly
suggestive of a solar bhenomenon, j.e., not the manifestation of the earth's
atmosphere, and a global mode or modes of oscillation.

6. PERIODIC FEATURES WITH PERIODS AT TWELVE DAYS

Periodic features with periods around 12 days have shown up in the analysis
of solar oblateness observations (Dicke 1977), of Zurich daily sunspot numbers
(Knight, Schatten and Sturrock 1979) and of spectroscopic differential rotation data
and sunspot drift velocity measurements (Kuhn and Worden 1979). In this period
range, the identification of an oscillation as being global may pose problems more
difficult than the ones encountered in actually detecting the oscillation. However,
it is quite feasible to expect to see in this period range the manifestations of
global oscillations particularly in the form of beats (see Gough 1980b), and as such,
these results are considered here.

Dicke (1977) has reported evidence for oscillations in the solar oblateness
data obtained during the summer of 1966 (Dicke and Goldenberg 1974). Dicke's view in
1977 as to the period of this oscillation was 12.64 days (synodic). Knight, Schatten
and Sturrock (1979) analyzed 44520 daily sunspot numbers and found a peak in the
spectrum at 12.07 days (synodic). Kuhn and Worden (1979) have found in their
analysis of spectroscopically derived differential rotation coefficients an
oscillation at 16.7 days. They also note that many frequencies in the sunspot drift
velocity measurements have periods which are multiples of 4.2 days.

It remains for further work to ascertain whether these particular
oscillations are the same or closely related. However, there does appear to be
periodic features in this period region which may prove quite interesting in terms of
solar seismology (Gough 1980b; Knight, Schatten and Sturrock 1979).

7. THE SOLAR CYCLE AND LONGER PERIOD FEATURES

Global oscillations of the sun may well be responsible to some extent for the
very long period structures with time scales 2 10 years. Wolff (1976) using a model
with interacting of modes, has put forth an interpretation of the structure found by
Currie (1973) in the power spectrum of the Zurich relative sunspot number. This
pioneering work in this period domain has produced intriguing results.
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In the spirit of Wolff's model, the spectrum analyses by Dicke (1979) of the
daily sunspot number and the deuterium/hydrogen ([D/H]) ratio from two bristle cone
pines is included here. Dicke has reported a very narrow peak at 22 years in both
spectrum analyses, suggesting a stable clock inside the sun. This is just the
property expected from global oscillations.

These are just the beginnings of developments in this period range. New work
should increase our insight into the mechanisms responsible for these long term
periodic structures.

8. SUMMARY

Viable interpretations of observations have been put forth as evidence for
global oscillations of the sun and many fundamentally important results have
consequently been obtained. It is apparent from this review that much work remains
to be done to fully ascertain the practical value of solar seismology. However,
enough independent work is currently avgi]ab]e to indicate that solar seismology
programs can be mounted during the 1980's with a reasonable expectation of obtaining
new information about the solar interior.

* * * * *

This work was supportd in part by the National Science Foundation and the Air

Force Office of Scientific Research.
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THE LATEST RESULTS OF THE VELOCITY SPECTROSCOPY OF THE SUN!

A. Claverie, G.R. Isaak, C.P. McLeod and H.B. van der Raay
Department of Physics
University of Birmingham, UK

T. Roca Cortes
Instituto de Astrofisica de Canaries

As part of a study designed to obtain an overall view of the solar surface
through examination of low & value oscillations, it was found that high sensitivity
Doppler spectroscopy of integral sunlight in the 769.9 nm line of neutral potassium
reveals several equally spaced lines of high Q centered on the well known period of
five minutes. These lines are interpreted as Tow 2, high n overtones of the entire
sun.

Recent work incorporating high spatial resolution for study of five minute
oscillations in the solar photosphere has indicated a concentration of narrow ridges
in the k,u diagram. Most of these oscillations are global in nature, and are low n
and high ¢ value acoustic modes.

Doppler shift measurements of integral solar light indicated several discrete
Tines of amplitude 0.1 to 0.3 ms~! within the main peak of the power spectrum of the
five minute oscillation. These lines are found to have, on average a uniform spacing
of 67.8 uHz. Line of sight velocity measurements of the whole solar disk were made
using optical resonance spectroscopy comparing the position of the Fraunhofer
absorption Tine of neutral potassium at 769.9nm with that of the same line in the
laboratory.

The observations were made during 1976, 1977 and 1978 at Izana, Tenerife and
simultaneously in 1978 at Pic du Midi in the Pyrenees; the two sites, some 2300 km
apart, were assumed to be meteorologically and observationally independent. The data
analysis was based upon 33, 35 and 7 days of observation, respectively, in the three
years of the study period.

The daily data consisted of a mean line of sight velocity determined every 42

1This paper is an abstract of a talk presented at this workshop by G. Isaak.
The details of the observations were summarized from a lTonger paper published in
Nature (Claverie et al. 1980). The theoretical implications of this work as proposed
by Christensen-Dalsgaard and Gough at the workshop are presented in the following
paper.
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seconds (100 seconds on Pic du Midi) for the entire observing day. Residuals
corresponding to velocity amplitudes of less than 3 m/s appeared after subtraction of
the observer's velocity relative to the centroid of the sun due to the spin and
orbital velocities of the earth. Small allowances for residual curvature effects
were made.

Analysis, using standard power spectrum techniques, of simultaneous data from
the two sites substantiated the solar origin of the observed oscillations and
indicated the existence of a series of well defined peaks. Averaging the power
spectra for individual days over the 3 year period clearly indicated the presence of
peaks with an apparent constant spacing. Further analysis of data strings of
different lengths had no effect on the observed spacing.

The constancy of the peak spacing was demonstrated first by plotting the
order of the peaks against the observed frequencies and second by screening the mean
power spectra data with a high pass filter, by subtracting a moving mean over three
points and then subjecting the resulting points to an autocorrelation and power
spectrum analysis. Mean line spacings of 67.6, 67.4 and 67.6; and 67.8, 68.0 and
68.0 pyHz were found, respectively, by the two analytical methods for each of the
three observational years. A cross éorre]ation analysis of the 1976 and 1977 power
spectra yielded a correlation coefficient of 0.87 with a maximum at zero lag,
indicating the consistency of the lines over the two year period.

The 1978 data, obtained by improved experimental technique, were subjected to
a superimposed epoch analysis. The frequency range was restricted to that covered by
the power spectrum analysis and the same peak structure was found. Straight line
fits to these plots yielded mean line spacings of 67.4 + 0.5 and 67.9 + 0.2 pHz,
respectively.

A power spectrum analysis of two consecutive days of data was made with zeros
inserted in the data string at the times when actual data were not available. This
produced a 32 hour data string whose power spectrum demonstrated the usual peaks in
the power spectrum. Sine waves of the indicated frequencies were subtracted from the
original data by using a least squares procedure which optimized the frequency, phase
and amplitude of the fitted wave. The resulting power spectrum clearly demonstrated
the coherency of the oscillations over the 32 hour data string with a value of Q in
excess of 400.

The authors suggest that these lines correspond to normal modes of vibration
of the whole sun, but note that their definitive identification will necessitate
acquisition of information on their spatial structure. Since integral Tight
spectrometers tend to average out modes of high g2 value with many peaks and troughs
across the visible disk of the sun, the observations are strongly biased toward low &
value modes. This analysis indicates that these modes are of Tow & value which may
supply constraints on the solar interior.
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ABSTRACT

Isaak's announcement (Claverie et al. 1980) of the discovery by his group of
distinct, approximately evenly spaced peaks in the power spectra of whole-disk
Doppler measurements immediately raised the issue of what*they imply about the
structure of the solar interior. Here we report our immediate reactions, and infer
that the observations seem to imply a lower sound speed, appropriately averaged
throughout the interior, and probably a lower mean temperature than standard solar
models predict.

1. INTRODUCTION

Taken at face value, the observations reported by Isaak and his colleagues
(Claverie et al. 1980) provide a very important addition to the solar oscillation
data. It appears that the peaks in the power spectra are produced by p modes of low
degree, as Isaak has proposed, because it is to such modes that the measuring
technique is most sensitive. Unlike the more common five minute oscillations of high
degree that have been measured carefully by Deubner (1975, 1977), Rhodes, Ulrich and
Simon (1977) and Deubner, Ulrich and Rhodes (1979), these modes penetrate deeply into
the sun and so provide us with direct information about the solar interior. It is of
considerable interest, therefore, to analyze these oscillations, and to ask what they

imply.

2. INTERPRETATION OF THE DATA

Isaak has suggested that the peaks in his power spectra might arise from a
single spectrum of modes of Tike degree, such as the radial pulsations. If one
compares the mean frequency separation between those peaks with the differences in
neighbouring frequencies of a single spectrum of modes of a typical standard solar
model (e.g., Iben and Mahaffy, 1976; Christensen-Dalsgaard, Gough and Morgan 1979)
one finds that the latter exceeds the former by a little more than a factor 2.
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Isaak's interpretation would therefore imply that the internal structure of the sun
is very different from that of the usual models.

To see just how different the sun would have to be, Tet us note that for
periods near five minutes the order n of the modes of a standard solar model is about
20, provided the degree % is about unity, and the asymptotic formula valid for n >> g
for the cyclic frequency difference Av between modes n and n + 1 is a good
approximation (Christensen-Dalsgaard, Gough and Morgan 1979). Thus

R -1
Av = <2 Jo d_ct> . (1)

(e.g., Vandakurov 1967), where r is a radial distance coordinate, c is the local
adiabatic sound speed and R is the solar radius. We can see, therefore, that a
halving of Av implies a halving of an appropriate mean of the sound speed. If one
ignores uncertainties in composition, it would be necessary for the sun to have a
mean temperature only 70 percent of that of the standard models. The problems this
idea poses are tremendous, if one wishes to accept the atomic and nuclear physics
upon which the theory depends. Moreover, it raises the question of why only a single
spectrum of oscillations is excited.

A more likely explanation, perhaps, is that contributions from modes of all
degrees are present in the data. It is a property of modes with n >> & that the
frequencies of modes with even & almost coincide; so do the modes with odd 2, their
frequencies 1ying approximately midway between those of their even counterparts.
Only when & becomes comparable with n do the frequencies fail to coincide, but then 2
is so great that the sensitivity of the measuring technique is extremely small. To
counter somewhat the decrease in instrumental sensitivity, however, is the fact that
there are present in the sun a very large number of modes of high degree. Thus one
might expect to see in the power spectrum of the five minute oscillations a continuum
produced by the majority of the modes, upon which is superposed the discrete spectrum
arising from all the modes of low degree. To assess whether this idea is plausible,
we shall discuss in the next section the dependence of the instrumental sensitivity
on the degree of the modes.

3. STRUCTURE OF THE POWER SPECTRUM

Let Vng be the surface velocity amplitude of the modes characterized by
(n,2): we shall assume that the 22 + 1 modes of degree 2 are on average excited to
the same amplitude. Then if actual and instrumental broadening are ignored, one
would expect the observed mean power spectrum to be of the form:
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Pv) = 2 (2 + DAV 800 - v

(2)

ne)

assuming random phases, where v is frequency, Ve is the frequency of the mode (n,s),
Sy is the mean instrumental sensitivity (spatial filter function) for the modes of
degree £, and & is the Dirac delta function. Note that because the oscillations
under consideration are p modes, their velocities are almost radial. Hence Sz
depends only on the structure of the surface harmonics of degree £, and not on the
order n of the modes.

Spatial filter functions for p modes of Tow degree have been computed by Hill
(1978). First the surface harmonics are expressed in terms of the usual polar angles
(6,¢)» Because the mean power spectrum presented by Claverie et al. (1980) is an
average of spectra each of which is computed from only a single day's observing,
rotational splitting can be ignored and the oscillations have no preferred direction.
Hence it is immaterial in which direction one chooses the polar axis to be. It seems
most expedient to choose it to lie along the line of sight, so that the mean velocity
observed, if one neglects 1imb darkening, is given by

n/2 2w s
Vg JO PM (cos 8) cos? 6 sin @ deJ,o S0

v =S,V
nem T 2n 5 2 1/2 T T'm ng
5}[ [pg‘(cos e):l2 sin® do f ST me dé
| (o} 0 COSZ

where P@ is the associated Legendre function. The normalization has been chosen such

that V,, is the root-mean-square velocity over the entire surface of the sun. In this
coordinate system Szm =0ifm#0, so that the mean spatial filter function Sps
averaged amongst all the modes of degree 2 (with respect to any coordinate system),
is simply

1/2
) -1/2 -
S, = (2 +1) S0 T (2 - z/;) r{5/2 +2/2) ° )

where T is the gamma function.

Values of the functions S, and the weights (22 + 1)5% appearing in equation
(1) are presented in Table 1 for the modes of lowest degree; S, =0 for all even ¢
greater than 2. Hill (1978) presents in his Table 4.1 values of filter functions
comparable with Syp, the only difference being that his functions are referred to a
polar axis perpendicular to the line of sight. It should be the case that the root-
mean-square of all Hill's values corresponding to a particular & should simply be Sg»
but there appears to be some discrepancy.

0f course the actual power spectrum is not quite of the form (2), because
broadening merges groups of discrete but almost coincident delta functions into a
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Table 1.
g 5, (2 + 1)s2
0 0.667 0.444
1 0.500 0.750
2 0.267 0.356
3 8.33 x 1072 4.86 x 10-2
5 -1.04 x 102 1.19 x 10-3
7 3.13 x 1073 1.46 x 10~4

-1.30 x 1073

3.22 x 1072
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sequence of almost evenly spaced peaks. Nevertheless the positions of the centers of
each peak could be estimated by averaging the eigenfrequencies contributing to that
peak with weights (22 + l)SEVEQ. This task is not simple because we do not know the
relative amplitudes Vnz' It is evident from Table 1, however, that unless the
surface amplitudes increase rapidly with 2, the data are dominated by contributions
from only the first few spectra of modes. It is interesting to note that the sum of
those values in the third column of Table 1 corresponding to the modes of even degree
is the same as that from the modes of odd degree. Hence if all the low degree modes
were excited to comparable surface amplitudes, one would not expect to find a
systematic alternation in the heights of the peaks in the mean power spectra of the

observations,

4. IMPLICATIONS CONCERNING THE SOLAR STRUCTURE

Given a sequence of solar models, with known pulsation frequencies, one can
in principal use the whole-disk five minute power spectra to choose that model which
most closely fits the data. The first step is to obtain a rough estimate by
comparing the observed mean spacing of the peaks with that of the models. Hopefully
this would be sufficiently accurate to associate with each peak in the spectrum the
order of the mode of a particular degree whose frequency should correspond to the
position of that peak. Having thus identified the modes, a finer adjustment could
then be made by aligning the actual values of the eigenfrequencies with the positions
of the peaks.

Let us compare the mean peak separation in the Birmingham data, about 0.0680
mHz, with the predictions of a standard solar model. Christensen-Dalsgaard, Gough
and Morgan (1979), for example, present mean eigenfrequency separations of several
spectra of modes of low degree of a solar model with uniform heavy element abundance
Z = 0.02, the mean being taken in the period range 280s ~ 350s. We quote 0.137 mHz,
0.138 mHz, 0.139 mHz and 0.139 mHz for the spectra with ¢ = 0, 2, 3 and 4
respectively. Note that all these values exceed twice the observed spacing.
Consequently, as can be seen from equation (1), the observations imply that the mean
sound speed in the interior of the standard model is too high, It is interesting to
note that lowering the sound speed in the interior generally implies a lowering of
the neutrino flux.

In addition to the model with uniform Z, Christensen-Dalsgaard, Gough and
Morgan (1979) examined two models with low initial Z that have been contaminated
during their main-sequence evolution at rates such as to raise their surface heavy
element abundances to Z = 0.02 at the present time. They found, in accord with
previously computed metal deficient models with uniform Z, that the frequency
spectrum for modes of Tike degree becomes less densely spaced as the value of Z in
the interior decreases (cf. Iben and Mahaffy 1976). Such a model might therefore
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reproduce the Birmingham data. Indeed, if we assume that the centers of alternate
peaks in the power spectra are given approximately by the average of the frequencies
of the £ = 0 and £ = 2 modes, the model with Z = 0.004 has the same mean spacing as
the mean power spectrum of the observations; this model has a neutrino flux of 2.3
SNU, which is within two standard deviations of Davis's (1978) mean value.

It would be rash to conclude from this exercise that the sun has a low heavy
element abundance in its interior. The frequency separation obtained from the whole-
disk observations provides a complicated average of the internal sound speed, not the
composition. Although the contaminated solar models reproduce some of the observed
features of the sun, acceptance of them probably poses more problems than it appears
to solve. In particular the model with Z = 0.004 has a convection zone only 120,000
km deep, too shallow to explain the frequencies of the five minute oscillations of
high degree (Berthomieu et al. 1980; Lubow, Rhodes and Ulrich 1980), and not shallow
enough to provide a natural explanation of the claim of Hill and Caudell (1979) that
g modes of moderate degree have significant amplitudes in the photosphere
(Christensen-Dalsgaard, Dziembowski and Gough 1980). Other possibilities exist for
reducing the sound speed in a solar model, such as upsetting the thermal energy
balance (e.g., Dilke and Gough 1972). It remains to be seen whether such models can
reproduce the Birmingham data.

* * * * *
We are grateful to A.J. Cooper for pointing out an error in the original

manuscript.
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OBSERVATIONS OF LONG PERIOD OSCILLATIONS
IN THE SOLAR LIMB DARKENING FUNCTION

R.T. Stebbins
Sacramento Peak Observator‘y1
Sunspot, New Mexico

1. INTRODUCTION

The most interesting region of the sun's normal mode spectrum Ties between v
.1 mHz and v 2 mHz. Theoretical predictions of the spectrum (Hil1 1978, Figure 2.2)
show the high frequency extreme of the g modes to lie near .4 mHz, the band becoming
increasingly dense toward 1Qwer frequencies. The -fundamental modes overlap the g
modes sT1ightly and extend upward to .45 mHz. The p modes extend from .25 mHz up to
higher frequencies with increasing density. The g modes are of interest because they
probe the deep solar interior. The period of the fundamental radial mode is very
sensitive to envelope structure. The p modes probe the envelope and may be expected
to be most readily observable. The rotational sidebands of any mode at any depth
reflect the internal rotation at that depth.

In the region of the spectrum where the modes are least dense (.45 - .6 mHz),
there are 110 modes/mHz; ignoring rotational sidebands the spectral resolution of the
elusive 12-hour uninterrupted observation is 23 uHz, encompassing 2-3 modes in the
sparsely populated region. Resolution of rotational sidebands would require a 600
hour uninterrupted observation. By comparison, p modes in the five minute band are
roughly a nanohertz apart. The extreme density and complexity of the sun's acoustic
spectrum coupled with the signal weakness in the interesting .1 - 2 mHz region make
observations of this phenomena extremely challenging.

2. BACKGROUND

The original measurements of oscillations in the .1 - 2 région stem from the
oblateness measurements of Hill and Stebbins (1975b). The early serendipitous work
in this area (Hi11 and Stebbins 1974, 1975a) culminated in a concerted effort (Brown,
Stebbins and Hill 1978) to demonstrate the reality of solar oscillations in a
spectral regime where none had been seen previously. The method used, a product of
the oblateness effort, was a novel one: the shape of thé limb darkening function was

1Operated by the Association of Universities for Research in Astronomy, Inc.
under contract AST 78-17292 with the National Science Foundation.
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analyzed by a finite Fourier transform to locate a point, called the "edge" of the
sun as defined by the Finite Fourier Transform Definition (FFTD). The FFTD located
at an edge of the sun which was extremely precise, affected by motion of the solar
limb and certain forms of limb brightening, and very insensitive to seeing changes.
Oscillations, reported as motion of the FFTD edge, could have been due to limb motion
and/or a pulsating limb brightening of the requisite form.

This work was met with skepticism (see Hil1 1978 for summary). The sun was
presumed not to be a pulsator. The FFTD was not widely understood. Conventional
methods, such as Doppler techniques and intensity measurements, did not produce
corroborating results. Two classes of explanations for the FFTD pulsations were
advanced: the spectra were basically noise, or some systematic effect, other than
global pulsations, gave rise to the observed spectra. In the latter case,
explanations ranged from instrumental to atmospheric differential refraction to the
rotation of small brightness features (e.g., granules) through the aperture.

Deubner's work (1975) on the five minute oscillation now is commonly taken to
demonstrate that the sun is a pulsator. Intercomparisons between different types of
observations seem to fail in a variety of circumstances (Hi11 1978), including the
easily observed and robust five minute oscillations. Alternate explanations of the
long period oscillations, as detected by the limb analysis method, are rarely
accompanied by the appropriate careful observation. Brown, Stebbins and Hill (1978)
have made the most extensive statistical analysis of the FFTD spectra, which they
offer as the fundamental arguments for the reality of the oscillations. Phase
coherence demonstrated by Brown, Stebbins and Hill (1978), and of late more strongly
by Hi11 and Caudell (1979), Caudell and Hill (1980), and Caudell et al. (1980), add
credence to the solar global pulsation interpretation and are inconsistent with
instrumental, atmospheric, or granule interpretations. In short, the case for the
existence of long period solar oscillations is growing stronger.

3. GOALS

To reap the potential rewards of solar seismology will require more than
establishing the existence of the long period oscillations. Considering the
faintness of even the FFTD signnal, some improvements in observational techniques are
called for. Although Brown, Stebbins and Hi11 (1978) did not take advantage of it,
the FFTD is capable of distinguishing between 1imb motion and 1imb brightening.
Indeed, it was employed to just that end in the oblateness measurements. By a twist
in the application of the FFTD, it can be used to test the character of the
oscillatory signal, thereby distinguishing between possible origins of the signal.
Moreover, the observed character, should it prove to be that of global oscillations,
should be predictable by pulsation theory.

Further, the work reported here was conducted on a different instrument than
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all previous FFTD work. Another data base is also highly desirable for a novel
phenomena such as global pulsations. The goals here, then, are an improved detection
technique, an elucidation of signal character, further tests of the pulsation
interpretation, and an expanded data base.

4. METHOD

Despite its novelty, the FFTD still seems to be the most effective way to
detect oscillations between .2 and 1.5 mHz. The details of the FFTD and its
properties have been described, studied, and tested extensively (Hill, Stebbins and
Oleson 1975). Briefly, a weighting function, defined in an interval of predetermined
width, is multiplied by the observed 1imb darkening function and the results are
summed. The interval is translated across the 1imb darkening function until the sum
goeé to zero, i.e., a balance point is found. That point, the center of the
interval, is called the edge.. The weighting function, a Chebyschev polynomial, is
chosen so that the edge location is insensitive to seeing changes and sensitive to
certain forms of change in the Timb darkening function.

The interval width, half of which is called the scan amplitude, is an
adjustable parameter. Changing the scan amplitude changes the sensitivity to Timb
brightening. Therefore, subtracting the motion of an FFTD edge defined by a small
interval from another FFTD edge defined by a large interval measures the difference
in sensitivities to 1imb brightening. If the pulsation manifests itself by 1imb
motion alone, the subtraction yields zero. If the shape of the limb darkening has a
pulsating component, the subtraction should be non-zero. The results of this
subtraction will be called the brightness signal. By forming many brightness signals
with a referenced edge defined by a large interval and many edges defined by
progressively smaller intervals, one has a characterization of the limb brightening
signal, a signature. That signature can be calculated from an intensity
eigenfunction through application of the FFTD formalism. This signature can be the
point of comparison between pulsation theory and observation.

In the past, the FFTD has been applied directly to a digitized limb profile
from a scanning photomultiplier. An error signal was used to serve the center point
of the scan. This transpired simultaneously at two diametrically opposed limbs, and
the recorded data was the solar diameter, i.e., the separation of the
photomultipliers. The interval size was established by the mechanical scan amplitude
(hence the terminology). The innovation in this work was to record the digitized
limb profile and compute a family of FFTD edges by numerically setting the scan
amplitude to several values. In this way, many FFTD edges could be followed
simultaneously. Another difference in the present work is the fact that only one
limb is used. Although this restriction is imposed by the available equipment, it
does eliminate the possibility of atmospheric differential refraction effects and the
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measurement of limb motions. This measurement responds only to brightness
oscillations.

The data were acquired with the Diode Array on the Vacuum Tower Telescope at
the Sacramento Peak Observatory. The Echelle spectrograﬁh was made to pass a nharrow
band of clean continuum near 6430 A. The diodes were set up to digitize a 96" x 96"
patch astraddle the west 1imb at the equator. The sample interval in the radial
dimension was 1". The data was averaged in the tangential direction to reduce the
effects of granules in the aperture. The patch was digitized by sweeping the image
past the line of diodes in the tangential direction. Digitization and flyback took
slightly less than 16 seconds and was repeated every 16 seconds for as long as
possible without interruption. This observing program was pursued as often as
daylight, telescope scheduling, weather, breakdown, and other calamities would allow
from March 1977 to October 1979. Data sets represented here are tabulated in Table
1. Of the 53 data sets, these 16 have been selected for length (none shorter than
8.0 hours) and paucity of interruptions.

The data reduction begins by computing a family of FFTD edges for each time
step. Eighteen edge signals are followed with scan amplitudes (interval halfwidth)
ranging from 6" to 44". The family of 18 edge time strings is converted to a family
of 17 brightness signal time strings by subtracting all others from.the edge signal
with the largest scan. This subtraction removes all 1imb motions whether oscillatory
or telescope pointing errors. The family of brightness signals is transformed to a
family of Fourier transforms by the usual methods. (Mean and quadratic removal,
windowing, extension with zeros, and transformation follow the advice of Brault and
White 1971.) Finally, the amplitude and phase of each brightness signal at each
frequency point are computed. This result can be thought of as a two-dimensional
surface. Frequency and scan size are the independent variables; the amplitude of
oscillation is the dependent variable. The signature is seen by taking a constant
frequency cut through this surface. '

This report will henceforth concern itself with an examination of the
signature, the amplitude of oscillation versus scan. This function can be influenced
by several factors. First is the 1imb brightening caused by a particular global
mode. p and g modes exhibit different Timb brightenings (Hi11 and Caudell 1979), and
in frequency increments where both are present, there will be superposition'to
confuse the observer. Secondly, within a frequency resolution element, the observer
will see a superposition of all the active modes. The frequency resolution is one
over the length of the data set; the beat period is equal to or greater than the
length of the data set--which hampers day-to-day comparisons. Thirdly, an FFTD edge
defined by a particular scan will have a dependence on &, the principal index of a
mode's spherical harmonic. Consequently, the signature may change if the dominant
mode in the frequency interval changes to one with a different 2 value.
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Date

Starting Time (UT)

Length (Hours)

Limb

29
30
6
7
11
12
29
1
2
3
13
7
8
10
11
12

September 1977
September 1977
April 1978
April 1978
April 1978
April 1978
September 1978
October 1978
October 1978
October 1978
May 1979
October 1979
October 1979
October 1979
October 1979
October 1979

13:46:32

13:
13:
13:
13:
13:
13:
13:
13:
13:
15:
15:
14
15:
13:
14:

36:
46:
49:
51:
23:

57

51:
56:
57:
54:
50:
20:
03:

47

40:

16
48
00
08
04

116

28
28
52
24
00
12
52

148

24

10.
10.
11.

8.
10.

9.
10.
10.
10.
10.

08
08
16
06
78
22
17
35
22
49

.38
.27
.39
.Zi
.34
.96

West Equator
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To examine the signature, the analysis is restricted to .45 - .6 mHz where
theory predicts a sparsely populated region of only p modes. To determine what the
signature looks 1ike, and how reproducible it is, the signature is averaged over this
frequency band in all 16 data sets and the standard deviation of the averages is
computed.

5. RESULTS

The empirical signature is shown in Figure 1. One can see the variation of
oscillatory amplitude with scan. The standard deviations of the mean are shown at
each of the scan values used. In computing these, account has been taken of the fact
that the time strings were extended with zeros to 18.2 hours, and consequently the
frequency points are not independent measurements.

There is a significant signature, peaked toward smaller scans. This is
direct evidence that oscillations detected by FFTD 1imb analysis are brightness
changes at least in part. There may or may not be motion of the 1imb for Doppler
detection, but there are brightening changes. This is a systematic effect, not the
result of random noise in 17 different channels. What are the possible sources of
this systematic signature ?

Changes in atmospheric. seeing have a signature peaked toward smaller scans.
However that signatufe should have a minimum near a scan 1.8 times the full-width-at-
half-maximum of the atmospheric transfer function. With seeing 5" or less, that
minimum would be found at a scan of ~ 8", if the signal were due to seeing
fluctuations. There is no minimum to be seen. But this result is consistent with
the known properties of the FFTD; the most sensitive FFTD edge (6" scan) would move
about 1 milli sec for a 20% change in the full-width-at-half-maximum. Considering
that seeing fluctuations have a broadband character, one would not expect to see an
atmospheric signature here--and one does not.

Instrumental sources and atmospheric differential refraction are ruled out by
the nature of the measurement. The differential aspect of the brightness signal
removes telescope problems. Esoteric diode misbehavior (selected oscillating gains
carefully arranged about the limb to look like the 1imb darkening changes) would be
averaged out by telescope pointing errors.

The casual rotation of surface brightness features through the aperture can
be ruled out by two tests: similar data taken at the pole has the same signature,
and the brightness signals all have very similar phases. Since different granules
are passing into the different FFTD intervals, the FFTD signals should not enjoy any
phase relation. )

Global pulsations, on the other hand, may indeed have this signature. This
signature suggests 1imb brightening sharply peaked toward the intensity onset.
Conventional linear pulsation theory does not predict such an intensity
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been averaged from .45 to .6 mHz and over all data sets. The reference edge has a
scan amplitude of 44 arc sec. The brightness amplitude is the Fourier amplitude of
the brightness signal, the separation between the FFTD edge with the associated scan
size and the reference edge. The error bars are the standard deviation of the
average.
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eigenfunction, but then, as the paper in these proceedings by Stebbins et al. (1980)
shows, conventional linear pulsation theory is inconsistent with the observed
behavior at five minutes. There is evidence of nonlinearity there, suggesting the
sort of mechanism necessary to produce the required temperature structure. Knapp,
Hill and Caudell (1980) show evidence for a limb brightening sharply peaked toward
the intensity onset. Considering that the average spans two years of observations,
this signature would appear to be an enduring characteristic of the sun.

6. CONCLUSIONS

The eviden;e presented here demonstrates the reality of long period
brightness oscillations in the solar limb darkening function. This extension of the
FFTD, the simultaneous application of multiple edge definitions, provides another
test for establishing the reality of long period solar oscillations. Additional
information, namely the signature, characterizes the signal measured, and can be used
to enhance detection of these faint and complex signals. In essence, brightness
oscillations can be detected without relying on the broadband statistics of spectra.
This is essential for study of small bands in highly resolved spectra. The signature
information also affords a vehicle for comparison to pulsation theory, another step
toward seismology.

* * * * *

The observing staff of the Tower telescope, Horst Mauter, Dick Mann and Gary
Phillis, deserve special mention for the perseverance demanded by the exacting setups
and the long tedious observing runs; they made it possible. Timothy Brown and Henry
Hi1l1 contributed useful comments throughout. I am especially indebted to Henry for
pointing out a flaw unwittingly introduced into the analysis after it was originally
avoided. The forbearance of the editors and the typist, Ms. Christy Ott, in tardy
preparation of the report are also acknowledged.
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SOLAR CONTINUUM BRIGHTNESS OSCILLATIONS:
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During the last few years a controversy has grown up surrounding the proper
treatment of boundary conditions for oscillations in the solar atmosphere. Hill,
Caudell and Rosenwald (1977) have pointed out that by observing two oscillating
dynamic variables simultaneously, it is in principle possible to determine the
relative contribution of two independent solutions to the wave equation. These
solutions are conventionally denoted £_ and £, corresponding respectively to waves
that are of roughly constant amplitude at all heights in the solar atmosphere, and to
those that grow exponentially with height, on a scale comparable to the pressure
scale height. These arguments are plausible, but they lead to a surprising result:
using available measures of velocity and intensity amplitudes in several frequency
regimes, together with a detailed nonadiabatic model to generate the required
eigenfunctions, Hill, Rosenwald and Caudell (1978) concluded that the amplitudes of
the £_ and &, solutions are approximately equal in the upper photosphere. This
conclusion has stirred much criticism, since there is no a priori reason to expect
the £, solution to be in any way significant. A more direct objection is that at
each frequency there are exactly as many parameters to be fitted (the two wave
amplitudes) as there are observations available (a velocity and intensity amplitude).
There is thus no meaningful way to cross-check the theory's predictions with other
observations. This situation has led us to seek other sets of observations which are
more informative than those currently available, so that the notion of a large

contribution from the &£ solution can be checked for self-consistency. Although we
have not yet succeeded in this aim, some progress has been made, and we can now judge
where the effort will lead and begin to draw some tentative conclusions.

Our approach has been similar to that of the SCLERA group in that we intend
to combine observations of velocity and intensity amplitude at the various
frequencies of interest. It differs, however, in that we wish to use observations
with high resolution in both the spatial and temporal frequency domains (henceforth
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termed "wavenumber" and "frequency"). There are two principal advantages to using
observations of this sort. First, with adequate resolution it is possible to
distinguish between p and g modes of oscillation, or, in the case of the five minute
oscillations, between different radial modes. It thus becomes possible to compare
modes with the same radial mode number but different frequencies, or with different
mode numbers and the same frequency. As long as the effects of varying wavenumber
are not large, such comparisons can be made in a straightforward way. The second
advantage found in the use of high-resolution data is that the importance of any time
delay between the velocity and intensity observations is reduced. Since almost all
of the. incoherence in early observations of the five minute oscillations comes from
beating between the various modes, resolving the modes leads to a much more stable
power spectrum. Thus, it seems likely that the use of this technique will produce
good velocity-intensity ratios regardless of the amount of time which elapses between
the two sets of observations.

The problem of obtaining k-w diagrams of velocity, though still calling for
careful work, now seems to be well in hand (Deubner 1975, 1977; Rhodes, Ulrich and
Simon 1977). For this reason we addressed the development of methods for obtaining
data of the same quality on intensity oscillations. This proved to be a more
difficult problem for a variety of reasons. The most serious impediments were the
small amplitude expected for the intensity fluctuations (in the entire 5-minute band,
rms SI/I of about 2 x 10‘3), coupled with the large background power to be expected
from non-oscillatory sources like granulation. Further, the intensity oscillations
represented a small perturbation within a large constant background, meaning that any
change in detector sensitivity or atmospheric transmission would appear strongly in
the fluctuating intensity signal. All of this suggested that large amounts of data
and sophisticated reduction techniques would be needed to attain the desired
accuracy, and that the optical setup used for the observations should be as simple
and stable as possible. For these reasons we chose to observe the brightness
oscillations in the continuum, a decision that was reinforced by the comparative
simplicity of radiation transfer in the continuum.

To date we have observations of two distinct sorts, one dealing with
oscillations at the extreme solar limb and the other with those at disk center. The
former consist of photoelectric observations taken with the vacuum tower telescope
and echelle spectrograph at Sacramento Peak Observatory. The data were processed in
such a way that the effects of atmospheric seeing and transparency changes were
negligible but, unfortunately, the frequency and wavenumber resolution were at best
marginally adequate for the purposes outlined above. For a full discussion of these
observations, see Brown (1979). The disk center observations were photographic, also
obtained at the Sacramento Peak tower telescope, but using the Universal Birefringent
Filter (UBF). These observations cover a much larger field of view than do the Timb
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observations, resulting in considerable improvement in the wavenumber resolution
obtainable. In addition, the large number of pixels per. frame significantly
increased the signal-to-noise ratio. The registration problems inherent in disk-
center observations were solved by superimposing images of a small sunspot that were
brought in by periscope from another part of the solar disk. We analyzed these
frames by digitizing the entire time series, converting photographic density to
intensity, and correcting for sky transparency and similar effects in such a way that
the integrated sunlight in each frame appeared constant. We then integrated each
frame along one spatial dimension to produce a two-dimensional data array, with space
and time constituting the coordinate axes. Finally, using conventional fast
transform techniques, we produced two-dimensional power spectra from these data. The
analysis of these data is not yet complete, and our attempts at interpretation have
barely begun. Nevertheless, it is possible to make a few statements based on a
comparison between the two data sets, as well as on the more complete analysis of the
1imb observations.

The k-w diagram derived from the 1imb observations is shown in Figure 1.
Especially at the higher contour levels, the power is Tocated in two well-separated
frequency regions, corresponding to periods of five minutes and periods of fifteen
minutes and longer. Some of the low-frequency power undoubtedly comes from the
granulation intensity field, but by far the largest part of the observed power lies
at wavenumbers of less than 0.5 Mm'l, corresponding to features of roughly
supergranule size or larger. Exactly what physical process is responsible for these
large-scale intensity perturbations is not clear. Several interesting conclusions
may be reached by studying the way in which the k-w diagram varies with ¢ in the
neighborhood of the extreme 1imb. In particular, the analysis of Tow-wavenumber
fluctuations below frequencies of .004 s=1 (Brown 1979) indicates three things:

(1) The amount and radial distribution of power in this band is sufficient to
cause the apparent diameter fluctuations reported by Brown, Stebbins and
Hi11 (1978). This verifies that the diameter variations are indeed caused
by changes in the detailed shape of the 1imb darkening function.

(2) The amplitudes of the fluctuations tend to increase with increasing distance
from the limb, unlike the relationship predicted by Brown, Stebbins and Hill
(1978). This implies that most of the fluctuations originate comparatively
deep in the photosphere, and not in a high, optically thin shell.

(3) There is no sign of a narrow spike in oscillating intensity at the extreme
limb. This spike was a prominent characteristic of the models of Hill,
Rosenwald and Caudell (1978) and, although the 1imb observations were not
well suited to detect such a feature, it should have appeared in some
measure.

Figure 2 shows a k-w power plot derived from the disk-center observations.
The differences between this plot and that given in Figure 1 are immediately
apparent. Most notably, the region of low-frequency power has grown until there is
no clear distinction between it and the five minute oscillations, at least at low
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wavenumbers. On the other hand, the resolution has improved so that, at higher
wavenumbers (above 0.8 Mm-1 at .02 s'l), the ridge structure of the five minute
oscillations can be clearly distinguished. The ridges corresponding to radial
numbers of 0 and 1 are particularly well shown, and those corresponding to 2 and 3
are discernible. The apparent noise level in this region of the k-4 diagram is
extremely low, corresponding to a value for (<SI/I)2 of less than 5 x 1Q’14 per
frequency-wavenumber bin. Evidently photographic techniques are very effective in
this area of the diagram. Unfortunately, their performance along the axes k = 0 and
w =0 1is less inspifing. Stationary imperfections in the image (dirt on the optics,
internal reflections) cause spurious power at w = 0. Similarly, variations over time
in the development process tend to cause low-wavenumber fluctuations at all
frequencies. It will thus be difficult to use this technique to Tearn much about
oscillation modes with periods comparable to the length of a timestring, or with
wavelengths comparable to the’size of the photographic frame. Further, the
difficulty of obtaining accurate bhotometric calibration at any period or wavenumber
may cause some uncertainties in the derived velocity/intensity ratios. In spite of
these difficulties we can tentatively conclude that the intensity amplitudes of the
five minute oscillations are larger at the 1imb than at disk center, while for
fluctuations at low frequencies and wavenumbers this trend is reversed. These facts
suggest that the intensity fluctuations responsible for the observed power arise high
in the photosphere for the five minute oscillations, and much lower for oscillations
of lower frequency and wavenumber.

Work is continuing on the analysis of these observations with two chief aims.
The first of these is to determine, for a number of regions within the range occupied
by the five minute oscillations, the ratio of rms amplitudes for velocity and
intensity. For this purpose the velocity measurements will not be simultaneous with
the intensity measurements, since the former must be taken from the literature. Our
second goal is improvement in observing and averaging techniques so that k-w diagrams
of intensity may be obtained more conveniently and with improved noise levels and
resolution. Once such methods are available, it should be possible to refine the
estimates of velocity/intensity ratios, extend these estimates to larger areas in the
k-w plane, and perhaps obtain these ratios using simultaneous observations of
velocity and intensity.
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RECENT OBSERVATIONS OF SOLAR OSCILLATIONS AT SCLERA
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ABSTRACT

This work deals with the subject of global solar oscillations. These
oscillations are observed as fluctuations in the diameter of the sun. A diameter is
determined by a mathematical solar edge definition at the SCLERA! instrument. - The
oscillations have periods ranging from a few minutes to several hours and have
amplitudes measured in millionths of a solar radius. These small amplitudes are
observable only due to the unique properties of the edge definition. The properties
of the observed solar oscillations are determined from the data; their statistical
significance and repeatability are then tested.

1. INTRODUCTION

The reported discovery of global long period solar oscillations has raised
many questions among the scientific community, some expressing doubt as to their
existence, others expressing uncertainty as to their origin. The previous works of
Hi1l and Stebbins (1976); Brown, Hill and Stebbins (1978); Hi11 and Caudell (1978)
have categorically addressed the problems of defining the edge of the sun, sources of
noise in diameter measurements and alternate interpretations of the results as well
as the statistical significance of the global oscillation interpretation. In this
paper we discuss the current set of solar diameter measurements, their analysis and
their significance.

The observations discussed within this work were gathered at the SCLERA
facility, a telescope located in the Santa Catalina Mountains nertheast of Tucson.
This instrument has been described in much detail elsewhere (Stebbins 1975) and
therefore will not be readdressed here. A new set of solar oscillation measurements
which were obtained in the spring of 1978 are presented. Comparison with previous

LSCLERA is an acronym for Santa Catalina Laboratory for Experimental

Relativity by Astrometry, jointly operated by .the University of Arizona and Wesleyan
University.
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data is made and the repeatability of the phenomena demonstrated. The temporal phase
coherency of the newly observed oscillations is examined and the statistical
significance determined.

2. OBSERVATIONS

The raw oscillation data consists of time strings of relative solar
diameters; relative in the sense that no absolute diameter is measured. A
mathematical definition. of the solar edge, referred to as the finite Fourier
transform definition (Hi11, Stebbins and Oleson 1975) or FFTD hereafter, was applied
to diametrically opposite 1imbs. This edge definition has several important
properties. The first is that the FFTD has a vastly decreased sensitivity to
atmospheric "“seeing" compared to other definitions. The second is that the FFTD has
enhanced sensitivity to intensity fluctuations which peak sharply at the limb and
manifest these fluctuations as diameter changes (see paper by Knapp et al. in this
work.) These two properties conspire fogether to allow the detection of solar
oscillations from earth-based observatories.

3. DATA ANALYSIS

- In detail, the new observations consist of 18 days of equatorial diameter
measurements interspersed between May 21 and June 12, 1978, A diameter was. recorded
digitally every 8 seconds after being filtered by a digital low pass R.C. type filter
with a time constant of 16 seconds. These were later averaged together in groups of
8 to form a time string sample of every 64 seconds. Corrections for atmospheric
refraction were calculated and made to the data followed by a least squares fit
parabola. The resulting time strings, which ranged between 200 and 500 points, were
multiplied by a cosine bell apodizing function which tapered the first and last 10
percent to zero and padded zeros out to 2048 points. Standard fast Fourier
transforms were then computed, normalized to the number of points in the actual data
string and stored.

4., INTERCOMPARISON OF OBSERVATIONS

For the 13 longer time strings, power spectra were computed and a 13 day
average was formed. This average is plotted in Figure 1 as a function of frequency
ijn milliHertz. Note the general character; a series of peaks with varying heights
superimposed on a variable background. There is a larger than average feature at the
very low frequencies which partially results from incomplete atmospheric refraction
correction, but otherwise the average peak plus background height remains nearly
constant. How does this spectra compare to those obtained previously; that is, how
repeatable is this result?
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To answer this important question we have made a thorough comparison between
the newest data and that of Brown et al. (1978) taken in the fall of 1975. The two
aspects considered are (1) the repeatability of the frequencies present in the
spectrum, and (2) a comparison of the peak heights to background ratio, a measure of
the noise both solar and nonsolar. We will address these tests in order and place
the results in Table 1. In the final section, the phase coherence of the new
observations will be discussed along with their statistical significance.

To begin with, the two sets of observations are listed as the first item in
Table 1. Note that the 1975 set was mixed between solar equator and pole whereas the
1978 data was taken entirely at the equator. As the second item in the table we give
the average length of the daily observing run with the standard deviation of each
average following the appropriate time. Third in the 1ist is the FFTD scan amplitude
used for the data sets. This amplitude specifies the amount of the solar Timb used
in the computation of the edge definition and dictates the sensitivity of the
observations to variable sized spatial structures (Hi1l 1978) which may be present on
the solar surface. This property will be examined more closely in a later paragraph.
We now turn to the comparison of average power spectra.

When comparing power spectra, a peak will be defined as a Tow-high-low
combination of contiguous points in power and we will call frequency alignment of
peaks between the two separate spectra the instance when the maximum power occurs in
the same 30 microHertz wide frequency bin (the resolution of the data sets). When
all peaks are considered under the above criteria, 20 peaks are in frequency
alignment between the 1975 and 1979 spectra. For a purely random source of diameter
fluctuations, one expects approximately one-third of the total number of peaks to be
in alignment by this selection criteria. The reason for this is simply that it takes
three frequency bins to define a peak, one high and two low, yielding a one in three
chance for a random alignment between another set of ‘three bins. To calculate more
carefully the probability that the alignment of 20 peaks could be of random origin a
numerical simulation has been used. This is because the 1975 spectrum has 29 peaks
where the 1978 spectrum has 36, giving trouble in the standard binomial coefficient
technique.

To simulate the comparison process, a Monte-Carlo calculation was performed.
The method was to generate a large number of pairs of spectra, 1.0 x 105 in this
case, each with 29 and 36 peaks respectively placed at random frequencies within the
93 frequency bins in the interval of interest. The number in alignment is counted
for each random pair and sorted into an accumulating histogram. The resulting
histogram is given in Figure 2 where the area under the curve has been normalized to
unity. This should be interpreted as the probability of n peaks aligning as a
function of n for a totally random source. Taking the integral of this curve from n
= 20 to 29, the maximum possible numbér in alignment, we find for the probability
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Table 1. Comparison of Observations in Summary

Data Sets 1975 1978
No. of days 11 13
Equator 5 13
Pole 6 0
Ave. data length 7h + 1he 6h2 + 1ho

FFTD scan amp.

Number of peaks
in frequency range
0.2 - 3.0 mHz

Ave. peak to peak
plus background
heights ratio

13.6 arc sec

29

35.8% + 15.4%

27.2 arc sec

36

33.8% + 15.5%
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P(n 2 20) = 9.4 x 10-4, For a Gaussian distribution with half width equal to o, this
probability represents a 3.8 ¢ result away from such a random origin and is
statistically a good indication of the repeatability of the phenomenon in nature.

One obvious question raised by this comparison is: Although the number of
peaks in alignment appears to be statistically significant, should we not expect
better agreement? Since we now have observational evidence that each peak in the
spectrum is a superposition of several eigenstates of the sun each characterized by a
different spatial structure on the surface, the filtering due to differing aperture
size and the location of the aperture on the solar edge (i.e., pole or equator) will
alter the average peak location-(see Hi11 1978). Also, over a period of time the
mixture of states within a particular peak is 1ikely to change depending on the
nature of the driving mechanism. Any change in mixture (i.e., in amplitude of an
eigenstate) will alter the combined power level of a peak as well as change its
average location by small but significant amounts. With this understanding of the
processes, the agreement between the two average power spectra must be considered
good.

To address the second test enumerated above we must again go to the 1975 and
1978 average power spectra. Comparing the mean ratio of peak height to peak plus
background height for the two averages gives an indication of differences in signal
and noise. For the 1975 observations of Brown, Stebbins and Hi11 (1978) this mean
was found to be 36%, to be compared with 34% for the new observations in the
frequency range between 0.20 and 3.00 mHz and is 1listed as item 5 in Table 1. The
second moment of the distributions of the ratios 4s examined by comparing the
standard deviations for these ratios which are 15% and 16%, respectively. From this
it can be concluded that the character of the two sets of data are quite similar and
that the signal to background ratio has remained nearly the same.

5. PHASE COHERENCY

We now turn to the subject of phase coherency in the observed oscillations, a
matter which has received much attention in the literature (Hi11 and Caudell 1979;
Brown, Stebbins and Hill 1978; Keil and Worden 1980; Caudell and Hill 1979; Grec and
Fossat 1979). Phase coherency has been reported in two previous works,
inconclusively at first by Brown, Hill and Stebbins (1978) and more clearly by Hill
and Caudell (1979) in a new analysis of the SCLERA 1973 oblateness data. In this
latter paper, six oscillations were found to display coherence on 7 days' data
spanning a 13 day period. The statistical significance of this result was examined
more carefully by Caudell and Hi11 (1979). They concluded that the probability of
producing these six phase solutions by random noise was 3.8 x 10-5 compared to 1.6 x
10-2 for a completely random signal. A similar phase analysis is performed with the
new observations; a considerably more convincing result is found. The phases referred
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to are determined from the daily Fourier transforms of time strings of fluctuation in
the observed solar diameter. Since these are, by definition, only determinable to
within a multiple of 2x on each day, coherence is found when a relatively straight
1ine can be produced by the addition of certain multiples of 2r to each day's phase.
The statistical significance of a phase solution is judged by the size of the
residuals around the straight 1ine, that is, the standard deviation, o, of the linear
fit.

For the peaks in power confined to the frequency range 0.2 to 1.05
milliHertz, a1l 18 days of 1978 data were analyzed for phase coherency. This was
achieved through the use of an automatic procedure which, when given the 18 daily
phases over the 23 day span, would sweep a Teast squares fit straight 1ine through
individual multiples of 2= until the best fit was found. Each solution found in this
way was then manually confirmed to be indeed the best. This was repeated for the 12
peaks in the frequency range under study. The final solutions for these oscillations
have been plotted in Figures 3, 4, and 5 with the multiples of 2r added in as a
function of day number. The ¢ for these linear fits range between 0.6 rad and 1.0
rad. Note that like the work of Hill and Caudell (1979), the phase solutions have
been iterated to bring consistency between the frequency and the slope of the phase ,
solution. The question now is what is the probability that this level of coherency
is produced by a random source?

The estimation of probabilities concerning the statistical significance of
natural phenomena can be difficult in certain instances, particularly when small
samples are concerned. Analytical techniques usually involve a model of the
statistics, including the assumption of a probability distribution, based on the
apparent "noise" in the data. Probabilities calculated from models like these are
inherently sensitive to the assumptions and, therefore, may lead to differing
results. An example of a phenomenon where this has proved a problem is discussed by
Caudell and Hi11 (1979). Here, we again use a more direct approach and resort to a
Monte-Carlo numerical simulation. The problem of statistical modeling is then
a11eviéted at the sacrifice of large amounts of computer time. For this calculation,
a set of 18 random phases was chosen between 0 and 2m. These were then placed in the
daily arrangement indicated by the data set over the 23 day span. These random
phases were then given to the same automatic solution finding routine used on the
real data, the best linear fit found and the o computed. This sigma was then stored
in the appropriate bin of an accumulating histogram and the automatic procedure
repeated with the choice of 18 new random phases. The resulting histogram generated
from 5,000 trials is given in Figure 6 where a bin size of 0.03 radians was used.
The area under the curve has been normalized to unity. Care must be taken in not
performing too few trials in.any Monte-Carlo simulation and, therefore, stability of

the result must be empirically determined.
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Upon examining Figure 6 we see that the sigmas associated with the real data
fall well away from the peak, which occurs near 1.2 rads. In fact, there are several
instances where the o obtained from the observations are sufficiently low that the
Monte-Carlo simulation with 5,000 trials failed to yield a non-zero result in the
histogram. To evaluate the randomness of a particular linear fit to the phase data
we compute the probability that a random noise source will lead to a sigma less than
or equal to the observed value. This probability is given by the integral of the
distribution in Figure 6 from zero to the observed sigma. This function is plotted
in Figure 7 as a function of a particular sigma. The range of observed sigmas is
plotted on Figure 7. From this we conclude that on an individual basis the
probability that a single phase solution is produced by a random noise source is on
the average 4 x 10-3 compared to an expected value for pure randomness of 0.5. Taken
as a set of 12 independent observations the resultant probability would be the
product of these 12 individual probabilities, producing an incredibly small
probability. This phase data constitutes one of the strongest pieces of evidence for
the global nature of the solar oscillations to date.

In summary, the new set of solar diameter measurements made at SCLERA
confirms the existence and repeatability of the solar oscillations and lends strong
evidence to their global nature.
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SOURCES OF NOISE IN SOLAR LIMB DEFINITIONS
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ABSTRACT

We postulate that the rotation and evolution of solar surface structure can
function as a source of noise in solar 1imb definition measurements. To test this
hypothesis, we have produced a time series of 216 spectroheliograms taken at two
minute spacings. These spectroheliograms were obtained in an Fe I line, formed at a
depth similar to optical depth unity at the 1imb. We foreshortened this data in
order to simulate the solar 1imb brightness profile and passed it through the finite
Fourier transform definition (FFTD) algorithm used by Hill and his collaborators at
SCLERA. In this work we were able to determine the amount of variation in solar 1imb
position which is attributable to evolutionary changes in solar surface structure.
We also artificially rotated one of these surface structure functions in order to
determine the effects which surface structure rotation might have on 1imb position.
In this paper, we conclude that rotation alone can produce power only at low
frequencies (i $ 1 mHz). However, the evolution of solar surface structure exhibits
a power spectrum which is similar to that observed with the SCLERA instrument at all
of the frequencies. We also show that standing surface structure patterns can
produce phase for a period of seven days such as the phase coherence found in the
observations at SCLERA, although in the case of the latter, the periods are
significantly longer.

1. INTRODUCTION

Periodic changes in the apparent solar diameter have been observed by Hi1l
and his co-workers (Brown, Stebbins and Hi11 1978; Hil1, Stebbins and Brown 1975) at
the Santa Catalina Laboratory for Experimental Relativity by Astrometry (SCLERA);
these are thought to result from global oscillations of the entire sun. Other
workers, attempting to observe similar periodicitiés in large-scale velocity patterns
(Grec and Fossat 1976; Brookes, Isaak and van der Raay 1976; Dittmer, Scherrer and
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Wilcox 1977; Dittmer 1978), and intensity (Musman and Nye 1977; Livingston, Milkey
and Slaughter 1977; Beckers and Ayers 1977) have had little success. Brown, Stebbins
and Hi11 (1978) point out that interpretation of the latter observations and their
comparison with diameter measurements are difficult. In fact, apparent solar
diameter oscillations can result from a number of sources. Using Hill's 1imb
position definition, changes in opacity or temperature structure can lead to an
apparent change in the solar diameter without the presence of any mass motion; thus,
the unsuccessful search for velocity oscillations does not confirm or refute the
diameter measurements. Similar problems occur in the interpretation of intensity
observations; consequently, the inability of other observers to find brightness
oscillations does not negate the SCLERA results. Several investigators have examined
the possibility that the SCLERA results may, in part, be attributable to changes in
the earth's atmospheric transmission (Fossat and Ricort 1975) or to changes in solar
surface structure (Worden and Simon 1976).

We have computed the effect of evolutionary changes in solar intensity
patterns upon measurements of the apparent solar diameter which use the finite
Fourier transform definition (FFTD) of the solar limb position (Hil11, Stebbins and
Brown 1975). The properties of the FFTD limb position definition are discussed by
Hi11, Stebbins and Brown (1975) and Brown, Stebbins and Hi1l (1978). To briefly
review the FFTD, the limb position is obtained from the transform:

1/2
F(G; r,a) = J 12 G(r + a sin ws) cos (2as) ds (1)

where r is the radial distance from the center of the sun, a the distance over which
the slit is scanned, and G(r) is the Timb darkening profile. With a fixed value for
the scan amplitude a, the 1imb position is that value of r for which F = 0. In
practice, the definition is implemented by scanning a slit sinusoidally across the
solar 1limb. By varying the scan amplitude a, and making scans both at the equator
and pole, effects due to solar oblateness can be separated from brightness effects
(changes in the 1imb darkening function). By observing for periods lasting from 7 to
9 hours on 11 different days, Brown, Stebbins and Hil1l (1978) have generated a mean
power spectra of the 1imb position which shows periodicities at a number of
frequencies. Their data have also been tested for peak repeatability. They found
that approximately 2/3 of the stronger peaks were coincident between the first and
second halves of their data. The SCLERA investigators have also shown that a degree
of phase coherence may exist fdr many of these frequencies (see Figure 1 of Hill and
Caudell 1979). The coherence is manifested as a constant phase drift in time shown
over a number of days. Their measurements were made with a 100" long slit oriented
parallel to the solar limb and a scan amplitude (a) of 13."6. The observed
periodicities compare well with those predicted by Christensen-Dalsgaard and Gough
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(1976) based upon models of the solar interior.

In order to test how evolutionary changes in solar intensity patterns affect
the zero point of equation (1), and thus the Timb position, we observed intensity
patterns at disk center over a period of several hours in a line formed at an optical
depth similar to an optical depth of unity at A5500 A in the continuum near the solar
1imb. These observations were artificially rotated to the 1imb in order to generate
a time-dependent limb darkening function Gi(r) which was then used in equation (1).
A time-dependent solar limb position, rijhp(t), was thus generated as a function of
both evolutionary and rotational changes in solar surface structure. We then
searched r11mb(t) for periodicities and have compared our results with those of
Brown, Stebbins and Hill (1978).

In § 2 we describe the observations, their subsequent reduction and some of
the problems that arise in their interpretation. Section 3 considers periodicities
in the data and their origins. Finally, in § 4, we discuss the implications of our
findings for experiments designed to measure the solar limb position using the FFTD
definition.

2. OBSERVATIONS AND REDUCTION

The observations consist of a time sequence of spectroheliograms made at disk
center, using the universal birefringent filter on the Sacramento Peak Tower
Telescope (30-inch aperture). They were made in the core of Fe I 5171 which has a
mean height of formation approximately 450 km above optical depth unity at A = 5500
A. A filtergram was taken every two minutes during a period of 7.2 hours. Other
relevant data pertaining to these filtergrams are: bandpass - 1/8 A; exposure time
1/4 sec; image scale .102 mm/arcsec; image size 215" x 147" on the sun. One such
filtergram is shown in Figure 1 along with a similar filtergram taken simultaneously
in the continuum.

Each frame was digitized, using the Sacramento Peak fast microphotometer,
sampling every 1/2" (360 km) along both axes with a Gaussian spot whose FWHM was
1."5. The characteristic curve of the film, obtained from step wedges and
calibration spots, was used to convert microphotometered film densities to
intensities. Thus the observations are reduced to two-dimensional intensity
patterns, It(x,y), obtained at 216 points in time, each separated by two minutes.
The x axis is 215" long and parallel to the equator; the y axis is 147" long and
perpendicular to the equator. The effect of the slit used in the FFTD 1imb position
definition is to integrate the 1ight along the y-axis with equal weighting, and along
the x-axis with weighting determined by equation (1). Thus the intensity pattern at
each time t was averaged over the y axis to obtain
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N

y
I(x) = 1/Ny 151 I (xy5) (2)

where Ny is the number of digitized points along the y axis.

To remove the effects of sky transparency changes, uneven exposure and
development and large-scale changes caused by film irregularities over distances on
the order of the frame size, we fit a second order polynomial to It(x) at each time
t, using Teast squares. If It(x) is the fitted polynomial at time t, we then compute

' (x) = TO/L () (3)

Thus any real change in the average solar intensity from one frame to the next is
lost, as well as any spatial changes with dimensions on the order of the frame size.
Variation in transmission from point to point on the filter will be
independent of time. Thus, by averaging I'y(x) over all of the frames, we can obtain
the filter profile and remove it from the data. Another set of data is thereby
generated; this is given by:
Nt

I'(x) = I/ £ 1 4
v 07 Rl T 100 “)

where Ny = 216 is the total number of frames. The suppression of intensity
variations that are caused by local film irregularities is perhaps the most difficult
problem. In order to get an estimate of their contribution to the data, a final set
of data is generated in which adjacent frames are averaged together so that

() = 5 [+ 1g,,00] (5)

where At = 2 minutes. Besides averaging out film irregularities, this 2 minute
sampling rate may also suppress contributions from the 5 minute oscillations.

The time dependence of the 1imb darkening function G(r) is next obtained from
the observed intensity fluctuations IE(X); where P can represent one or more primes.
This is done by artificially rotating If(x) to the 1imb. We assume that G(r) will
undergo variations similar to those observed at disk center, where the variations are
reduced by foreshortening and by horizontal transfer. Since we have chosen a line
formed at approximately the same height as the continuum at the 1imb, horizontal
transfer will affect the contrast of very small features such as granulation;
however, 1arge-sc£1e features will be affected only at the extreme 1imb, where
foreshortening has already dropped the contrast to almost zero. Variations in G(r)
may also be produced at the equator by rotation of the observed intensity patterns
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through the field of view.

The artificial rotation is accomplished by rotating the first point in Iz(x)
to a position near the 1imb, such that the remainder of the data string extends just
beyond the limb. This process is shown schematically in Figure 2 where the original
data, lying between points A and B, is rotated to 1ie between points A" and B''.
The data is then resampled in equal increments of solar radius (Ar) near the 1imb.
A11 of the elements of IE(X) falling into a given Ar increment are then averaged,
thereby accounting for foreshortening. The data is next multiplied by a time
independent 1imb darkening function Go(r) to produce

6h(r) = 6,(r15(r) (6)

where IE(r) is obtained by the resampling of IE(XL An example of the reduction
process for one frame is shown in Figure 3.

The apparent FFTD limb position ryjnp(t) is then generated as a function of
time by substituting GE(r) into equation (1) and searching for the value of r for
which the integral in equation (1) is zero.

In order to determine the relative contributions of large or small-scale
fluctuations in Ii(x) to variations in ryjp,(t), and thus the importance of including
smearing due to horizontal transfer, I't(x) is smoothed to suppress intensity
variations smaller than 12,000 km. The variations greater than 12,000 km are also
divided out so that only small- scale fluctuations remain. This procedure showed
that almost all of the observed signal comes from features larger than 12,000 km;
furthermore, horizontal transfer is only of minor importance in suppressing the 1imb
position fluctuations generated by changes in the 1imb darkening profile.
Calculations designed to simulate horizontal transfer were performed and it was found
that the fluctuations in I'y(x) were suppressed by factors of 0.5 and 0.1

The significance of our results was examined by looking at purely random
signals. Using a random number generator, we have generated sets of data, I%(x), and
passed them through the analysis described above. The random data were multiplied by
factors which gave them the same rms variations as our observational data. Random
data which fluctuated over both large and small scales were tested in this manner.

In addition to intensity changes which occur during the course of solar
evolution, the intensity pattern at the 1imb may be altered by the effects of solar
rotation upon the equatorial regions. To test the effects of solar rotation alone,
one of the aforementioned solar 1imb profiles was artificially rotated across the
limb at intervals corresponding to three minutes of rotation. The rotated profile
was then passed through the FFTD as described above to determine the possible
variation in 1imb position produced solely by the rotation of a fixed solar intensity
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5171 A CONTINUUM

Figure 1. Sacramento Peak filtergrams obtained in the Fe I 5171 A line and
simultaneously in the continuum showing surface structure. A sequence of 216 of
these were used in this analysis.

" SOLAR
LIMB

T0 EARTH

Figure 2. A schematic representation of the sun (not to scale). The filtergrams
shown in Figure 1 are obtained between points A and B. The data is then rotated
artificially to 1ie between A" and B'" and then resampled to take foreshortening
into account.
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pattern around the solar 1imb. The simulated rotation was computed for 256 time
steps, effectively modeling the solar rotation for 13 hours. The variations in limb
position, generated by both evolutionary and rotational changes, were then Fourier
analyzed. An example of the 1imb position changes generated by rotation is given in
Figure 3 along with illustrations of various steps in the reduction process.

3. RESULTS
3.1. Observed Periodicities

Figure 4 shows the temporal power spectra of Timb position fluctuations,
r1imp(t), generated from: (a) I'¢(x) [r{ijnp(t)]s (b) It"¢(x) [ryipp(t)]s () L{(x)
smoothed over 31 spatial points in order to remove features smaller than 12,000 km;
and (d) If(x) divided by a 31 point running mean of I¢(x) so that only features
smaller than 12,000 km remain. Figures 4c and 4d show that most of the fluctuations
generated by the raw data result from large-scale features, affirming the proposition
of Brown, Stebbins and Hi11 (1978) that small-scale features will have a negligible
effect.

The average power levels for n;p,(t) [+ 40 (mil]iarcsec)zj and for rq;.p(t)
[~ 30 (mi]]iarcsec)z] are higher than the value of 25 (mi]]iarcsec)2 observed by
Brown, Stebbins and Hill (1978). If we multiply the fluctuations in I;'(x) by 0.5 to
simulate the effect of horizontal transfer, the average power level of the
fluctuations in njpp(t) drops to ~ 12 (mi]]iarcsec)z- Since we have shown that most
of the signal comes from large scale features, this may overestimate the effect of
horizontal transfer on the fluctuations.

Table 1 offers a comparison of the periods of some of the stronger peaks
shown in Figure 4a with the observations of Brown, Stebbins and Hill (1978) and with
the predicted radial p-mode frequencies of Christensen-Dalsgaard and Gough (1976).
Deubner (1977) has pointed out that, because of the almost continuous range of
predicted periods, such a comparison cannot be used to prove that global oscillations
have been observed. One must spatially resolve the various modes in order to make a
meaningful comparison. Nevertheless, our calculation shows that many of the periods
observed by Brown, Stebbins and Hil1 (1978) could originate from changes in solar
intensity patterns. The source of these intensity changes, however, has not yet been
addressed.

To test the effects of atmospheric seeing, we have convoluted the time-
dependent 1imb darkening function G{(r) with both 1/2 arcsec and 1 arcsec seeing
before computing rj;pp(t) from equation (1). Seeing of 1/2 arcsec increases the
power by approximately 5% while 1 arcsec seeing decreases it by about 10%. This
result confirms that the FFTD is largely independent of the effects of seeing.

The statistical reliability of the data shown in Figure 4 is very Tow. In
order to increase the reliability, we have subdivided our data first into two
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Figure 4. Temporal power spectra of Timb position fluctuations found by passing the
216 1imb intensity functions, such as shown in Figure 3, through the FFTD formalism.
Before computing the FFTD 1imb positions used to generate each figure, we (4a)
removed a second order polynomial from the intensity fluctuations (equation 3); (b)
averaged together the intensity fluctuations on temporally adjacent frames (equation
5); (c) smoothed the intensity fluctuation over 31 spatial points to suppress
features smaller than 12,000 km; and (d) removed features Targer than 12,000 km by
dividing each set of intensity fluctuations by a 31 point spatial running mean.
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Table 1.
Observed Period (min) Predicted Period (min)
This Study ' Hi1l et al. Christensen-Dalsgaard
& Gough
(above 95% conf)
102.0
66.2 62.22
46.0 44.7 41.98
39.4 39.0
32.0 32.1 32.32
28.7
26.00
24.8
23.0
21.3 21.0 21.51
19.5 18.33
15.95
14.6 13.3 14.13
12.8 12.1 12.64
11.6 11.4 11.54
10.4 10.7 10.60
9.9 9.81
9.3 9.12
8.5 8.52
8.0 7.8 7.94
7.5 7.6 7.53
6.9 7.12
6.7 6.75
6.5 6.41
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subsets, each 3.6 hours long, and then into three subsets each 2.4 hours long. In
the first case, our effective resolution is changed from .0386 mHz to .0772 mHz and
in the second, to .115 mHz. The upper Timit on periods that can be easily observed
drops from approximately two hours to one in the first case and to approximately 45
minutes in the second. The positions of peaks with frequencies higher than ~ .35 mHz
are affected very little by the sectioning. The fact that many of the peaks survive
the sectioning of the data indicates that they are of solar origin, and attributable
to Tong-lived solar phenomena. The average power drops from 40 (mi]]iarcsec)2 to ~
25 (mﬂHar‘csec)2 in the first case and to 16 (mﬂHarcsec)2 in the second. To make
a quantitative estimate of the stability of the power spectra, similar observations
over a period of several days are necessary.

Figure 5a shows the power spectrum which would result solely from rotation.
Also shown is the average power spectrum observed by Brown, Stebbins and Hill (1978).
We can immediately see that rotation produces almost no high frequency power. Once
again, this is in Tine with the contention of Brown, Stebbins and Hi1l (1978) that
small scale features (granulation) will have minimal effects on the FFTD. However,
at frequencies less than 1 mHz, the mean power level is between 5 and 40
(mi]]iarcsec)z; this is clearly compatible with the SCLERA results and demonstrates
that rotation of solar features alone can be a substantial source of noise. However,
since the SCLERA results for the solar equator are very similar to those for the
pole, where rotation has no effect, the indication is that the rotation of solar
surface structure is not a dominant effect.

Spatial and temporal variations in It(x) may arise from several sources.
Changes in the average sky transparency, differential changes in the sky transparency
across the aperture, uneven exposure or development of the film, changes in the film
emulsion from one point to the next, variations in the transmission across the
filter, and actual changes in the solar intensity pattern will all produce
fluctuations in I¢(x). In attempting to isolate true solar effects from other
sources, some of the actual solar variations must also be suppressed. We may also
underestimate some of the non-solar sources of intensity fluctuations. These two
problems place a fundamental Timit on the accuracy of our measurements, the magnitude
of which is difficult to determine. Thus, these calculations should be interpreted
as only a rough estimate of the possible solar effects on 1imb position
determinations which use the FFTD definition. ~Nevertheless, the results are quite
dramatic and show that the interpretation of apparent limb shift measurements is not
a straightforward exercise.

3.2. Random Data and Phase Coherence
We have generated ten sets of random data for Iﬁ(x) (R=1-10) and have
used them to generate FFTD 1imb position fluctuations for which power and coherence
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Figure 5. (a) Temporal power spectrum of limb position fluctuations that were
generated by rotating a single limb intensity profile such as shown in Figure 3
around the 1imb. Each time step is generated by rotating the intensity profile an
appropriate distance; thus excluding evolutionary changes in the surface intensity
pattern.

(b) The temporal power spectra of limb position variations observed by Brown,
Stebbins and Hill (1978).
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spectra have been computed.

Each set of data was generated such that the mean spatial scale of the
fluctuation is approximately 12,000 km and the rms variance is approximately 1%, in
agreement with the observations. The individual power spectra have average power
levels near 40 (mﬂh‘arcsec)2 with several peaks well above this level. The
positions of the peaks vary randomly from one spectrum to the next. A1l but one or
two peaks for each of the ten spectra were removed by subdividing the data into three
shorter sections and averaging together the resulting spectra.

In Figure 6a, we plot the coherence and phase spectra between two of the
random data sets. Before computing the coherence spectra, the real and imaginary
parts of the cross-power spectra and the individual power spectra were smoothed over
five frequency points using rectangular weighting. Figure 6b shows the coherence and
phase spectra obtained by averaging 9 separate spectra obtained from 9 different
pairs of the random data. Figure 6a indicates that, with a limited data sample, some
frequency ranges exhibit substantial coherence even fhough the data is random. A
mean coherence of approximately 30%, shown in Figure 6b, could be expected from a
large number of random data samples. This result shows that some "phase coherence"
may result from purely random noise sources and that observed coherence should be
interpreted with caution.

Hi11 and Caudell (1979) have found a constant phase drift at several
different frequencies in data taken on seven different days; they argue that this
supports the conclusion that their data is of solar origin and results from global
oscillations. The fact that high coherence (60-80%) can be found in several
frequency bands for random data indicates that caution is necessary in interpreting
phase and phase changes. To test whether their technique for fitting a straight line
through phases found on different days would produce similar results for random data,
we generated seven random phases between 0 and 2¢ and assumed that the phases were
measured on the days corresponding to their observations (i.e., the 8, 9, 10, 11, 19,
20, 21 of September, 1973). Following Hill and Caudell (1979), we held the phase on
the first day constant and added multiples of 2n to the other phases until we
obtained the best fit to a straight Tine. This process was repeated several hundred
times so as to build up a statistical distribution of fits and rms error.

Table 2 gives the slope and rms error (o) of the fitted Tines found by Hill
and Caudell (1979) at the six different frequencies. The average value of o for the
fits at the six frequencies is ~ 0.75 radians. Figure 7 gives the distribution of
o's we found by fitting 300 different sets of random phases. The average slope of
our fitted straight 1ine was 1.63 radians/day with a standard deviation of 0.85
radians/day. The'average value of o was 0.756 radians and the standard deviation
about the mean was 0.157 radians. Four of the values measured by Hil1l and Caudell
fall within, and one value just outside, one standard deviation of our figure. The
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Figure 6. (a) Coherence and phase spectra between limb position fluctuations
generated by passing two independent random data sets through the FFTD formalism.
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shown in Figure 6a for 9 pairs of random data.
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value of o they found at 0.606 mHz, which is much larger than expected from random
data, 1is strongly influenced by one stray data point taken on the 21st of September
(see Figure 1 of Hill and Caudell 1979).

Five of the values of o found by Hill and Caudell are smaller than the
average of our random distribution. They estimated the probability to be 3 x 10'12
that random data could exactly produce their result. However, the important question
is not whether random data reproduces their particular results but whether it can
produce or do better (smaller ¢) than their results. Thus, the pertinent question is
as follows: In six trials with random phases, what is the probability that five of
the trials will give an error less than or equal to about 0.74 radians (their largest
value excluding that found at 0.606 mHz)? From the distribution shown in Figure 7,
we compute that the probability of getting a value of o less than or equal to 0.74
radians in a single trial is 0.43. If we consider six trials with five outcomes
resulting ino's of this magnitude, the probability computed from the binomial
distribution is 0.052. Furthermore, the probability that random phases would produce
one fit better than 0.59 radians (their best fit) is 0.4. The chance that random
numbers could produce the findings of Hill and Caudell is much higher than the 3 x
10-12 they quote. Indeed, their results differ by just one standard deviation from
what could be expected if all of the phases they measured were random. Thus,
constant phase drift is not a conclusive argument for the solar origin of their data.

Recently, Caudell et al. (1980) have found similar phase coherence for 18
days of data. While this result tends to indicate that a coherent phenomenon is
present, we feel that caution should be taken before ascribing it solely to a global
solar oscillation. Solar surface features, which can produce the type of power
spectra we have shown here, are also long-lived. Livingston and Orrall (1974) have
shown that supergranular patterns may exist for 3-5 days in some cases. Distortion
of a standing supergranular pattern caused by differential rotation may produce phase
drifts of the type seen in the SCLERA data. This would indicate that solar surface
structure may not be a truly random noise source in limb definition measurements. We
have run preliminary tests on data in which one day's phase is partially dependent on
the previous day's phase. In a series extending over 18 days, we find that the mean
value of o can be lowered by 10-20% by assuming some form of partial coherence.

4. CONCLUSIONS

We must first note that our calculations and observations have been
exploratory in nature and that further work is necessary to clearly separate all of
the phenomena that can affect solar limb measurements. Nevertheless, we have shown
that solar intensity patterns could substantially influence limb position
determinations. We feel that the following conclusions are possible:

(1) Changes in the apparent solar 1imb position, as determined from the FFTD
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Table 2.

Frequency Slope rms_error
(mHz) (radian/day) (radians)
0.248 2.75 0.74
0.366 4. 16* 0.65*
0.414 4.76 0.59
0.463 0.01 0.66
0.539 3.72 0.64
0.606 2.80* 1.25%

average 3.04 0.77

* These values were estimated from Figure 1 of Hill and Caudell (1979).

The other values were sent to us by T. Caudell.
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Figure 7. Sigma is the rms variation of the residuals obtained when a set of seven
totally independent phases are fit with a straight 1ine. Each phase is allowed to
change by multiples of 2¢ until the best fit (smallest sigma) is found. The process
was repeated for 300 independent sets of random phases. P(¢) is the probability that
a certain sigma will have a value that falls in a bin Ao = 0.05 radians about this
value of sigma.
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formalism (equation 1), can result from evolutionary and rotational changes in solar
intensity patterns. The magnitude and periodicities generated by the intensity
variations are similar to those measured by Brown, Stebbins and Hill (1978). Further
work, which is needed to conclusively determine the effect of these phenomena, should
include photoelectric measurements in order to eliminate some of the problems
produced by the use of films and observations on a large number of days. Such work
is currently in progress.

(2) 1t has not been demonstrated conclusively that the relationship between
phases observed at the same frequencies on different days reflects the origin of the
data. We have shown that random data can produce phase relationships that mimic the
observations; further work is therefore necessary to correctly interpret the phase.

We conclude that evolution and rotation of solar intensity patterns may be a
substantial source of noise in solar limb position measurements. We do wish to note,
however, that this does not indicate that the SCLERA results are statistically
insignificant. - Indeed, the SCLERA oscillations may be the source of the changes in
the solar intensity pattern which we are observing. Ultimately, the determination of
the relative contributions of solar oscillations and random noise sources to the
SCLERA results will be made through studies of phase coherence over long periods of
time. We feel that this is a problem which warrants significant additional study and
one to which we are devoting considerable time.

* * * * *

We would like to thank Dr. T. Caudell for providing us with the SCLERA phase
coherence results. We Wou]d also like to thank Dr. H.A. Hil1l and his collaborators
at the University of Arizona who organized an excellent and useful symposium during

which these problems were discussed.
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OBSERVATIONS WITH HIGH TEMPORAL RESOLUTION
OF THE SOLAR Ca® X LINE

T. Duvall, W. Livingston, and C. Mahaffey
Kitt Peak National Observatory
Tucson, Arizona

ABSTRACT

High time resolution (at = 10%) photometric scans of chromospheric cat K are
examined for evidence of propagating waves. The scans refer to a quiet area (1 x7
arc seconds) near disk center. Diagnostics include line profile movies, time
sequence spectrograms and power spectra. Both upward and downward (reflected?)
disturbances having lifetimes ™ 1-2 minutes are seen.

1. INTRODUCTION

It has long been known that calcium K spectroheliograms display bright points
that are a few arc seconds in size and have a transitory lifetime of approximately a
minute (Jensen and Orrall 1963). These bright points are especially evident in the
violet reversal feature in the core of Ca II K 3933 A, usually designated Ky, One
may speculate that these Koy bright points represent a manifestation of outward
propagating waves--suddenly enhanced by the chromospheric density gradient. In this
preliminary study we attempt to better define the temporal nature of the bright
points and 1ook for evidence of waves in the time domain from 205 to 10,

2. THE OBSERVATIONS AND REDUCTION PROCEDURE

On a day of "good" seeing (v 2 arc seconds), the 82 cm image of the sun
produced by the McMath Telescope was centered over the entrance sl1it of the 13.5 m
spectrometer, positioned so as to avoid any "network" or "plage." The slit dimension
was equal to 1.0 x 7.5 arc seconds, and the image was driven to remove the mean
component of solar rotation. For this experiment the double-pass spectrometer was
operated in single-pass in order to improve the signal to noise ratios and because
only temporal changes were of interest. A wavelength interval of 5 A was scanned by
the spectrometer in 136, with 4 scans being summed to constitute a single record
having a repetition time of 935. Thus the Nyquist frequency is 0.053 Hz (period ~
20S). This process was continued for 80™ after which the system noise was determined
by inserting a lens into the beam, reducing the spatial resolution to approximately 1
X 2 arc minutes. Another 80™ run was then performed. Observations were made on two
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days, 11 and 14 December 1978. An additional similar run was made on 26 December
1978 for purposes of comparison, using Mg b 5183, a line formed in the low
chromosphere.

Each record was normalized to a local “continuum”" window and adjusted in
wavelength to a fixed photospheric reference line in order to eliminate the effects
of transparency change and spectrograph drift (for procedural details see White and
Livingston 1978). Examples of Tine profile variations that remain after the above
adjustments are displayed in Figure 1. (Movies of these profile variations,
accelerated x 40, have also been produced.)

A quadratic fit was made to the extreme absorption core of the cat K line,
K3, and the residual intensity, I3, and relative wavelength, reduced to velocity,
Vg3, were determined. Average power spectra for Iy3 and Vg3 were calculated as
follows. The observation length of ~ 414 points was padded to 512, then broken into
3 overlapping segments of 256 points, each of which, suitably apodized, was padded to
512 points. The 3 spectra were then averaged together. Figure 2 shows the Tow
frequency end of these average power spectra. The dominant periods and relative
power are given in Table 1. Power spectra made with the integrating lens in place
showed that system noise, with the possible exception of the "seeing" component, was
neg]igiB]e.

~ Sou-Yang Liu (1974) has reported that intensity perturbations sometimes
propagate from the far wing of K into the core Kz3p. The profile movies previously
mentioned show these effects rather inadequately due to unavoidable image-motion
disturbances. A more useful tool is a "time sequence spectrogram,” a pictorial
representation of the line profile as a function of time. Each spectrum scan is
converted back to intensity on a CRT picture with wavelength as the abscissa and time
the ordinate. Figure 3 is such a display confined to near line core. The rather
impulsive nature of the intensity and velocity disturbances is clearly visible,
although occasionally there is a suggestion of a near sinusoidal event (e.g., at the
top of the figure). The power spectrum provides a quantitative description of the
frequency content of the picture ignoring phase. But phase information is needed to
see the wave phenomena that Liu found. In Figure 3 the arrows point to a bright
feature that moves from the wing to the line core with time. To accentuate such
features we have subtracted the time-averaged profile from the data set to produce
Figure 4. Now one sees a multitude of tilted features, mostly pointing toward the
line core, suggesting propagation both upward and downward. Downward manifestations
seem confined to very near the core.

3. DISCUSSION
The time sequence spectrogram (Figure 3) displays three phenomena. The very

narrow horizontal streaks arise from image motion; these are spurious and should be
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Figure 1. A segment of the 1ine profile movie showing the development and decay of a
Koy bright point. The vertical fiducial is fixed with respect to the photospheric
1ines. As the intensity of K v Tncreases, an apparent velocity shift is induced in
K3, producing a pseudo correlation.
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intensity both refer to K3. The strong peak at 187 sec may be due to the induced
correlation illustrated in Figure 1.
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Dominant Period(s) and Relative Power

for IK3| VK3| IMQ' and VMg

Periods
Intensity Velocity
(325)
+ (244)
Ca’ K3 285 187
(185) (146)
(141)
Mg 5183 363-262 a broad feature 295
(155) (157)
Power
+ -7 -2
Ca’ K 60(107") 17(10-¢)
Mg 5183 1(1077) 5(10-2)
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Wavelength

Figure 3. A time sequence spectrogram for 11 December 1978. The wavelength scale is
set by photospheric Tines outside the region displayed and refers to center disk
value of Cat K (3933.682 A). Arrows point to tilted intensity patterns indicating
upward propagating disturbances.
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Figure 4. A time sequence spectrogram for 11 December 1978, with the time average
profile removed. The V-shaped patterns centered on A = 0 suggest both upward and
downward propagating disturbances.
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ignored. The second feature is the horizontal banded structure corresponding to the
five minute and 180 second "oscillations." Liu proposes that the five minute
component originates with "“network" fragments while the 180 second power is confined
to the Ky, points. The evident randomness of this pattern suggests either a short
coherence time or a continuous mixing of the oscillation trains. The third
phenomenon found in the spectrogram is the tilted features best seen in Figure 4.
According to Liu, as we go from a1+ 0.3 A to K, to K3 we move upward from 350 Km to
700 Km to 1580 Km respectively. Thus a bright feature which moves with time
consecutively through these spectral regions represents direct evidence for an
outward propagating disturbance which produces local heating, presumably through
(shock?) dissipation. By the same reasoning, downward propagating waves are also
seen; we may speculate that these arise from reflection.

- In summary, we have illustrated that the solar chromosphere contains
oscillatory and transitory phenomena having time scales of seconds to minutes. No
single diagnostic is completely sufficient and we point to the utility of profile
movies, time sequence spectra, and power spectra for analyzing these motions.
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EXCITATION OF SOLAR G MODES WITH PERIODS NEAR 160 MINUTES

D. Keeley
Science Applications, Inc.
Palo Alto, California

ABSTRACT

Solar g modes with 2 =1 to 4 and periods near 160 minutes have been
investigated using a solar model with normal structure. Radiative dissipation in the
region below the convection zone is much greater than the driving provided by nuclear
reactions or the opacity mechanism. A crude treatment of convection suggests that it
also is not an important source of driving. The damping due to turbulent viscosity
is also small. Excitation of these modes by coupling to convective turbulence is
substantial in terms of the rms energy of the modes, but the surface velocity is very
small because of the large amount of mass involved in the oscillation.

1. INTRODUCTION

The 2h aom period first reported by Severny, Kotov and Tsap (1976) and by
Brookes, Isaak and van der Raay (1976) has been supported by more recent observations
(Scherrer et al. 1979). In this paper, properties of modes in this period range are
examined in the context of a conventional solar model, and their stability
investigated as described below.

A model representing the sun was obtained by evolving a homogeneous 1 M0
model from the zero age main sequence until it resembled closely the present sun.
The properties of the model were as follows: L = 3.83 x 1033 erg sec‘l, R = 6.9136 x
1010 cm, Z =.02, Y(surface) =.244, X(center) = 0.39. The mixing length was 1.238
pressure scale heights. The convection zone included about 1.2 x 103! grams and
extended down to a temperature of about 1.5 x 106 k.

The differential equations for adiabatic eigenfunctions were written in the
form used by Osaki (1975), and solved by the method of inverse iteration. The
damping (or excitation) was then determined by perturbation theory, using the
adiabatic eigenfunctions. The turbulent excitation energy and viscous damping were
calculated as described by Goldreich and Keeley (1977), except for an improvement in
the integral over the wave numbers in the turbulent spectrum.

2. LINEAR STABILITY ANALYSIS

The condition for linear instability is that a net positive amount of PdV
work be done during one cycle of the oscillation. 1In calculating growth rates
according to perturbation theory, only the nonadiabatic part of the pressure
perturbation can contribute to the work integral. If the time dependence is assumed
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to be exp(iwt), then the nonadiabatic pressure perturbation is

§P = - (.FLQ_Q_ 6(Y—£- > (1)

Tw o]

in which § denotes a Lagrangian perturbation, and all other symbols have their usual
meaning. For a given mass element, there is a positive contribution to the driving

if
7 B
V.E 6[—p—-8]> 0 N (2)

in which £ is the displacement.
2.1. Radiative Contribution

The equations used for the radiative flux ?r are

T—‘r = - 3‘-"(—"5 W : - (3)
1
J-B= - e VF (4)

in which J is the mean intensity, B is the Planck function, and x is the absorption
coefficient. Since the perturbation of the scalar quantity V- ?} is required in
equation (2), it is convenient to write an equation for it directly:

v. F’ %v.[K—p (K—pv F’r>] = -—;—v <-l-vB> (5)

The second term on the left 1is usually omitted in calculations of both the
hydrostatic model and the damping. Its effect on hydrostatic models is normally
small, but for some oscillation modes its perturbations have a large effect on the
damping. It is especially important at the outer boundary of the solar convection
zone.

It is customary to do Eulerian perturbations in nonradial calculations
because they commute with spatial derivatives; this problem is more difficult to deal
with in these circumstances than it is for radial motions. However, in regions where
k or other quantities vary very rapidly in space, the Eulerian perturbations are very
much larger than Lagrangian perturbations. Because it is ultimately necessary to
construct the Lagrangian perturbation for use in equation (2), the cancellation of
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several §ignificant digits, which could result when going from Eulerian to Lagrangian
at the outer edge of the convection zone, could have a serious effect. Numerical
errors due to noise in the eigenfunctions could occur in this potentially important
driving region. Even if the eigenfunctions are not noisy, possible systematic
effects due to the grid structure could introduce significant errors. For these
reasons, Lagrangian perturbations were used throughout, and terms which were
cancelled in part or totally by similar terms from the convective flux perturbation

were handled explicitly. The final expression for the perturbation of Vv '?r = D is
EQUATION 6

8D - %ES(BGD);KJ;K = -%E[B(BGB);K];K + %[B(GBD);K];K

58
+<_B— FFK>;K' <EJ;KFTJ>;K_EJ;KFrK;J (6)

in which g E(Kp)'l. Index notation has been used because ordinary vector notation
is somewhat ambiguous for the last two terms. The semicolons denote covariant

derivatives.

2.2. Convective Contribution
An equation for the time-dependent convective flux was written in the form
given by Cox et al.r(1966):
(i)
AR AL 3
E i (7)

in which the timescale T is taken to be the mixing length divided by the local
convective velocity, and ?é(i) is the convective flux as calculated from mixing
length theory. The perturbed form of the equation is

GF'C(”
TTHJer (8)

oF,

The Lagrangian perturbation of the instantaneous flux was taken to be

GFC(” = 6<'Fc(i)|V_VPP_I> . (9)

in which a unit vector in the direction of -VP is taken as the direction of the
convective flux, and Fc(i) is the magnitude of the flux as calculated in the usual
way. Equation (9) expands out to the form
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‘F-i

of, (1) = op 1f . < <H & - Er)>‘71 Y (10)

in which H is the pressure scale height,
_pa Ll TR
VErsst ey , and £ Erer+51 v Ym
The perturbation of the divergence of ?c is given by
> >
8(v.F,) = v.(6F,) - vE:vF, (11)

in which the last term is the same form as in equation (6) for the radiative flux,
and is partly cancelled by it.

2.3. Nuclear Contribution
The energy generation rate has been written in the usual form:

o (12)

€ = E.p

from which the perturbation in the adiabatic approximation is obtained:

_(se_e' = -v.f[n + (rp - l)v] . (13)
Constant values for n and v were used throughout the energy-generating region. Since
T3 - 1 is quite constant also, the nuclear contribution can easily be scaled to any
desired values of the exponents n andv. For the results given in Table 1, the
values n=1, v = 15 were used. The high value for v was used because the nuclear
reactions cannot maintain the equilibrium abundance of products in the PP chain for
which the exponent v ~4 or 5 is appropriate. Since nuclear driving did not appear
to be an important effect, it was not considered necessary to treat this contribution
in more detail.

2.4. The Condition for Local Driving
With the approximations discussed above, the condition for driving of the
instability (equation 2) becomes

V,g{ﬂv_p-ﬂ+ v.2e + ev.g[n + (1, - 1)\]} >0 . (14)

The nuclear reactions always contribute to instability, as does the density
-
perturbation in a region where V+F> 0.
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Table 1

TABLE 1. g Modes Near 2hag™ = 9600s

g = 1 2 3 4

Period (s) 10196 9473 9840 9647
Nodes 6 10 15 19
Amplitude ratio 12 10 22 36
Radiative damping

rate (s-1) 1.40-13  4.02-13 9.16-13 1.49-12
Convective damping

rate 8.80-17 -1.38-15 -4.26-15 -5.75-15
Turbulent damping

rate '1.92-15 1.50-14 2.61-14 2.85-14
Nuclear

excitation rate 1.29-14 1.33-14 1.37-14 1.38-14

Radiative damping
below convection

zone 99% 98% 96% 96%
Turbulent

excitation '

energy (ergs) 9.3+25 1.6426 1.3+26 7.9425

Energy for 1 cm/sec
at surface (ergs) 1.1433 5.8+32 8.7+32 1.4433
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3. RESULTS AND CONCLUSIONS

Adiabatic eigenfunctions and frequencies were calculated for several modes at
each value of & in the range £ = 1 to 4, and the work integral was calculated as
described in § 2 above. The results are summarized in Table 1 for the 4 modes with
periods closest to 160 minutes. In addition, the radial and transverse components of
% are shown in Figure 1 for the £ = 1 mode. The 200 point grid resolved the 6 nodes
of the ¢ = 1 mode quite well, but resolution was not as good for the 19 nodes at & =
4. However, it is unlikely that errors large enough to alter the conclusions are
present.

Except for the 2 = 1 mode, the ratio of the maximum radial displacement to
the surface displacement increased strongly with 2, as indicated in Table 1.
Radiative damping was by far the dominant dissipative mechanism, and most of that
damping occurred below the convection zone. Convective flux transport provided
driving near the surface of the convecton zone in an amount comparable to the
radiative driving there. The energy expected in these modes as a resu]t of nonlinear
coupling to convective turbulence was 1026 ergs, whereas the energy required for a
surface velocity of 1 cm/sec is v 1033 ergs. In any case, the turbulent excitation
mechanism would not be a satisfactory one unless the observations eventually show
that many modes are excited.

The observations are not easily understood in terms of the conventional
considerations discussed in this paper.
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Figure 1. The radial and transverse components of the displacement vector for the 2
= 1 mode. The eigenfunctions are normalized so that £,. =1 at the surface. The
abscissa is the grid point number. The Tower boundary of the convection zone is at
point 173. :



THE COLLECTIVE EXCITATION OF g-MODES IN THE SUN

C.L. Wolff
NASA-Goddard Space Flight Center
Greenbelt, Maryland

ABSTRACT

Oscillations of the solar interior (linear g-modes) may be strongly driven by
the collective influence of all the modes upon the nuclear reactions in the core.
This heretofore neglected effect could couple the modes, reduce the effective
amplitudes near the center, and spatially concentrate most of the oscillation energy
into just a portion of the radiative interior. If operating at sufficient strength,
this can reverse the conventional conclusion, drawn from single mode calculations,
that almost all solar g-modes are damped. Furthermore, it would put the theory into
rough harmony with three otherwise troubling observations: (1) the "low" neutrino
flux measured by Davis (1978), (2) the high correspondence found by Wolff (1976)
between recurrence periods in solar activity and the rotational beat periods of g-
modes, and (3) the fluctuations in the sun's diameter which imply g-mode activity at
high angular harmonics (Hi11 and Caudell 1979). A nonlinear expression is derived
for the local rate of work done on an array of oscillation modes by the nuclear
reactions. Three additional tests of the model are suggested.

1. INTRODUCTION

There is evidence that g-modes are excited in the'sun at angular harmonic
numbers % >> 1 (Hill and Caudell 1979; Wolff 1976). This consists of a direct
detection of oscillatory power in the correct frequency range, a demonstration that
particular oscillations display phase coherence over many days, and a detection of
the Tong beat periods implied by the rotation of g-modes. This evidence is discussed
in detail in § 5. A likely consequence of the excitation of high harmonic modes is
that a very large number of modes will be active. As I wrote in 1974, "There is not
much physical difference between the properties of two high-order modes of similar
order. If one high harmonic mode is excited by the star and maintained against
dissipating mechanisms, we must therefore expect that a whole range of neighboring
harmonics will also be driven to comparable steady amplitudes." As an example, let
us take just the five angular orders (2 = 6 to 10) for which good evidence was given
by Wolff (1976). For each value of %, there are & + 1 different standing waves
corresponding to the possible azimuthal harmonic numbers. Adding these gives 45



253

different angular states. But each angular harmonic can exist in numerous radial
harmonics. If only five radial harmonics are active for the typical angular state,
one has 5 x 45 = 225 different standing waves possible in this small range, Ak = A% =
5 Hundreds or thousands of linear g-modes are not unreasonable to expect. Because
of this, I feel that conventional calculations of growth rates (which consider each
mode as though no others were present) are in serious risk of missing interactions
which may be of major importance.

In contrast to the observations, linear theories find that g-modes of high %
value are damped and, therefore, are not expected to be observed. There is even some
ambiguity as to whether the lowest angular harmonics (2 < 3) can be excited.
Christensen-Dalsgaard, Dilke, and Gough (1974) found several such modes with a net
excitation but, in sTightly different solar models, Dziembowski and Sienkiewicz
(1973) and Shibahashi, Osaki, and Unno (1975) found all such modes to be damped.
However, many of the modes are so slightly damped that they Tose only v10-10 of
their energy during each cycle. For these, not much additional driving is needed to
change the damped mode into one that is excited. Furthermore, if there is a way to
increase by an order of magnitude the ratio of driving to damping, a very large array
of linear modes now thought to be damped would become excited.

In this paper, a way of obtaining increases of this magnitude is described.
It depends upon nonlinear coupling of modes by the nuclear term. This causes
individual modes to receive perturbations from all the other modes which outweigh the
weak driving and damping terms of conventional Tlinear theory. Temperature
fluctuations in parts of the core are assumed to exceed 5% (rms) due to the combined
action of many g-modes. Moderately high harmonic modes are expected since they have
relatively smaller amplitudes at the surface, thus reducing the energy losses there.
Radiative losses very close to the center of the sun are reduced by the partial
cancellation of the many modes involved. This picture of the solar core also differs
from the conventional one in that the occasionally large local oscillation amplitudes
would almost certainly keep the inner core well mixed. As discussed in § 5, mixing
is a known way to solve the solar neutrino problem.

2. SPATIAL REDISTRIBUTIONS OF AMPLITUDE

Several members of the workshop were quite skeptical that the consideration
of ensembles of modes could avoid the large amplitudes and heavy radiation damping
which are known to occur in most individual linear modes near the center of a star.
For this reason, two elementary examples are presented here of situations in which a
group of modes can have strength in the central regions which is less than that found
if the linear modes were computed one at a time in the usual manner.

The first example does not even require coupling between the linear modes.
Those modes, which have antinodes in the vicinity of the shell (mean radius, r. > 0.l
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Ro) where nuclear burhing makes its greatest contribution toward the driving of most
g-modes, are especially well situated to be driven by the nuclear mechanism. It is
not unlikely that many of these modes will have larger amplitudes than others. For
simplicity then, let us consider an ensemble of modes each of which has an antinode
at r.. Let us write the local temperatue fluctuation due to the ith mode as i sin

w;t where,
_ (8T
% * (To)i ’ W

8T is the Lagrangian perturbation in the mean temperature Tg. and w; is the

oscillation frequency. The rms amplitude of a typical linear mode is,

_ N 1/2
91. E(% z 6.2
i=1 !

\

In these terms, the time average of the squared fluctuation due to N modes is,

N T2
2 . -
6 =<[21%sm%q >=3(5,)? . (2)

1=

where all wij are assumed incommensurate. Closer to the stellar center by at least
one radial wavelength of a typical mode, the radial phase can be taken as random.
The typical mode, then, has a Tocal amplitude of 65 / ¥2, where 8; is the amplitude
at the nearest antinode of that mode. Now, the mean squared temperature fluctuation

is only
o =4 (5,)° . (3)

Comparison of equations (2) and (3) shows that the squared fluctuation due to all the
modes is twice as large at r =r, as it is far from r, when each is compared to 6_1-
which is the appropriate quantity for conventional, single mode calculations. The
above conclusion is unchanged after integrating over all angles, which affects (2)
and (3) by the same factor. Finally, a difference of more than a factor of two can
occur if 8 becomes finite and attention is shifted to a highly nonlinear function of
the temperature, such as the nuclear term.

The second example gives larger effects. To illustrate the point, we need
only two groups of modes whose oscillation frequencies are about the same and whose
radial harmonic numbers, k, differ by two. There are many such cases (see Figure 1).
Most of these 1ie above 0.29 mHz, where the many cuvves are converging on the figure,
but there are some cases which fall as lTow as 0.18 mHz. Any pair with ak = 2 will
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do, but we will choose a case where| k| >>1 so that simple asymptotic forms can be
used for the eigenfunctions. The two groups of modes near 0.18 mHz with (k, &, m) =
(-9, 4, m) and (-11, 5, m) have radial eigenfunctions which are adequately
approximated in the g-region by the sine waves plotted in Figures 2a and 2b. In the
exponential regions, the behavior is indicated schematically by the dashed curves.
The ordinates are S-1/4 Q in which variable the eigenfunctions approach pure sine
waves when plotted on a logarithmic distance scale, provided | k| is large enough (see
Wol ff 1979, especially equation (19) and Fiqure 4). The sum of the two curves is
given in Figure 2c and immediately suggests a way in which the star can concentrate
oscillatory motion in the vicinity of the strongest nuclear driving, r = r_, and
diminish its exposure to radiation losses near the center and in the envelope. The
star need only couple the approximately equal oscillation frequencies of the two
groups so that they are exactly the same; the distribution in Figure 2c can then
continue for roughly half a year until rotation separates the groups. It is
important to note that the concentration shown in Figure 2c cannot apply to all
angular directions. This is obvious in linear theory where the modes are orthonormal
spherical harmonics and imply a total cancellation of the concentration when
integrated over a spherical surface. But, in nonlinear theory, oscillation energy
can be concentrated into a small fraction of all possible directions. Wolff (1974)
derived a way of doing this by coupling all the 1inear modes of a given value of #.
He showed that this could proceed in the sun if nonlinear coupling was able to make
fractional changes of ~ 1073 in the oscillation frequencies of the linear modes. We
can reasonably assume that coupling is adequate to make these changes since our model
already requires much larger fractional perturbations (v 10‘3, as deduced from the
spacing of eigenvalues in Figure 1) to achieve the radial concentrations illustrated
in Figure 2c. In summary, the solar core can develop, from time to time, very
interesting nonlinear modes whose amplitudes are concentrated in all three spatial
dimensions, provided that the nonlinear driving term is strong enough to couple the
oscillation periods of appropriate groups of modes. The simplest illustration of the
method may probably be found when only two groups of linear modes are used with
radial harmonic numbers differing by two.
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Figure 1. The distribution of linear g-mode oscillation frequencies, v = w/2w, in a
standard solar model. The curves are labeled by %, the principal index of the
spherical harmonic. The abscissa is k, the radial harmonic index. Acceptable
oscillation frequencies whose modes satisfy the required physical boundary conditions
occur for integer values of k and & On the scale of this figure, the frequencies of
linear modes are independent of the azimuthal number, m, because of the sun's very
slow rotation.
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Figure 2. The effect of coupling the oscillation frequencies of two similar modes.
(a) The approximate radial dependence of oscillation amplitude for a mode, k = -9 and
2 = 4. (b) The same for a mode, k = -11 and £ = 5. - The ordinates are in a natural
variable related to energy. (c) The sum of (a) and (b). This gives a new mode whose
amplitude is diminished by a factor of five, both in the central regions and near the
base of the convective envelope (* 0.7 R, in this model). A1l curves have been
normalized to one at their Targest maximum. For the curve in {c), the larger
amplitudes 1ie in layers where nuclear driving has its greatest effect on the
oscillations.
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3. DEPARTURE FROM LINEAR THEORY
The unlinearized fluid equations commonly used in pulsation theory are

g—§+pv.7= 0 (4a)
v, 9
E% + 7P-+ VW = (turbulent forces) (4b)
1 d v.F
>
ST ﬁ(%) + %V.v =e - —'pi + (turbulent viscosity) (4c)

where o, p, and v are the density, pressure, and velocity of the fluid, and d/dt
stands for (3/3t + V + V). Perturbations of the gravitational potential, W, will be
neglected because high harmonics will be of interest. Left members of the equations
contain-the adiabatic terms. The right members have the nonadiabatic terms which
will be discussed later. For g-modes in the solar core, the total pulsational energy
greatly exceeds the nonadiabatic losses per cycle so that the familiar quasiadiabatic

approximation is valid. Using equation (1) this can be written as

i—:

% be (5)
and

8p . ,

Po Ybe (6)

where §p and 8p are the Lagrangian perturbations in the density and pressure, b = (y
- 1)'1, and vy = 5/3 in the solar core.

We need an order of magnitude estimate of how the adiabatic terms of (4)
depart from linearity as the relative temperature perturbation, 6, becomes large. To
obtain this, we will first write,

P = (py +6P) = py(1 +vb0) = p (1 +8)P (7)
and similarly,
b = og(1 +0)° (8)

The indicated approximations are fairly good since b and y are of order unity and 8
is not expected to exceed a few tenths. - Using (7) and (8) to eliminate p and p, we
see that the velocity in equation (4a) must balance terms ~ (1 + e)b. In the
adiabatic members of (4b) and (4c), the velocity balances terms ~ (1 +08). Very
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roughly then, the velocity field will solve these equations if its dependence on s
has exponents, b and 1, comparable to the other terms. .Assuming this holds well
enough for our purposes, no term in the left members of equations (4) varies with 6
at a rate faster than 1 + e)2b = (1 + 6)3. The Tower curves in Figure 3 show the
function,
a+e)? (9)
1+o08

for two values of B. Since the denominator is merely the linearized form of the
numerator, the ratio represents the fractional departure from linearity of any term
in the equations of motion whose dependence at some value of 5 approximates (1 + 6)B.
The curve g = 2 typifies the behavior of the adiabatic terms in (4) while the g = 4
curve is a generous upper limit. From the figure, errors would not be expected to
approach " 10% until the local temperature fluctuation exceeds a few tenths.

Unlike the preceding situation, highly nonlinear behavior is common for the,
nonadiabatic terms. The turbulence is usually discussed in terms of a generalized
pressure tensor and is thought to be negligible in our problem. But a unique form of
turbulence will be suggested in § 4,2 as the ultimate limit on the growth of
pulsational amplitudes. The radiative exchange term, p’l(v . ?), contains two
strongly nonlinear functions in the radiative flux,

vTt

> .
F = constant - —
pK

namely, the opacity x and the temperature to the fourth power. Using equation (8)
and the opacity tables of Cox and Stewart (1970) for solar core conditions, one can
show that there is considerable cancellation between the variations of p« and T4,
This is not true in the outer envelope of the sun. However, in the core, the overall
temperature dependence of the radiative term turns out to be quite slow,
corresponding to 8 < 2 in Figure 3. The order of magnitude proof is too long to
include here but it depends on two approximations: (1) the distance between nodes of
the oscillation is taken to be much shorter in at least one dimension than the local
temperature scale height; and (2) the gradient and divergence operators are replaced
by n/L, where L is the shortest of the 3 internodal distances. ‘

The nuclear burning term, e, is notoriously sensitive to temperature. For
pulsations of infinitesimal amplitude, 8 = 12. This comes primarily from the
reaction, SHe + 3He > #He + 2 lH, as pointed out by Dilke and Gough (1972) and by
Unno (1975). For finite amplitude pulsations, B varies during the cycle and the
following procedure was used. The conventional interpolation formula for the rate
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Figure 3. The fractional departure from linearity of (1 +6)8 as a function of the
relative temperature change, 6. The behavior of most terms in the pulsation
equations is typified by the curve for 8 = 2. The curve for g = 4 is an upper limit
for all terms except those for nuclear heatin% and turbulence. The nuclear curve is
drawn for material at a temperature of 9 x 10° K and containing 75% hydrogen by mass.
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per unit mass of nuclear energy generation is:
e =e (1l +8p/p)(1+ o)" (10)
Using equations (5) and (8), this becomes

€= eo(l + e)B (11)

where g = n+ b here. In order for equation (11) to typify the true energy released
over an oscillation cycle, ¢, and n must be numerically determined for each mean
temperature, T,, and each range, + &, of the fluctuation. For this purpose, a matrix
of € values was calculated using the expressions of Fowler, Caughlin, and Zimmerman
(1975) for the 9 reactions of the proton-proton chain. A well-mixed core was assumed
with a hydrogen mass fraction of 75% The calculations were made for a density of
100 g cm'3, a grid of mean temperatures (6, 7, 8, ... 15) x 106 K, and an array of 6
values. The abundances of /Be and SHe were in equilibrium with the local mean
temperature while the abundances of deuterium and 7Li were allowed to fluctuate
during the oscillation cycle. By interpolating within the € matrix and constructing
the appropriate derivative, the exponent in equation (11) becomes a known function of
® and T,, permitting a plot of the departure from 1inearity of the nuclear heating
term. It is shown in Figure 3 for a mean temperature of 9 x 106 K. When the Tocal
temperature fluctuations are only a few percent, linear theory holds very well. As
the fluctuations grow larger, increases of an order of magnitude will occur in the
nuclear term before any serious error arises in the other terms of equation (4).
Thus, a range exists for 6 from approximately 0.04 to 0.2 where linear theory remains
valid except that the nuclear term is underestimated. I suggest that portions of the
solar core are pulsing in this range for three reasons. (1) There are many truly
linear modes (6 - 0) for which the total damping exceeds the driving by less than an
order of magnitude. More and more of these modes would become excited as @ exceeded
0.1 and the enhancement of the nuclear term became greater. (It is necessary to
treat the modes in groups, as in§ 2, to avoid the large amplitudes near the center
which would disrupt the oscillatory motion, but this also further improves the
prospects for excitation by significantly reducing radiation damping.) (2) The
combination of groups of modes to produce a spatially concentrated, nonlinear mode is
a step in the direction of existing local treatments of the problem. Dilke and Gough
(1972) and Unno (1975) have already demonstrated that linear g-modes can be excited
when the envelope of the star is neglected. By appropriate coupling of modes similar
to theirs, nonlinear modes could probably be formed with reduced envelope activity.
(3) Large amplitude oscillations in the core can resolve three discrepancies between
observations and conventional theory (§ 5) while maintaining small enough surface
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amplitudes to remain consistent with other measurements.

4, COLLECTIVE EXCITATION AND DAMPING
4.1. Collective Effects on the Nuclear Excitation Term

It may be hereafter assumed that parts of the sun's core are occasionai]y
oscillating in the range of temperature fluctuations just given. A lower limit to
the nonlinear driving term is now. derived. The rate of mechanical work done on the
pulsations by the nuclear reactions is given by the integral over the stellar mass of

dU = dm<6se>

where dm is the mass element, §e¢ is the Lagrangian perturbation of ¢, and the
indicated averaging is taken over time. By equation (11) this becomes

dy = dn e <o - [1+a -1]>

For integer values of g, this has an exact expansion in terms of binomial
coefficients, ¢® = g1[(8-3)! 1171, It is
st<aj+1> . (12)

dU = dm €

IIM’m

1
4

J

Since there will always be an integer within 4% of the desired value of g8 (recall
that 8 2 12), interpolation between these is probably easier than use of the
noninteger form of equation (12). In conventional growth rate calculations, equation
(12) is approximated by dU; = dm ¢4 B <92> . Although this first order
approximation to the work integral will not be used, it is instructive to divide
equation (12) by dU; to emphasize how this paper departs from conventional work:

(g - 1)1 <o > + 8- 1)! <o + ... . (13)

TR CRR TS T A CRN T TR

The omitted odd powers of & will be shown to have zero time averages in our model.
The collective influence of all the modes enters equation (13) directly only

in the time averages of even powers of 6. It also enters indirectly, when 8 is
large, by affecting 8 as mentioned earlier. If there are a large number N of
individual modes and none has more than a small fraction of the energy, then the

By Figure 3, each mode has

nearly perfect linear behavior so that its time dependence is sinusoidal. Thus,

D
n
ne=

i 0, sjnmit (14)
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will hold until the mode approaches its limiting amplitude. 1In the following
calculation, all oscillation frequencies w; will be assumed to be independent and
incommensurate. This gives a Tower 1imit to the overall nuclear driving but does not
revise our belief that, in fact, some of these frequencies will couple. It follows
from equation (14) that the time average of 6 raised to any odd power must vanish.
For even powers, an amplitude distribution must first be assumed. For brevity, the
simplest useful one will be chosen; however, more realistic distributions are
expected to give comparable results until the ratio in equation (13) becomes much
greater than 1. All the stronger modes are assumed to have the same amplitude A and
the weaker ones are set equal to zero. In the limit of a large number, Ng, of strong
modes, it can be shown that

<p29s (29 - 1)1 (<ez>)q s or

n

(29 - 1)1t (8,,)%

where 6.ns = (1/2 Ng A9)1/2

1-3+5¢+¢(2q - 1). The factorial can increase the nuclear energy generation by much

in this case and (2q - 1)!! stands for the product,

more than one might have guessed from knowledge only of the rms amplitude.
Physically, this increase reflects the fact that, when the modes interfere
constructively, they enhance the nuclear burning much more than they reduce it during
destructive interference. The ratio dU/dU; can now be numerically evaluated and it
is plotted in Figure 4. The figure shows how the nuclear portion of the work
integral departs from its linear value as the rms temperature fluctuation rises. Two
different equilibrium temperatures were used for the solar material, 9 and 12 x 106
K, roughly bounding the layers in a mixed model where nuclear reactions are important
to the pulsation. From the figure one sees that this driving is greater than linear
theory would give by factors of 3 to 10 in the range of fluctuations, 0.10 < & <
0.14. Actually, this range will be more like 0.06 < 6 < 0.08 because the plotted
curves considerably underestimate the enhancements. (That is because a constant B
was used, appropriate to the location & = 8.,., whereas an averaging over a
statistical distribution of g values would describe better the true situation.)
Nevertheless, it is already clear from the figure that many modes can be expected to
switch from a damped condition to one of excitation under the combined effects of the
extra driving in this range and the reduced damping caused by the spatial
concentration. The following limitations should be kept in mind.

4.2, Limitations on Harmonic Numbers and Amplitudes
Very high radial harmonics cannot be making the main contribution to the

enhanced nuclear driving. The nodes of such harmonics are too closely spaced in the
radial direction, placing a Timit on how far the fluid can move in an oscillation
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Figure & A lower 1imit to the exact work integral for nuclear driving divided by
its conventional linear approximation, dU;. The abscissa, 6 ,,qs represents the root
mean square value of the Tocal relative temperature fluctuation. The curves are
computed for the temperatures of 9 and 12 million kelvin in material which is 75%
hydrogen. The 8 = 4 curve from Figure 3 is included for reference since it serves as
a generous upper 1imit to the behavior of the radiation damping term in the core.
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cycle. In turn, that limits the total temperature fluctuation available since the
motion is curl-dominated. In order to obtain temperature fluctuations exceeding + 5%
near r_, the typical linear modes being coupled must have harmonic numbers, -k < 15
for 1ow values of 2. For g2 = 10, the condition becomes -k ¢ 10 and there is little
further change for higher 2 values.

The second limitation applies to the angular harmonics of the g-modes with
oscillation periods = 1 hour seen by the SCLERA telescope. These limb measurements
by Hill and Caudell imply motions of the photosphere and subsurface layers in which
(Sr/r) ~ 10-6. Fairly large 2 values are required to make such a small surface
motion consistent with a large amplitude in the core. Figure 5 shows how much the
radial motion is diminished as it traverses the convection zone from ry. the base of

the zone, to 0.98 Rgs @ subsurface layer. Th solid lines come from the relation, sr

1/2 *+1.5
oo/ r* = constant, where ¢* = [2(2 + 1)11/2. The lines are dashed where

this ceases to be a good approximation. Three plausible base levels have been used,
(rb/Ré) = 0.5, 0.6, and 0.7. Reductions ~ 1074 are needed in Figure 5 in order that
the surface amplitudes will imply motions at ry for which (&r/r) ~ 1072, Motion of
this order of magnitude can lead to the large temperature fluctuations at greater
depth required by our model. Therefore, our model could conveniently explain the
SCLERA observations with 2 values greater than about 15. This is certainly
consistent with the measured range, 20 < 2 < 40, but more detailed measurements and
modeling will both be required before a stronger statement can be made.

Finally, the maximum displacement of the fluid at an antinode must be less
than half the distance between the nodes. To exceed this would produce unphysical
amplitudes. The condition for oscillatory motion would thereby be violated and a
partial transition to circulatory motion would occur locally. Significant energy
Tosses would result because of the failure of part of the fluid to return smoothly
after such an extreme excursion. This is a form of turbulence, of course, but it may
not be useful to try to describe it by the conventional expressions normally inserted
into equations (4) by pulsation theorists. Rather, the phenomenon is more analogous
to the droplets expelled from a pond after a pebble has been thrown in. I believe
that this mechanism 1imits the size of the oscillations described in this paper.
Each nonlinear mode should grow until the antinodes having the most extreme motion
begin to throw off "droplets" at an average rate comparable in energy content to the
nuclear driving. Since this phenomenon should occur most often at the most centrally
located antinodes, an adiabatic stratification may develop in a tiny core (radius, «
102 Rg) due to the frequent mixing. (Incidentally, shock phenomena are not expected
in our model because the high sound speed in the core keeps v/c < 10-2 throughout the
star.)
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"Figure 5. The ratio of (§r/r) at a subsurface Tayer, r = 0.98 Ry, and (sr/r) at-the
base of the canvection zone, ry. Very strong reductions in subsurface amplitudes
occur for all modes with high angular harmonic numbers, % The stronger reductions
occur for the thicker convection zones. The small limb excursions measured by Hill
and Caudell are roughly consistent with the large core amplitudes advocated herein at
ordinate values on this figure ~ 10-4, This implies that high & harmonics are needed
in our model and this is consistent with the measurements.
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5. OBSERVATIONAL TESTS OF THE MODEL
5.1. Existing Evidence
In the preceding sections, theoretical means are described by which g-modes

may be excited in the sun. Present day uncertainties concerning stellar interiors
prevent anyone from demonstrating more than the plausibility of a purely theoretical
argument about the excitation of g-modes in the solar core. But there are three sets
of observations which, taken all together, form a fairly strong case against the
standard, unmixed solar models. These observations are all consistent with the
pulsating mixed model described herein.

Numerous radial velocity measurements taken in this decade have shown
oscillatory power in the range (15 minutes to 1 hour) appropriate to g-modes; among
the earlijest are those of Durasova, Kobrin, and Yudin (1971) and Deubner (1972).
However, these measurements failed to display precise, reproducible periods and
angular harmonic structure, leaving most people in doubt as to whether they
represented global modes. The first good evidence of g-modes in the sun was Wolff's
(1976) indirect detection of their rotation periods; this exercise was undertaken
because of the 1ikelihood that these periods might be easier to detect than the much
more numerous oscillation periods. Under appfopriate nonlinear coupling stronger
than about one part in 105, Wolff (1974) demonstrated that large numbers of solar g-
modes can couple to form a small number of rigidly rotating modes, each having an
array of oscillation periods but just one rotation period. The set of theoretical
rotation periods derived can be regarded as a unique signature of coupled g-modes.
Later, the not unreasonable assumption was put forth by Wolff (1974) that oscillatory
power in the solar core and therefore in the lower convection zone would modulate
solar activity. To a remarkable degree, the periodicities in two centuries of
sunspot data matched the beat periods between g-mode rotation periods. Since the
detected beat periods had been derived from modes with angular harmonic numbers & =
6, 7, 8, 9, 10, and one higher order mode, the agreement was strong indirect evidence
that many g-modes with & * 6 are excited. It further implied that groups of linear
modes with a single value of & had become coupled so as to concentrate their
oscillatory power in longitude; these particular beats could not otherwise have been
observed. These observations support the present paper because they strongly
indicate that high 2 modes are excited and concentrate their power in at least one
spatial dimension.

In their solar diameter measurements, Hill and Caudell (1979) achieved the
first direct detection of g-modes, represented by oscillatory power at periods of 45
and 67 minutes. These periods are too long to be p-modes whether the standard solar
model or a mixed one is used. The measurements were taken by Hill and Caudell at two
different scan amplitudes, providing a rough measurement of the typical horiionta]
wavelengths involved. These are referred to in terms of a range of spherical
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harmonics, 20 < & < 40. Find]ly, the modes display phase coherence over the two-week
observational interval, proving that they are global modes.

Continued confirmation of these measurements will have major consequences for
the study of solar interiors. The high angular harmonics detected by Hill and
Caudell are all damped by radiation losses near the solar center under standard
calculations. Also, when a standard extrapolation is made of the surface amplitudes,
these measurements imply impossibly large motion in the interior unless an
exceptionally thin convection zone is assumed. Thus, the Hill and Caudell
observations are not consistent with conventional, uncoupled g-modes in a standard
solar model. The conventional approach provides neither an excitation mechanism nor
acceptable central amplitudes. Both difficulties could be avoided by the scheme
proposed in this paper. Finally, a well-known problem of the standard model is its
inability to explain the low value of the neutrino flux seen in the Davis (1978)
experiment. Unless there is an undetected error in the nuclear physics, Davis
measurements imply the standard model is incorrect in at least the central tenth of
the solar radius since that is where virtually all the detected neutrinos are
generated. As many authors have noted (e.g., Bahcall 1977), thorough mixing of the
core material could alleviate this problem. Mixing increases the hydrogen mass
fraction from 0.5 to 0.75, thereby lowering the central temperature by several
million kelvins. Because of the extreme temperature sensitivity of the relevant
reactions, the mixed models have neutrino fluxes which are Tower than those predicted
by the standard model by a factor of 3, putting them in agreement with the Davis
experiment. The large amplitude pulsations limited by turbulent losses as proposed
herein would almost certainly mix the central parts of the core in a time much
shorter than 109 years. (The turbulent limit discussed in § 4.2 takes place at
antinodes whose dimensions are ~ 10~2 or 10~3 Rg- This means that diffusion lengths
are of comparable size, giving adequately rapid mixing.) By providing a mixing
mechanism, our model is consistent with Davis' (1978) neutrino flux to the currently
achieved levels of accuracy.

5.2, Future Tests

The model has several consequences which can be searched for in data now
being accumulated. First of all, the sun's nuclear burning rates vary in this model,
resulting in a modulation of the neutrino flux on time scales of months and years.
This variation in burning rates follows from the fact that many nonlinear modes with
different % values are active. The modes rotate at different rates in the sun,
causing enhanced burning as the longitudes into which their oscillatory power is
concentrated rotate past each other. In addition to directly modulating the
neutrinos, the extra burning is associated with slight mixing events in directly
changing the neutrino rate. It is not clear whether the direct or indirect effect
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will be the larger.

Secondly, upwellings of huge scale are to be expected in the convective
envelope from time to time. These are caused by the occasional high concentrations
of oscillatory power at certain latitudes and Tongitudes, heating the base of the
convection zone asymmetrically. Transport of the extra heat to the surface would
seem to be accomplished most efficiently by flow patterns on scales comparable to
those of the oscillations. (Of course, there would also be a Tocal increase in the
intensity of small scale convection, carrying off part of the heat with no net upward
mass flux.) The large scale upwellings seem to me to be unavoidable in an
adiabatically stratified layer and have played a part in all my solar papers since
1974, The more interesting question is their intensity. In particular, will they
reach the surface with velocities that are detectable? This can only be answered by
observation in view of the uncertainties in the theory of astrophysical convection.

Thirdly, an asymmetric flow like the above must increase the surface
brightness in and near the upwelling region. Thus, the sun's intensity as seen at
the earth will vary sometimes with a period of roughly 27 days. This small effect
may be detectable by experiments that are, or shortly will be, in space.

Detection of any of the above three effects would lend support to our model.
But the most convincing confirmation would come if appropriate recurrence tendencies
were proven. Variability on definite time scales of months and years is predicted by
this model (Wolff 1976) on the basis of the easily calculable rotation periods of
most solar g-modes. The standard picture of the sun would be inconsistent with a
neutrino flux proven to be variable but it might be able to accommodate upwelling and
Tuminosity changes by means of more realistic treatments of flow in convective

envelopes.

6. SUMMARY

A method was described for exciting g-modes in the sun at the high angular
harmonic numbers required by the observations. Qualitatively, it can resolve three
serious discrepancies between conventional theoretical work and solar measurements.
It proposes a new picture of the solar interior wherein the core of the sun is in a
quite different state from the almost peaceful condition envisioned by most solar
physicists.

The key theoretical feature of this paper was that it noted the very large
number of linear modes which are probably active (hundreds or thousands) and assumed
that they will occasionally combine to produce large temperature fluctuations
exceeding 5% in various small regions of the sun's core. Such large fluctuations
produce strong nonlinear effects through the nuclear reactions. An illustration was
given on how this could concentrate the oscillation energy into layers favorable to
excitation and diminish the exposure to Tosses near the center and in the envelope.
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A set of nonlinear modes would result which formed at fairly regular intervals and
grew until their amplitudes became large enough for turbulence to Timit their further
growth. The type of turbulence thought to be significant (s 4.2) stirs the inner
core material with mixing 1engths v 10-3 R@, guaranteeing a well-mixed core. The
most importént unproven aspect of this model was the assumption that perturbations of
v 10“3 in the oscillation frequencies will occur during mode coupling so that spatial
concentration in the radial dimension can be achieved.

Today, pulsation theory cannot make definitive predictions about the sun
because of major unknowns like the composition and temperature gradient in the core,
the true importance of turbulence, and the detailed nature of coupling among linear
modes. Therefore, it is especially dangerous to ignore inconvenient observations.
There are now three groups of observations weighing against the conventional view of
an unmixed solar core pulsating only in very low angular harmonics at infinitesimal
amplitude, if at all. It is possible to avoid the negative implications of each
group of observations by either questioning its validity or by making special
revisions to the theory, but it is not encouraging when so many special arguments are
needed. In contrast to this, the model advocated in this paper seems to be
compatible with all three groups. These groups are: (1) the observation by Hil1l and
Caudell that solar g-modes are active at high 2 values; (2) the indirect detection by
Wolff (1976), implying that nonlinear coupling is operating among g-modes,
concentrating their oscillatory power in the angular dimensions; and (3) the
unexpectedly Tow measurement by Davis (1978) of the Tow solar neutrino flux. The
neutrino problem has received much attention and numerous solutions have been
proposed. In his review, Bahcall (1979) has described all solutions depending on
solar model revisions as "ad hoc." It is possible that the model presented herein is
the first exception: it explains three troublesome data sets, not just that of the
neutrinos, and it is a fairly plausible outcome of the presence of many high order g-
modes in a fluid containing an extremely nonlinear driving m?chanism.

Finally, the model implies several other things which can be tested in the
coming years. It predicts time variability on certain definite time scales (measured
in months and years) for the phenomena modulated by the g-modes; specifically, these
are the solar neutrino flux, upwellings of global scale in the convective envelope,
and rotationally asymmetric brightness of the sun. See § 5.2 for details. With
appropriate adjustments for the different physics involved and the shorter data sets
available, many of these future tests may be similar in principle to that given by
Wolff (1976) using the extensive records of solar activity variations.
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COMMENTS ON GRAVITY MODE EXCITATION MECHANISMS

W. Dziembowskil
Department of Physics
University of Arizona
Tucson, Arizona

Studies of nonlinear effects in solar oscillations may help us identify a
mechanism for gravity mode excitation. However, we do not expect that nonlinearities
in the perturbation of nuclear energy generation rate as discussed by Wolff (1980)
are indeed relevant. Nonadiabatic effects for gravity modes trapped in the interior
are quite small: typical linear growth or damping rates are in the range of 1079 -
10-10 per pulsation period (see e.g., Keeley 1980). In such a situation energy
exchange between modes due to three-mode resonant coupling (see Dziembowski 1980)
will certainly be important at the amplitude level well between the onset of the
nonlinear effects discussed by Wolff.

Thus, for the hypothesis that long-period solar variability is the
manifestation of gravity modes, we attach more promise to the investigation of three-
mode resonant interactions. Moreover, nonlinear mode interaction may account in a
natural way for amplitude decline of 2h40M oscillations occurring on the time scale
of few years (Kotov, Severny and Tsap 1978). Decay due to radiative damping occurs
on the time scale by at leave five orders of magnitude longer.
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SOME THEORETICAL REMARKS ON SOLAR OSCILLATIONS

D. Gough
Institute of Astronomy, and Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, UK

ABSTRACT

The properties of the-linear modes of oscillation of a nonrotating
nonmagnetic star, with particular reference to the sun, are briefly described. The
most likely mechanisms by which they might be excited are reviewed, and it is
concluded that stochastic excitation by turbulence is probably the dominant mechanism
that drives the solar five minute oscillations. Phase coherence of one of the
components of the SCLERA diameter data is illustrated, and the new five minute
oscillations in the Birmingham whole-disk Doppler data are discussed. Finally some
of the problems raised by conflicting evidence concerning the structure of the sun
are aired, but not resolved.

1. INTRODUCTION

From the properties of linear eigenmodes and the values of the oscillation
amplitudes that are observed at the solar surface, it is consistent to suppose that
the amplitudes of most of the modes are small throughout the sun, except possibly in
the upper atmosphere. Though it is a circular argument to conclude from this that
the amplitudes really are small, the present discussion is nonetheless based towards
linearized theory. Such theory may prove to be inadequate for.a complete description
of solar oscillations, but it is no doubt useful in providing us with an
understanding of much of the essential physics.

Interest in solar oscillations extends beyond the phenomenon itself. The
modes experience conditions inside the sun, and thus provide us with the opportunity
to perform a seismological inversion on the solar interior. Because linear
eigenmodes of a given model of the sun can be computed with relative ease and
certainty, and because there exists a considerable body of inverse theory developed
chiefly by geophysicists, one has reason to anticipate at least a modicum of success.
At present the quality of the data is probably inadequate to warrant using the entire
mathematical machinery that has been developed for studying the earth, but the
jnformation we do have available is sufficient to have posed several problems worthy
of discussion.
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Before such discussion is possible, it is necessary to establish the basic
properties of the linear eigenmodes. This will be done briefly, after which some of
the issues that have been raised in other contributions to this wbrkshop will be
addressed.

2. CLASSIFICATION OF LINEAR NORMAL MODES

The following discussion will concentrate on the most commonly encountered
modes of oscillation that can exist in a nonrotating nonmagnetic star. These were
classified by Cowling (1941) into p, f, and g modes for adiabatic oscillations of a
polytrope; it is believed that a formal classification of this type is possible for
adiabatic oscillations of any stellar model. Since the equilibrium model is
essentially spherically symmetrical--at present the inhomogeneities produced by
convection will be ignored--a linear mode is separable in radial and angular
spherical polar coordinates and time, with sinusoidal time dependence and an angular
dependence that is proportional to a tesseral harmonic. The mode can be
characterized by three integers n, &, m, where £ and m denote the degree and order of
the tesseral harmonic and n is usually called the order of the mode. The oscillating
frequency is independent of m. It is convenient to regard n as being negative for
the g modes, zero for the f modes and positive for the p modes.

Broadly speaking, as |n| increases so does the number of nodes in the radial
component of the displacement eigenfunction. Indeed, for smoothly varying stellar
models such as a polytrope of low index, [ n| is equal to the number of nodes in the
radial displacemeht,1 as is also the case for any realistic stellar model when |nj is
sufficiently large. Otherwise the situation is rather more complicated. The
algebraic method of node counting described by Eckart (1960), and employed by
Scuflaire (1974) and Osaki (1975) for stellar oscillations in which perturbations in
the gravitational potential are ignored, breaks down when gravity is correctly taken
into account. Nevertheless, it seems that the symmetry of the governing equations is
such that eigenfrequencies cannot cross under continuous transformations of the
equilibrium model. Thus it seems likely that a value of n can be uniquely assigned
to any mode of a stellar model in such a way that it agrees with Cowling's
classification when the equilibrium model is transformed continuously by any path to
a polytrope of low index. However, this has not been proved.

Strictly speaking, this discussion applies only to adiabatic oscillations
subject to perfectly reflecting boundary conditions. These have real
eigenfrequencies and eigenfunctions. The Tinear nonadiabatic oscillations, possibly
with leaky boundary conditions, are not purely oscillatory and the problem of their

1In the case ¢ = 0 alone, the center of the star is considered to be a node.
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classification is more complicated (cf. Christensen-Dalsgaard 1980), though for most
modes the eigenfrequency is almost real. In the following discussion I shall loosely
call such an oscillation a normal mode. Because the quality Q, which is the ratio of
the damping or growth time of the oscillation to its period, is high, the deviations
of the basic properties of the oscillation from the adiabatic normal modes are
generally small; therefore, adiabatic and nonadiabatic approximations will not be
differentiated except where such distinction is important.

3. NATURE OF THE OSCILLATIONS

A precise formal classification of modes of the kind described above would
provide a useful means of specifying the mode unambiguously and concisely, but a more
physical description is often much more informative. In simple situations, such as
that discussed by Cowling, p modes are stationary acoustic waves, f modes are surface
waves and g modes are internal gravity waves. In more realistic models of the sun,
the Tocal character of a mode can change with depth. In some places the dynamics of a
mode might resemble that of a gravity wave, whereas elsewhere the motion might be
characteristic of a surface wave or an acoustic wave. It is simplest to recognize
the local behavior when |n| is large and eigenfunctions vary with radius much more
rapidly than the equilibrium model. In that case the JWKB approximation, or even the
plane wave approximation, can be made. Several examples of solar modes are discussed
in this way by Christensen-Dalsgaard, Dziembowski and Gough (1980) and Christensen-
Dalsgaard and Gough (1980a) in these proceedings.

The p modes of low degree exist with substantial amplitude throughout the
entire body of the sun. When n is large they may be regarded as ordinary sound waves
propagating almost radially, and in this Timit the energy density per unit radial
distance is constant. The modes of high degree and low order propagate obliquely;
these are confined in the surface layers by refraction resulting from the increase
with depth of the sound speed. The principal restoring force in an acoustic
oscillation is the pressure fluctuation produced by compression. Thus the velocity
field has a high divergence, and is almost irrotational. Typically most of the
kinetic energy is associated with the vertical component of the motion.

When n is large the wavelength is small, and the speed of propagation is
hardly influenced by the stratification of the star. The eigenfrequencies wp,
approach a harmonic sequence as n increases, with frequencies given by (e.g.,
Vandakurov 1967)

m£~1(2++) Rdl"-1
n s(2n+ete < as n->o (3.1)

0

where r is the radial coordinate, R is the radius of the sun, ¢ is the sound speed
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and ¢ is a constant which depends on the equilibrium solar model. As is the case
with sq]utions of the pure wave equation in a spherical cavity, wn,z'“ ®n-1,2+2 and
“n g+l ™ 1/2(wn’2 + wn,z+2) as n> o=, Though equation (3.1) is correct in the Timit
n >« at fixed finite 2, it is useful to regard the formula as an approximation at
finite n, in which case the condition n >> g must be satisfied.

. CIfa>> 1 and n is large, but not much greater than %, the eigenfrequencies
may be estimated by ray theory. The period of oscillation is the time taken for an
oblique wave initially propagating downwards from the surface to return to the
surface. - The dispersion relation is found by noting that in order for a sequence of
such waves to interfere constructively to form a stationary wave pattern of order n,
each ray must return to the surface n horizontal wavelengths displaced from its
origin. One finds in this way that if the region of the sun occupied by the wave is
approximatd by a polytrope of index pu,

g * 20 K (3.2)
where g = GM/RZ is the surface gravity and y = (d1np/dinp)g, with p being pressure, p
density and derivative being taken at constant specific entropy, and where k = [2(% +
1)]1/2/R js the horizontal wavelength. Moreover the penetration depth is found to be
2nk'1, which is simply the level at which waves of frequency w,, have a total
wavelength k and therefore propagate horizontally. Equation (3.2) is correct for
values of large n; when n is small, one must take more careful account of the
boundary conditions, which add the constant p to the factor 2n. There is also a
modification due to buoyancy if the polytrope is not adiabatically stratified. The
complete formula is given, for example, by Gough (1978).

It is clear from equations (3.1) and (3.2) that w, increases with £ and n
when n or 2 is large, and numerical solutions always exhibit this property regardless
of the values of n and 2. Thus one would expect p-mode frequencies to be bounded
below by that of the radial pulsation of order unity, although it does not appear
that this has been proved. This mode of a typical solar model has a period of about
one hour.

The f mode, or fundamental mode, is essentially a surface wave. The
restoring force is provided by gravity, and were it not for the curvature of level
surfaces in the unperturbed star and the variation of gravity with depth, the
velocity field would be both irrotational and solenoidal and the frequency would be
that of a deep water wave: w = (gk)1/2 jrrespective of the stratification of the
unperturbed state. The waves are concentrated in a layer of thickness k-1
immediately beneath the surface. Thus when & >>1, the deep water wave frequency is
an accurate approximation. The kinetic energy is approximately equally shared
between the horizontal and vertical components of the motion.

Internal gravity waves can exist if there is a region of the star which is
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stably stratified. The restoring force is provided by negative buoyancy which
generates vorticity, giving rise to an array of oscillating eddies. The frequency is
lower than that of a p mode of the same degree, and consequently there is more time
for pressure to adjust across the eddy. As a result, the dilatation of the flow is
determined almost completely by the unperturbed density stratification, and is such
that the momentum density field is almost solenoidal (cf. Ogura and Phillips 1962).

Oscillatory g modes tend to be confined to stably stratified regions, and are
evanescent in convection zones. Thus in the sun there are at least two classes of
such modes: those confined to the interior beneath the convection zone, and those in
the atmosphere. Their frequencies are controlled by the buoyancy frequency N which
is given by

2 _ g{Ldnp _ dinp) .
N = g(; dr "~ “dr ) (3.3)

This would simply be the frequency of a small oscillating fluid parcel that remains
in pressure balance with its surroundings and which is imagined to drive no
horizontal flow. Note, therefore, that because the motion of an actual g mode cannot
be purely vertical, the extra inertia provided by the horizontally moving fluid
reduces the frequency of the mode below N. A formal proof of this statement is given
by Christensen-Dalsgaard (1979). As %~ « at fixed n, the eddies become elongated in
the radial direction and the horizontal components of velocity approach zero. The
eddies become trapped near the maxima Np,, of N, and wp o> Npoo from below. As | n

increases at fixed &, the eddies become more flattened in the vertical direction, and
the flow is predominantly horizontal. The gravitational potential energy that can be
drawn on by an eddy decreases in comparison to its inertia and the frequency
diminishes. Indeed, ® > 0 and |n| ~ » at fixed 2. When |n] and & are comparable,
the kinetic energy is shared about equally between the horizontal and vertical
components of the motion. Note that, unlike the p modes, the f modes and the g modes
depend on the presence of horizontal variations in the perturbations, and so do not
exist when ¢ = 0.

Throughout most of the inner half by radius of the sun, N is probably of
order 0.4 mHz which estimates, to within geometrical factors, the frequencies of
internally trapped g modes with order not greatly in excess of degree. The
dependence of N2 on radius is depicted in these proceedings in Figure 1 of
Christensen-Dalsgaard, Dziembowski and Gough (1980) for two solar models. The
buoyancy frequency never exceeds about 0.45 mHz, which implies that these g modes
cannot have periods less than about half an hour. Further details of the properties
of the modes also are presented in Christensen-Dalsgaard, Dziembowski and Gough
(1980).

The frequencies of the atmospheric g modes can be rather greater than those
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of the interior modes. If the atmosphere is approximated by a perfect isothermal gas
of molecular weight y at temperature T, equation (2.3) reduces to

W = (} - %) 7 (3.4)

where H =2 T/ug is the scale height of the atmosphere,?® being the gas constant.
Taking u = 1.2 and T = 5800 K, the effective temperature of the sun, a value of about
4 mHz is obtained for N. Thus one expects atmospheric g modes to have periods
greater than or approximately equal to 4 minutes.

Note than in the corona the buoyancy frequency is less than one tenth that in
the photosphere and Tow chromosphere. Thus the higher frequency g modes are trapped
between the corona and the top of the convection zone. If the height of the base of
the corona above the top of the convection zone is h, the g mode frequencies are
approximately given by

2.2
2 k2N
W = , (3.5)
K+ (nm/h + 8)2 + 17(2H)2

where § is a finite phase factor that depends weakly on conditions in the corona and
the convection zone and on k and n.

It should perhaps be added that formally there is a class of linear g modes
that are trapped in the convection zone. These have 0l < 0, and so grow
exponentially with time. They are sometimes called g~ modes, to distinguish them
from the oscillatory modes described above, which are then labeled gt. If an initial
equilibrium state of no motion was imagined, g~ modes would grow if a region existed
where N2 < 0. Their amplitudes would soon become large, and nonlinear effects would
become important. This is convection, and it is not clear whether the linear modes
have much direct relevance to the final state.

Other forms of oscillations are also possible. In particular, rotation and
magnetic fields modify the waves described above, and also add new spectra of modes:
the inertial oscillations and the Alfven modes. Moreover, oscillatory dynamo modes
in some form or other are presumably responsible for the solar cycle, and thermally
controlled oscillations with much longer periods arising from the coupling between
the convective and radiative zones may be operative. These modes will not be
discussed here.

4. GLOBAL OR LOCAL?

The adiabatic normal modes of a nonmagnetic fluid star form a complete set
(cf. Eisenfeld 1969, Dyson and Schutz 1979). Thus any disturbance can be represented
as a superposition of these modes, and may be regarded as being in some sense
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‘global.' Nevertheless, a disturbance initiated by a localized perturbation takes
time to communicate with the rest of the sun, and before that time has elapsed the
disturbance is genuinely 'local.’

Whether a mode can be genuinely global rests on whether it can survive long
enough to propagate around the sun. The modes of low degree are global, since their
propagation times are comparable with their periods. But for the modes of high
degree the situation is less obvious. In particular, the five minute oscillations,
which are p modes of high degree, have group velocities approximately equal to half
their horizontal phase velocities, as is apparent from equation (2.2) and the
subsequent discussion. Thus a typical mode in the middle of the k-4 power diagram
presented, for example, by Deubner, Ulrich and Rhodes (1979) has k = 0.5 Mm-! and » =
2 x 10'2 s'l, yielding a group velocity of 20 km s, To travel a single
circumference of the sun would take such a mode a time of about 2 x 1055, which is
about 700 periods. Whether the mode survives so long is an open question.
Observationally, Deubner, Ulrich and Rhodes (1979) found widths of the ridges in
their power spectra consistent with coherence lasting for the entire duration of a
day's observing; however that is less than 2 x 1055. Moreover, the theoretical
estimates made in the investigation reported by Berthomieu et al. (1980) yielded
decay times for some of the modes they selected which were also less than the travel
time. This suggests, therefore, that though some of the five minute oscillations may
be genuinely global, others may be Tocalized. With sufficiently long and careful
observing runs one might hope to resolve the discrete values of the horizontal
wavelength k for the global modes. It must be borne in mind, however, that velocity
fields associated with convection or other large scale phenomena distort the wave
patterns, thus rendering such resolution more difficult than one might at first
suspect.

5. EXCITATION

There has been considerable debate concerning the principal source of
excitation of the oscillations. Broadly speaking, the driving mechanisms may be
divided into two classes: those by which energy is transferred from the mean
(horizontally averaged) environment to the oscillations, and those that depend in
some intrinsic way on the interaction with the horizontal fluctuations produced by
motion other than that associated with the oscillation itself. Of course both forms
of energy transfer take place, and the dominant form may be different for different
modes. Nevertheless there is mounting evidence that interactions with other motions
is important in the overall dynamics of the modes.

It has been argued by Ulrich (1970), Wolff (1972) and Ando and Osaki (1975,
1977) that most of the modes responsible for the five minute oscillations are
overstable in linear theory, and thus would grow spontaneously to their present
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amplitudes from a presumed initial non-oscillating state. This is the only
suggestion implementing one of the first class of driving mechanisms that has been
investigated in detail. Ando and Osaki claim that the dominant driving process is
the k-mechanism, whose importance in the dynamics of the radial pulsations of
Cepheids and RR Lyrae stars has long been appreciated. An issue that has not been
addressed by the advocates of this theory, however, is why it is that the amplitudes
of the modes are so low. The mechanisms that Timit the amplitude of an overstable
oscillator are nonlinear, and it is hard to envisage what they might be in the case
of the five minute oscillations. To be sure, the amplitudes of density fluctuations
in the Tow chromosphere may be large enough for nonlinear processes to be extremely
important there, as has been pointed out recently for example, by Hill, Rosenwald and
Caudell (1978), but aside from the chromospheric modes the energy densities are so
small in this region as to make it quite unlikely that such processes can control the
energy balance iﬂ_situ_ This difficulty must also be faced by anyone who argues

that the longer period oscillations are linearly overstable, or that the oscillations
are stable in linear theory but are finite-amplitude unstable. There is the
possibility, however, that nonlinearities in the chromosphere may modify the
structure of the waves to so great an extent as to permit substantial leakage of
energy into the corona.

If one is to reject the idea that most of the five minute modes are
overstable, one must explain why the linear nonadiabatic analysis came to a
contradictory conclusion. The reason presumably lies in the convection-pulsation
interaction, which is generally ignored. In these proceedings, however, Berthomieu
et al. (1980) report that they found all the modes with 2 = 200 and 600 to be stable
when convection was taken into account. If these modes are not atypical, most of the
five minute modes might therefore be stable. The calculation of Berthomieu et al.
employed a generalized mixing-length theory, in the form used by Baker and Gough
(1979) to study RR Lyrae models; this method, however, is very uncertain. The result
should therefore be regarded not as strong evidence for the stability of the five
minute modes, but rather as an indication that one should at least doubt previous
claims to the contrary.

The second class of driving mechanisms is now addressed. Here the energy
transfer to the modes is nonlinear, and is therefore much more difficult to analyze.
It is convenient to divide the transfer into two subclasses, the first of which is
transfer from the turbulent convective motion and the second, transfer from other
modes of oscillation. In the latter case the energy of the oscillations that drive
the mode might come, either directly or indirectly, from the convection or from one
or more genuinely overstable modes. Of course there is also the possibility that
energy is extracted from other forms of motion, such as meridional circulation, the
giant. cells and rotation, or from the magnetic field, but it is unlikely that this is
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important except possibly for a few exceptional modes.

Random excitation of radial solar oscillations by turbulent convection has
been discussed by Goldreich and Keeley (1977b). 1In this study the modes were
presumed to be Tinearly stable, much of the stabilization coming from-a turbulent
viscosity provided by those convective eddies of lengthscale L and velocity v whose
characteristic timescales L/v fall short of the oscillation period by more than a
factor 2n (Goldreich and Keeley 1977a). The mean limiting amplitudes of the
oscillations were then computed by balancing against the linear energy losses, which
are proportional to the square of the amplitude, the rate at which energy is
transferred to the modes via nonlinear interactions with convective fluctuations that
are independent of the oscillation amplitude. At the heart of the computation,
therefore, is an estimation of the extent to which the normal modes respond to the
convective fluctuations, and this is the most uncertain step.

The energy transfer rate between two different components of motion, whether
these components be convection and an oscillation or two oscillations, depends not
only on the intensity of the motion but also on its geometry. The computation of the
rate involves evaluating certain coupling integrals, which are analogous to the
matrix elements encountered in quantum theory. To drive a particular mode of
oscillation it is necessary to be able to generate a component of the motion that is
possessed by that mode. Thus p modes are most efficiently driven by pressure (or
dilatation) perturbations, whereas g modes are best generated via their vorticity.
Convection may therefore drive p and g modes of similar frequencies to very different
amplitudes. Note that the f modes of high degree are almost free of both dilatation
and vorticity, which perhaps accounts for the observation (e.g., Deubner, Ulrich and
Rhodes 1979) that their amplitudes are rather lower than those of p modes of similar
frequency and wavenumber.

Goldreich and Keeley (1977b) made plausible estimates of the order of
magnitudes of the terms that contribute to the coupling integrals. It was not
possible to take the details of the geometry into account, because the structure of
the turbulent convection is not known. From these estimates they concluded that the
energy in any particular mode is approximately equal to the energy in a single
convective eddy that resonates with the oscillation--that is to say, an eddy with a
turnover time comparable to the period of oscillation of the mode. Though this
result is only very rough, it predicts amplitudes of radial modes that are so much
smaller than the apparent amplitudes quoted by Hi1l, Stebbins and Brown (1976) and by
Brookes, Isaak and van der Raay (1976) that it seems likely that either the
observations are not of radial modes or that the excitation of the modes is not
predominantly by direct interaction with the convection. Another possibility, which
is favored by Goldreich and Keeley, is that the observations have been
misinterpreted.
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Computations of this kind can easily be performed for other modes of
oscillation. In particular, they may be applied to the five minute oscillations with
encouraging results. In view of the uncertainties in the procedure it is probably
adequate simply to equate the energy of each mode with a constant proportion of that
of a resonating convective eddy, provided that such an eddy exists in the propagating
region associated with the mode in question. If resonance occurs at more than one
level, the two contributions are presumably added, though it makes little difference
if one simply chooses the eddy of greatest energy. Using the model solar envelope
whose five minute eigenfrequencies are reported by Berthomieu et al. (1980), and
assuming the modes to be oscillating with random phases, an rms photospheric velocity
amplitude of about 0.2 km s~ is obtained if precise energy equipartition is assumed.
This can be adjusted to the observed value of about 0.4 km s71 either by setting the
constant of proportionality in the energy relation equal to 4, or by raising above
unity the ratio of the convective turnover time to the oscillation period that is
considered to define resonance.?

A somewhat disturbing property of the outcome of this procedure is that the
relative amplitudes of the different modes contributing to the five minute
oscillations are not in accord with the observations of Deubner, Ulrich and Rhodes
(1979). Aside from predicting excessive f mode amplitudes, as one might expect, the
photospheric velocity amplitudes of the p modes are found to increase with increasing
wavenumber well into the range in which the observations indicate they should
decrease. It is possible that modes of high wavenumber are so highly damped by
processes other than direct convective coupling, such as radiation, that the assumed
energy balance is no longer valid, though estimates from nonadiabatic calculations
suggest this is not the case. Alternatively the high wavenumber modes may be
modified substantially by inhomogeneities, especially in the chromosphere.

In these proceedings Keeley (1980) reports an estimate by this method of the
amplitude of a quadrupole g mode with a period of 160 minutes, adopting the same
estimate for the coupling integral as was used previously for p modes. This is
probably a sensible procedure, because the resonating eddies are at a depth of about
1 percent by radius beneath the photosphere, where this g mode Tocally has the
character of a p mode (e.g., Chistensen-Dalsgaard and Gough 1980a). As with the
radial modes of low order, the amplitude predicted is far below that quoted by
Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976), which
strongly suggests that if the oscillation is a quadrupole g mode it is not excited

2Kee]ey (1979) has obtained a similar result using ab initio the procedure
described by Goldreich and Keeley (1977a,b).
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stochastically by the turbulent fluctuations. Keeley's conclusion that therefore the
160 minute oscillation cannot possibly be a quadrupole g mode is perhaps a 1ittle
premature. '

The possibility of excitation by nonlinear interactions with other modes of
oscillation will be only briefly mentioned here. Though Tittle work has yet been
done on this subject, one can expect considerable progress in the future, partly
because the coupling integrals can be evaluated easily and with a reasonable degree
of certainty, and partly because we have available a considerable body of related
work on plasma turbulence and nonlinear gravity wave interactions. An important
difference between an assembly of high quality oscillators and the turbulent
convection considered above is that, even if the nonlinear couplings are weak, phase
relations between resonating modes can be maintained for long periods of time, thus
permitting substantial transfers of energy. Provided the energy in the oscillations
is sufficient one might expect the motion to be chaotic on long timescales (cf., for
example, Galgani and Vecchio 1979), but over the shorter intervals during which
observations have been made a considerable degree of coherence is to be expected.
Thus the long period oscillations may all derive their energies, either directly or
indirectly, from modes with shorter periods. k

Some evidence that the excitation of the modes detected by the solar diameter
measurements is intrinsically nonlinear has recently been provided by Perdang (1980).
Perdang finds that the fractal dimension of the power spectrum published by Brown,
Stebbins and Hill (1978) exceeds unity, and cannot therefore be the spectrum of an
assembly of linear oscillators plus random noise. The dimension found is about 3/2,
and is close to the value found for the spectrum of turbulent Couette flow. Perdang
concludes, therefore, that the power spectrum of the long period solar oscillations
is at least compatible with what one would expect from a large number of nonlinearly
coupled oscillators. A similar result might be expected if the direct coupling
between the modes was negligible and the oscillations were driven directly by the
convection, since the dominant eddies driving different oscillation modes are
nonlinearly coupled. Note that Perdang's result can also be considered to be further
evidence against the suggestion that the SCLERA data is purely random noise.

Finally let us return to the 160 minute oscillation. If this is a g mode,
the fact that other modes adjacent to it in the spectrum are not driven to such high
amplitude is consistent with the excitation being by direct resonant coupling with
other modes. It is claimed that the oscillation has maintained phase for at least
three years (Kotov, Severny and Tsap 1978; Scherrer et al. 1979), which suggests that
accurate phase coherence between the resonating modes may be necessary. Such
resonances are rare, and only a very few low order modes are 1ikely to be excited
strongly by this mechanism. The possibility exists, however, that the 160 minute
oscillation does not correspond to any linear eigenmode of the sun, but that it is an
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essentially nonlinear phenomenon, such as that which appears to arise in cylindrical
Couette flow (Swinney and Gollub 1978).

6.. PHASE COHERENCE OF THE DIAMETER MEASUREMENTS

The means by which solar oscillations are observed will not be discussed
here, as they are described elsewhere in these proceedings. I do, however, wish to
address one small point that concerns the solar diameter measurements. The reports
of Hi11l and his colleagues have been doubted by many, but most of the critics would
be less skeptical if phase coherence were convincingly demonstrated. - In these
proceedings Caudell et al. (1980) present a statistical argument supporting phase
coherence, but such arguments are sometimes difficult to assimilate when one is not
familiar with the statistical tests that are being applied. One is often more likely
to feel capable of judging the issue if one can actually see wandering of the phase.

Hill and Caudell (1979) have presented a diagram which shows that the
addition of appropriate integral multiples of 2x to the phases of several of the
peaks in the power spectrum of the diameter measurements can produce results which
are almost linear functions of time. The probability that a random sample of points
could have fallen so close to straight lines is quoted to be very small. Thus it is
concluded that phase is maintained.

A worry that has been expressed by some people deals with the fact that
arbitrary multiples of 2r must be added to the phases, and that only those that yield
the best fit to straight lines are included in the diagram. Of course one can argue
that this should not matter, because the same procedure was applied to the
computation of the random points. Nevertheless, it would perhaps be reassuring if
one could see all the possible phases at once.

At this workshop the SCLERA group made available to me all the phase data
that had been analyzed. I chose a sample at random. In Figure 1 is plotted the
phases in that sample computed from the Fourier spectra of each day's observing as a
function of day number. A1l the factors of 2r that yield points within the confines
of the diagram are included. Whether one is to believe that phase is'maintained
rests on whether one believes that straight nonvertical Tines may be drawn almost
through the points. It is clear that straight lines of slopes of about 60° and -30°
to the abscissa pass close to the points, but are they close enough to be convincing?
In other words, if the points on the diagram represent the positions of trees, does
the diagram resemble more closely a map of an orange plantation or a map of a natural
forest?

To help answer that question one might compare the data with Figure 2, which
is a similar diagram constructed on about the same scale from a set of uniformly
distributed random numbers in the range [0, 2v). It is immediately apparent that
pathways between the trees exist, as they do in Figure 1, but this time they are not
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straight. Therefore it seems that phase here is not maintained, which is of course
the case. It is interesting to notice, however, that had only the second half of the
data been available, it would have been difficult to assess on the basis of this test
whether or not the phases were random.

Now that one can see the difference between the observed and the random data,
it is instructive to measure it. Best fit straight 1ines were placed through the
rows of trees in Figures 1 and 2 and the standard deviations o of the phases from
those lines were computed. In the case of the observations ¢ = 0.65, and for the
random points o = 1.26. One can now refer to the Monte Carlo computation reported by
Caudell et al. (1980). The random deviation o= 1.26 1ies close to the maximum in
the computed distribution function, as one should expect, whereas the value o = 0.65
is well into the tail. Moreover, a perusal of the remaining SCLERA data revealed
that the sample illustrated here is not atypical. Thus one is forced to conclude
that Figure 1 resembles an orange plantation, albeit poorly laid out, rather than a

forest, and that the diameter measurements do, therefore, maintain phase.3

M. Gabriel pointed out during the meeting that rotational splitting of
nonaxisymmetrical normal modes would destroy phase coherence over an interval
comparable with the beat period. For modes of low degree this period is of the order
of the solar rotation period, which is about the same as the time interval over which
the phase analysis has been performed. So why is phase maintained? .0f course the
axisymmetrical normal modes maintain phase, and so do pure runnng nonaxisymmetrical
waves. Therefore, if all possible oscillations of a given degree are present with
random amplitudes, one should expect some degree of phase maintenance. Just how good
the coherence should be has not been calculated, but it is plausible that the
standard deviation from perfect coherence that one would expect is not far from that
of the observations. If that were the case, most of the scatter in Figure 1 would be
the result of rotational splitting, and not of random noise.

7. FIVE MINUTE OSCILLATIONS OF LOW DEGREE

At this workshop Claverie et al. (1980) announced the discovery of a sequence
of approximately equally spaced peaks in their power spectra of line shifts measured
from light integrated from the entire solar disk, with frequencies between about 2.5
and 4 mHz. Because the instrumental sensitivity to nonradial solar pulsations
decreases rapidly with the degree of the mode (Hi1l 1978, Christensen-Dalsgaard and
Gough 1980b), it can immediately be concluded that if indeed solar oscillations are
responsible for the data they must be of 1ow degree. Consequently they must be of

3after the workshop a similar analysis to that presented here was published
by Grec and Fossat (1979). Unfortunately the authors had only 7 day's data
available, and could conclude only that the case was not proven.
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high order. Specifically, every alternate peak is due probably to a dipole
oscillation, and the peaks between to superpositions of monopole and quadrupole modes
having almost coincident frequencies.

What are the properties of these oscillations, and to what amplitude would
one expect them to be excited? Some results of computations of just the radial
modes, carried out in collaboration with N.H. Baker, will be reported here briefly.

A model envelope of the sun was constructed by integrating inwards from the
surface, including slightly more than 80 percent by radius (and mass). Turbulent
Reynolds stresses were incorporated in the approximate way described by Baker and
Gough (1979). The hydrogen and heavy element abundances were X = 0.745, Z = 0.02 and
a mixing length of 1.5 pressure scale heights was chosen. This yields a convection
zone 1.99 x 10° km deep, and a k-w diagram for the five minute oscillations of high
degree similar to that reported by Berthomieu et al. (1980). A spectrum of
nonadiabatic radial pulsations was then computed, treating convective fluctuations in
a manner identical to that used by Baker and Gough (1979) in their Series B of RR
Lyrae variables. The frequencies of the modes were subsequently decreased by 6
percent to take into account the replacement of the inner core of the sun in the
computations by a rigid sphere. The reduction factor was arrived at by assuming the
asymptotic equation (3.1) to be valid for all the modes and, aside from the three
lowest order modes, the resulting frequencies differed from the adiabatic
eigenfrequencies of the standard model of Christensen-Dalsgaard, Gough and Morgan
(1979) by less than 1 percent.

Al the modes with frequencies less than 4 mHz were found to be stable. Their
stability coefficients are shown in Figure 3. Interestingly, these coefficients are
within a factor of 2 of those obtained by Goldreich and Keeley (1977a) for the modes
with frequencies in excess of 2.5 mHz. This is rather surprising, since the two
calculations made apparently very different assumptions in the treatment of the
Reynolds stresses. Some of the modes with frequencies above 4 mHz were found to be
unstable, with e-folding times as-short as one day. This result should be treated
with some caution, however, because the frequencies are close to Lamb's critical
frequency for wave propagation in the atmosphere. Energy leakage into the corona,
which was ignored in these computations, may add substantially to the damping of
these high frequency oscillati. :. If all the modes are indeed stable, stochastic
excitation by turbulence is a 1ikely candidate for the predominant driving mechanism.

Plotted also in Figure 3 is the ratio of the amplitude am of the surface
luminosity variation, measured in magnitudes, to the surface velocity amplitude vg
(in m s'l) scaled by the factor 2/3, which is the value of the spatial filter
function for radial modes appropriate for the whole-disk measurements (e.g., Hill
1978). It is evident that, if these predictions of linear theory are good

approximations to reality, the velocity amplitudes of up to 30 cm s-1 quoted by
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Figure 3. Magnitude-velocity amplitude ratios and stability coefficients of the
first 32 radial eigenmodes of a solar model, plotted against frequency. The
amplitude ratios am/Avg are connected by straight continuous Tines; the amplitudes
are corrected by the spatial filter functions appﬁfpriate for whole-disk measurements
(cf. Hill 1978), and velocity is measured in m s™*. The stability coefficients n are
the ratios of the decay rates to the angular frequencies of the eigenmodes. Positive

values are connected by dashed lines; Pog and p3zg were found to be unstable.
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Claverie et al. (1980) imply luminosity amplitudes in the vicinity of 10~° mag.
Though Tuminosity measurements of the sun have not yet been performed with sufficient
precision to detect oscillations of such low amplitude, it is feasible that in the
frequency range in question they could be made.

It would also be interesting to attempt to detect similar oscillations in
other stars. This issue has already been raised in connection with the long period
oscillations, though there is at present some disagreement concerning the amplitude
of the luminosity variations that should be expected (cf. Severny, Kotov and Tsap
1976, 1978; Deubner 1977). Granted that the presence of the envelope convection zone
is 1ikely to be essential for their excitation, one might expect to find low degree
oscillations at least in stars of type G and later. Claverie et al. (1980) have
already mentioned the possibility of making Doppler measurements from a satellite,
but Tuminosity fluctuations may be easier to detect. Of course it would be best to
have both.

Finally, we shall examine the driving of the radial modes, assuming that it
takes place through random excitation by the turbulent convection. To obtain a rough
estimate of the amplitudes one might expect, the fact has been disregarded that some
of the higher frequency modes were found to be overstable; in addition, the simple
energy balance of the kind deduced by Goldreich and Keeley will be assumed,
calibrated against the local five minute oscillation amplitudes as described above.
Thus each mode energy is equated with four times the energy of a single resonating
convective cell. The squares of the surface velocity amplitudes, in mzs’z, are
displayed in Figure 4. These should correspond roughly to the contributions to the
power spectra obtained by Claverie et al. made by the radial modes alonge. The
figure has a superficial resemblance to the observations, showing a maximum amplitude
of about (0.23 m s'l)2 in the vicinity of 3 mHz. In common with the estimates for
the five minute oscillations of high degree, the predicted amplitudes of the high
frequency modes are too great, but as mentioned above, substantial damping of these
modes may result from energy leakage into the corona. The amplitudes of the lower
order modes in Figure 4 are greater than the corresponding values quoted by Goldreich
and Keeley (1977b). The main reason is probably that the energy balance equation has
been scaled upwards to bring the total energy of the five minute oscillations into
agreement with the observations. In addition, the equilibrium model is different
from that used by Goldreich and Keeley, and so are the surface amplitudes of the
eigenmodes at a given mode energy. Though the calculations presented here are much
less sophisticated than those of Goldreich and Keeley, and make no pretense to be
otherwise, they do suggest that a common process may drive the five minute modes of
low and high degree. This is not very surprising, since the eddies that resonate
with the five minute oscillations typically have characteristic length scales rather
smaller than the wavelengths of the modes, and so the coupling is unlikely to be
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sensitive to the global structure of the oscillation eigenfunctions.

8. ON HELIOSEISMOLOGY

One of the most exciting prospects that recent observations have brought into
view is the potential diagnosis of certain aspects of the sun's structure. In 1975
Deubner published a k-w power spectrum of the five minute oscillations that heralded
a diagnostic study of the convection zone. Soon afterwards Hill, Stebbins and Brown
(1976) announced their discovery of longer period oscillations in the solar diameter
that were no doubt associated with modes that penetrate into the radiative interior.
Severny, Kotov and Tsap (1976) announced long period oscillations in spectrum line
shifts that were immediately confirmed by Brookes, Isaak and van der Raay (1976), and
we have learned at this workshop of the five minute oscillations of low degree
(Claverie et al. 1980). None of these observations has yet led to any certain
inference, but they have stimulated several diagnostic investigations.

Most attention has been devoted to the five minute modes of high degree,
because good observations of both their temporal and their spatial structure have
been made (e.g., Deubner, Ulrich and Rhodes 1979). Thus it has been possible to
identify the modes. Theoretical investigations of the dependence of the
corresponding eigenfrequencies of linear modes on the structure of the solar model
are reported in these proceedings by Berthomieu et al. (1980) and by Lubow, Rhodes
and Ulrich (1980). Because the modes exist in a layer only a few percent of the
solar radius deep, they give us no direct information about most of the interior.
However, the oscillations do penetrate beyond the upper boundary layer in the
convection zone, beneath which we are fairly confident that the stratification is
approximately adiabatic. This enables us to extrapolate to the base of the
convection zone and so estimate its depth. Both of the studies last mentioned
concluded that the observations seem to imply the depth of the convection zone to be
about 2 x 10%km.

Evidence against so deep a convection zone has been provided by Hill and
Caudell (1979), and discussed by Christensen-Dalsgaard, Dziembowski and Gough (1980).
Hi1l and Caudell concluded that oscillations with periods 45 minutes and 66 minutes
have horizontal variations with characteristic wavelengths of order 2wR/30, where R
is the solar radius. If these are simply interpreted as nonradial modes with & = 30,
the periods imply that they must be g modes trapped beneath the convection zone.
This is difficult to reconcile with the models suggested by Berthomieu et al. (1980)
and Lubow, Rhodes and Ulrich (1980) because the attenuation of the mode amplitudes
through the deep convection zone would be too great for the modes to be observable at
the photosphere (Dziembowski and Pamjatnykh 1978). It seems likely that there are
solar models with Tow heavy element abundances of the kind discussed by Christensen-
Dalsgaard, Gough and Morgan (1979) that are not subject to this difficulty, but
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acceptance of them raises more problems than it solves (Christensen-Dalsgaard,
Dziembowski and Gough 1980). In particular, the conclusions already drawn from the
five minute oscillations are contradicted.

In an attempt to harmonize the conflicting evidence, Rosenwald and Hill
(1980) have proposed that the upper boundary conditions applied in the computations
of the five minute eigenfunctions are incorrect. They base their argument on the
results of an earlier attempt to determine the spatial structure of the modes
observationally (Hi11, Rosenwald and Caudell 1978). The implications of their
conclusions are so important that some discussion of the analysis is not out of
place.

In the adiabatic approximation the pulsation eigenmodes are determined by a
second-order linear differential equation. For any given frequency « there are two
independent solutions, which in an isothermal atmosphere under constant gravity
either oscillate with height or vary exponentially according to whether w is above or
below some critical value w.. For horizontal wavelengths appropriate to the five
minute oscillations, the eigenfunctions in the atmosphere resemble those of radial
pulsations, and & . is approximately Lamb's acoustical cutoff frequency v g/2c, which
is a decreasing function of temperature. Solutions with w corresponding to the five
minute modes are approximately exponential in the photospheric regions; in the corona
they are either exponential or oscillatory, depending on whether the horizontal
wavenumber is greater or less than about 0.2 Mm=l. For one of the exponential
solutions the energy density in the oscillation decreases with height, while in the
other it increases. Hill, Rosenwald and Caudell (1978) refer to these solutions as
g and B, respectively. As is usual for evanescent waves, the B8_ solution
essentially describes the response of the atmosphere to a disturbance from beneath,
and the g, solution to a disturbance from above. Of course a normal mode is a
superposition of both.

If the physics of the chromosphere and corona were understood, it would be
possible at least in principle to determine the five minute eigenfunctions from the
condition that there is no inwardly propagating energy at infinity. But
unfortunately we are not in a position to carry out that program. Nevertheless, it
is hard to imagine how the response of the chromosphere could be such as to generate
a solution in the evanescent region that appears to have a large component apparently
associated with a downward propagating coronal wave. Accordingly one might naturally
expect the amplitude ratio of the g_ and B, solutions to be of order unity in the
chromosphere-corona transition region. If that were the case, the amplitude of the
B, solution would be negligible in and below the photosphere, and the reaction of the
atmosphere to the waves in the resonating cavity beneath would hardly differ from
that calculated by ignoring the B, solution entirely. Indeed this was confirmed

numerically by Berthomieu et al. (1980), who found that the five minute
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eigenfrequencies were extremely insensitive to mild changes in the boundary
conditions they imposed at an optical depth of 10-8, Nevertheless, it can be
maintained that this result is no more than conjecture based on experience gained in
similar but different situations, and that it must not be accepted without question.

The work of Hill, Rosenwald and Caudell (1978) was an attempt to determine
the combination of's_ and B, solutions observationally. Surprisingly, it was
concluded that for the five minute oscillations the displacement amplitude of the B_
solution exceeds that of the B, solution by only a factor of about five at an optical
depth of 0.1. If the linear solutions were extrapolated into the chromosphere, the
B, component would be so dominant as to render the measurement hardly plausible.
This result has some similarity to a conclusion of Schmieder (1976, 1979) who found
from an analysis of phase relations that at some frequencies atmospheric oscillations
appear to be downward propagating waves. Nevertheless it has been argued that the
increase in amplitude with height produced by the B, solution gives rise to nonlinear
phenomena, which render linear extrapolation invalid. So drastic a modification to
the structure of the eigenfunctions in the solar atmosphere is beyond anything
considered by Berthomieu et al., and according to Rosenwald and Hill (1980) could
reconcile the observed k-w power spectra with a convection zone much shallower than
that favored by Berthomieu et al. and Lubow.

This conclusion too can be questioned, for the analysis of Hill, Rosenwald
and Caudell (1978) depends on several assumptions. It should be realized that the g_
:B4 amplitude ratio for the five minute oscillations was determined by comparing
velocity and radiation intensity amplitudes, and to do this it is necessary to
perform a nonadiabatic calculation. Hill, Rosenwald and Caudell did so, using the
Eddington approximation to radiative transfer. In this approximation the governing
differential equations are of the fourth order, and so admit four independent
solutions. Their relative proportions cannot be determined by only two observations,
and so it was necessary to restrict the class of admissible solutions by adopting
certain boundary conditions. In particular, it was assumed that the heat flux
perturbation vanished at the lower boundary of the domain of computation, which was
situated in the convection zone at a temperature of 13000 K. It has been argued by
Gough (1977) and Baker and Gough (1979) that convection can induce large flux
perturbations, and indeed the computations by Baker and myself of radial pulsations
that are discussed above predict in all cases that the heat flux perturbation at T =
13000 K is actually greater than it is in the photosphere. Furthermore our
temperature perturbations at t = 0.3, where our outer boundary conditions were
applied, are somewhat greater than those found by Hill, Rosenwald and Caudell, which
suggests a reduction in the g, amplitude. A direct comparison with observation
should not be made, because our treatment of both convection and radiative transfer
was too crude to describe adequately the oscillations in the photospheric regions.
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Nevertheless, the computations do cast doubt on the analysis of Hill, Rosenwald and
Caudell (1978), and weaken the case against a deep convection zone.

It is worth noting that perturbations in the convection might also affect
similar conclusions(Hi1l, Rosenwald and Caudell 1978) for the long period
oscillations. In particular, the convective activity can modify the 1imb darkening
function, upon which the interpretation of the SCLERA data depends, and the
convective blue shift invalidates a naive conversion of spectrum line shifts to mode
velocities.

If the 8, solution is of little significance in determining the
eigenfrequencies, so is the T-t relation in the atmosphere (Berthomieu et al. 1980).
In that case the five minute oscillations provide us with a clean diagnostic of the
convection zone, as was previously postulated by Gough (1977) and Ulrich and Rhodes"
(1977). Roughly speaking their frequencies are given by equation (3.2), where y and
u are to be interpreted as averages of the adiabatic exponent and polytropic index
appropriately weighted according to the eigenfunction amplitude. Thus as k decreases
and the penetration depth increases, the averages weight more heavily the adiabatic
region where p = (v - 1)‘1 and the right hand side of (3.2) increases: the functions
w(k) defined by the ridges in the k-w power spectra have smaller gradients than one
obtains from equation (3.2) with v/(u+l) constant (assuming that v/(u + 1) is
adjusted to yield about the right value of w), and the difference between these
gradients is a rough measure of the statification in the vicinity of the penetration
depth. A more precise measure might in principle be constructed by considering more
complicated aspects of the power spectra (cf. Gough 1978) but it would be successful
only if the positions of the ridges were defined more precisely. This is likely to
be a difficult task, partly because the finite duration of a particular mode may
render the determination of its frequency too inaccurate (Berthomieu et al. 1980) and
partly because nonlinear interactions with other forms of motion, such as
supergranulation, distort the wave patterns in such a way as to broaden the ridges
obtained by the current observational techniques. Both these effects yield
uncertainties which for some modes are comparable to the ridge widths already
achieved by Deubner, Ulrich and Rhodes (1979).

If the convection zone is indeed deep, how is one to explain the results of
Hi11l and Caudell (1979)? Either the horizontal Tength scale deduced from the
observations is in error, or that scale does not measure the horizontal wavelength of
the modes. Another possibility is that the amplitudes really are so high in the
interior that the estimates of the attenuation through the convection zone made by
Dziembowski and Pamjatnykh (1978) and Christensen-Dalsgaard, Dziembowski and Gough
(1980) on the basis of linearized theory are incorrect. Alternatively, as has been
suggested for the 160 minute oscillation, the oscillations are not the result of
normal modes of oscillation of the sun. These possibilities will not be discussed
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here, but it is worth recalling that large perturbations to the supergranular
velocities induced by modes of low degree (Gough 1977) could give the impression in
the photosphere of a mode with a much shorter horizontal wavelength (cf. Gough,
Pringle and Spiegel 1976).

The five minute oscillations of lTow degree discovered by Claverie et al.
(1980) provide an additional diagnostic that has adirect bearing on this issue. These
modes are particularly interesting because they penetrate to the center of the sun,
though the information the frequencies give us weights the outer regions most
strongly (see equation 3.1). Moreover, because the orders of the modes are high, it
is Tikely that the objections raised by Rosenwald and Hill (1980) to the analyses of
Berthomieu et al. (1980) and Lubow, Rhodes and Ulrich (1980) would be of lesser
importance. The reason is that the ratio of the g_ and g, amplitudes can be regarded
as defining a photospheric boundary condition, and this in turn determines the
parameter ¢ in equation (3.1) and a similar term in the analogue of equation (3.2)
that is valid for small n.  Accurate comparison of theory with the five minute
oscillations of high degree measured by Deubner, Ulrich and Rhodes (1979) is possible
when n is of order unity, but for the low degree modes n is about 20. Thus
uncertainties in ¢ should be of lesser importance for the low degree modes, and the
eigenfrequencies can be predicted with greater accuracy.

It is too early to assess the implications of these new data. Comparison of
the mean frequency separation with those of the modes of a particular sequence of
solar models has utilized a model deficient in helium and heavy elements and with a
comparatively shallow convection zone (Christensen-Dalsgaard and Gough 1980b). This
again contradicts the evidence from the other five minute modes. However, the
discrepancies between the observations and the predictions of models of the kind
preferred by Berthomieu et al. (1980) and Lubow, Rhodes and Ulrich (1980) is only
about 1 percent, and we must await a better estimate of the accuracy of the new data
before we take this apparent contradiction seriously.

There are two other classes of modes that deserve brief mention. The first
is the chromospheric modes, which are p modes of high degree trapped in the
chromospheric minimum of the buoyancy frequency N (e.g., Ando and Osaki 1977), and
the second is the atmospheric g modes trapped between the top of the convection zone
and the bottom of the corona. Both are insensitive to the structure of the sun
beneath the photosphere.

According to the computations of Ando and Osaki (1977) and Ulrich and Rhodes
(1977) the chromospheric modes should all have frequencies in the vicinity of 0.027
s~l.  Their precise values are sensitive to the buoyancy frequency above the
temperature minimum. Adiabatic g-mode eigenfrequencies of the Harvard-Smithsonian
Reference Atmosphere (Gingerich, Noyes and Kalkofen 1971) are displayed in Figure 5.
As is evident from equation (3.5), they depend both on the value of N in the
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atmosphere and on the height of the base of the corona. Because the temperature rise
between the chromosphere and corona is very steep, the variation of N is too, and the
height h of the resonant cavity is almost independent of frequency. Consequently,
unlike the nonchromospheric p modes, the atmospheric g modes all sample conditions in
the same region. That is why the g-mode w(k) relations plotted in Figure 5 are less
curved than those for the f and p modes, as is evident also from the approximate
formulae (3.2) and (3.5). Thus, the differences in the information content of the
various g-mode eigenfrequencies are less marked than in the cases of p modes, and
anything but the crudest inversion is unlikely to be possible.

Another problem with atmospheric diagnostics is the existence of large
amplitude inhomogeneities. As Ulrich and Rhodes (1977) have pointed out while
discussing the chromospheric modes, and Dziembowski at this workshop regarding the g
modes, it may never be possible to isolate ridges of power as has been done for the f
and nonchromospheric p modes. Brown (1980) has presented some hint of g-mode ridges,
but it may be vain to hope for more than the approximate Tocus of g;.

Not only can oscillations measure the temperature and density stratification
of the sun, but they can also detect large scale motion. The most obvious form of
motion that one might hope to measure is the solar rotation, and already evidence of
rotational splitting has been seen in several of the observations (e.g., Deubner,
Ulrich and Rhodes 1979; Caudell and Hill 1978). Moreover, other phenomena, such as
the periodic change in structure of the 160 minute oscillation reported by Severny,
Kotov and Tsap (1978) and the 12.2 day oblateness oscillation reported by Dicke
(1976), may be related to rotationally induced precession of normal modes {Gough
1980). Little information is yet available, but what we have all hints that the
average of the sun's angular velocity is rather larger than the surface value.

The most detailed data that is available comes from the measurements of five
minute oscillations by Deubner, Ulrich and Rhodes (1979). In this work the signal
was filtered through an effective N-S slit 192" long placed across the equator.
These modes have spatial structures proportional to the sectorial harmonics
Pmm(cose)532m¢ in spherical polar coordinates, where le is the associated Legendre
function. They are therefore confined to an equatorial belt with a total width of
aboutAZ(Z/m)l/zR. Since m2 100 for all modes considered, the.be1t is no wider than
the slit. Indeed, other modes proportional to le(cose)gégm¢ with 2 = m also
contribute to the signal, but they too extend to latitudes no greater than about the
slit Tength.

Because the modes are confined so closely to the equator they are not
affected by the variation of angular velocity with latitude. Moreover, because m is
large, Coriolis forces are unimportant. If rotation was the only large scale
velocity field present, the wave patterns would simply be advected with the mean
angular velocity of the sun weighted by the kinetic energy density of the mode (Gough
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1978). Thus the measured variation of the pattern speed with horizontal wavenumber
would be a genuine reflection of the depth dependence of the angular velocity, almost
uncontaminated by Tlatitudinal variations. The procedure could be applied at other
latitudes A too, by similarly selecting appropﬁate modes with & = m sec?a. Note,
however, that the waves are actually influenced by all the other components of the
velocity field, including the convection and any large scale circulation. The
analysis of the wave patterns is therefore somewhat more complicated than that
implied here.

9. CONCLUDING REMARKS

Recent observations of solar oscillations have raised more questions than
they have answered. Like the measurements of the neutrino flux and the oblateness of
the solar image, they have stimulated much thought on the physics of the sun, which
is contributing to our knowledge of stellar physics generally. The subject is still
in its infancy, and there is good reason to believe that imminent observations will
resolve some of our present confusion, and lead us to a better understanding of the
solar interior.

* * * * *

I am very grateful to N.H. Baker, T.M. Brown, T.P. Caudell, J. Christensen-
Dalsgaard, G. Contopoulos, W. Dziembowski, M. Gabriel, H.A. Hi1l, D.A. Keeley, J.
Knapp, J.D. Logan, J. Perdang, R.D. Rosenwald, A.B. Severny and R.T. Stebbins for
useful and interesting discussions on this subject.
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FIVE MINUTE OSCILLATIONS AS A PROBE OF THE SOLAR INTERIOR

S.H. Lubow, E.J. Rhodes, Jr. and R.K. Ulrich
Department of Astronomy
University of California at Los Angeles

ABSTRACT

The solar five minute oscillation has been shown to consist of a large number
of nonradial acoustic modes. Observations of these modes providé a probe of the
solar interior; specifically tests on models of the solar convection zone.

* * * * *

Among the various types of solar oscillations, the five minute oscillations
are the best observed. They provide us with the greatest amount of observational
detail for theoretical comparison. As Ulrich (1970a), Wolff (1972), ahd Ando and
Osaki (1975) have described, these oscillations are due to nonradial acoustic modes
which can penetrate to depths equaling 20 percent of the solar radius. The currently
resolvable modes (see e.g., Deubner, Ulrich and Rhodes 1979) penetrate a few percent
of the radius below the solar surface and have & values that range from about one
hundred to about one thousand. We can conceptualize these modes as being trapped in
two coupled cavities. The first cavity extends from the photosphere to some point
below; the second extends from a point in the chromosphere up to the corona.
Eigenmodes tunnel their wave energy between the two cavities.

Figure 1 presents evidence that the observed modes are indeed highly
nonradial acoustic modes. This figure, taken from a recent paper by Deubner, Ulrich,
and Rhodes (1979), plots observed power contours as frequency (w) versus horizontal
wave number (ky). Dashed Tines indicate the results of the linear, nonadiabatic
modal analysis of Ulrich and Rhodes (1977) for a solar envelope with a mixing length
ratio (&/H) equal to 2.0. The overall agreement speaks for itself. The question
that we must address here is the inverse: Can these observations tell us something
about the structure of the solar interior? The currently resolvable modes can
directly provide information only about the region in which they propagate, a region
that extends a few percent of the radius below the solar surface. Information
concerning the sun's deep interior can only be inferred by studying complete solar
models.

In order to initiate a probe of the solar interior, a theory that is as
complete as possible must first be constructed; the sensitivity of the results to the
details of the theory must then be tested. We have considered several aspects of
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Figure 1. Velocity power spectrum in frequency and horizontal wave number.
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these issues. In building upon the theory given in Ulrich and Rhodes (1977), we have
included Coulomb corrections to the equation of state via Debye-Huckel theory; the
outer solar boundary has also been moved from the chromosphere to the lower corona.
An approximation of the model of Avrett, Vernazza, and Linsky (1976) was used to
extend the chromospheric model. We have also improved the numerical accuracy of the
codes used and have employed updated interior opacities obtained from Huebner.
Figure 2 compares the old (dashed 1ine) and new (solid line) results obtained for
envelopes with £/H equal to 2.0. The effects of making the Coulomb corrections and
moving the outer boundary were similar; both processes acted to lower the frequency
at each k. The effects of the other improvements implemented were negligible.
Frequencies obtained from envelopes with £/H values of 1.5 and 3.0 are represented by
the two sets of solid curves in Figure 3. The frequencies for the 2/H of the 1.5
model pass a bit above the peak power and those for the 2/H of the 3.0 model pass a
bit below the peak power. We then computed a complete standard solar model that
matches the present solar mass, luminosity, radius, and heavy element distribution;
it also makes the usual assumption that the primordial sun was chemically
homogeneous. The result is a unique solar model whose convection zone has &/H equal
to 1.65. At present, this model appears barely distinguishable from a best possible
fit. A more quantitative statement concerning this fit will be made in the future.

We now come to the question of the sensitivity of the results obtained to the
details of the model. One possible point to question is the sensitivity of the
results to the theory of convection. To answer that question, we considered two
envelope models. One was computed with the usual mixing length theory of convection
and the other with Ulrich's (1970b) nonlocal convection model. Both envelopes were
chosen so as to have the same specific entropy in the adiabatic region, since the
value of the specific entropy is provided by a complete solar model. Changes in
frequencies were found on the order of 0.5% between the two models, or only about a
fifth the frequency separation between the &/H of 1.5 and the &/H of 3.0 models. In
order to better understand this result, we then plotted the percent differences of
the Tocal sound speed in the two models versus the depth (Figure 4). The full
horizontal scale is a typical penetration depth of the modes. We can see from Figure
4 that in only a relatively small region of space can (small) differences arise; this
is because only in such a region are the exact values of convective efficiencies
important in determining temperature structure. Next, we experimented with the outer
boundary condition and found that only negligible (<0.1%) changes resulted from
applying an outgoing wave boundary condition as opposed to a zero boundary condition.
This result is not at all surprising, since wave amplitudes are heavily damped by the
time the wave penetrates into the corona.

To summarize, a detailed modeling of the five minute oscillations has shown
that the standard solar model with standard boundary conditions agrees\we]] with the
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Figure 2. Comparison of two theoretical models with data.
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observations. In the future, we hope to investigate the effects of the anomalous
boundary conditions discussed by Hill, Rosenwald and Caudell (1978), the influence of
alternative chromospheric models, and perhaps the question of nonlinear effects.
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SENSITIVITY OF FIVE MINUTE EIGENFREQUENCIES
TO THE STRUCTURE OF THE SUN

G. Berthomieu,(l) A.J. Cooper,(l)(z) D.C. Gough,(l)(z)(3)
Y. Osaki,(l)(4)d. Provost,(l)and A. Rocca (1)

ABSTRACT

The dependence of theoretical eigenfrequencies of five minute oscillation
modes on the parameters that determine model solar envelopes has been investigated.
It was found that the p mode frequencies are quite strongly correlated with the depth
of the convection zone. Comparison of theory with observation suggests that the
solar convection zone is about 200,000 km deep.

1. INTRODUCTION .

Our investigation was similar to that described by Lubow, Rhodes and Ulrich
(1980) though our motivation was somewhat different. Our primary concern was to
discover whether the recent observations of solar five minute oscillations (Deubner
1975, 1977; Rhodes, Ulrich and Simon 1977; Deubner, Ulrich and Rhodes 1979) can be
used to put useful bounds on the structure of the sun. Thus our quest was to
discover how large is the set of solar models that can support normal modes of
oscillation with eigenfrequencies that lie on the ridges of the k-w diagrams
constructed from the observations. To achieve this one must study the sensitivity of
the computed eigenfrequencies to variations in both the basic solar model and the
assumptions of the normal mode theory. This is a necessary first step in any attempt
at inversion.

2. THE SOLAR MODELS

The majority of the five minute oscillations penetrate the sun to a depth of
no more than a few tens of thousands of kilometers. These modes can supply no direct
information from the deep interior. Therefore we have confined our attention to the
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3)Department of Applied Mathematics and Theoretical Physics, University of
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envelope, and have constructed models by integrating inwards from a point in the
chromosphere to a depth of about 5 x 105 km, paying little attention to whether our
models would match onto plausible models of the core.

Above the photosphere we integrated the hydrostatic equation subject to an
assumed T-t relation. Opacities were computed with the routine used for constructing
the Harvard-Smithsonian Reference Atmosphere (HSRA), which had been kindly supplied
to us by Dr. C.J. Durrant. Beneath the photosphere radiative transfer was treated in
the diffusion approximation, with opacities computed by linear interpolation in the
tables of Cox and Stewart (1970), and generally the mixing-length formula quoted by
Baker and Temesvary (1966) was used to compute the convective heat flux, with mixing
length proportional to pressure scale height. For the equation of state it was
assumed that the gas was composed of only hydrogen and helium, plus the ten most
abundant heavy elements in the relative proportions given by Ross and Aller (1976).
Thermodynamic state variables were obtained by minimizing an approximation to the
formula for the free energy adopted by Fontaine, Graboske and Van Horn (1977); for
this purpose the radii of atomic hydrogen and helium were taken to be 2.2 A and 1.5 A
respectively. Normally, turbulent stresses were ignored.

Integrations were performed with a fourth-order accuracy Runge-Kutta
algorithm. Typically 600 mesh intervals were used.

3. OSCILLATIONS

Most of the calculations used the adiabatic approximation to the equations of
motion, subject to the conditions that the vertical displacement vanished at the base
of the envelope and that the Lagrangian pressure perturbation vanished at the upper
surface. The governing differential equations were integrated by second-order
accuracy centered finite differences using the program described by Baker, Moore and
Spiegel (1971), in much the same way as had been done by Ando and Osaki (1975, 1977).
Subsequent improvements to the eigenfrequencies were made by substituting the
eigenfunctions into variational integrals, which were evaluated to fourth-order
accuracy.

4. A REFERENCE MODEL

A model was chosen with eigenfrequencies that reproduced the observations
tolerably. It had been constructed with a T-t relation above t = 2/3 taken from the
HSRA. Its hydrogen abundance was 0.745, its heavy element abundance was 0.02 and the
mixing Tength was 2.5 pressure scale heights. It had a convection zone 230,000 km
deep. The frequencies of its lowest order eigenmodes, regarded as continuous
functions of the horizontal wavenumber k, are shown in Figure 1 superposed on the
power spectrum of Deubner, Ulrich and Rhodes (1979).
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5. ACCURACY OF THE NORMAL MODE ANALYSIS

Tests were made for numerical accuracy by varying the number of mesh
intervals N and using Richardson extrapolation to estimate the 1limiting
eigenfrequencies as N > =. The results were compared with nonadiabatic
eigenfrequencies computed by treating radiative transfer in the Eddington
approximation and estimating the effect of turbulent convective fluxes using the
quasiadiabatic approximation. In the latter, horizontal fluxes were ignored and the
fluctuations in the vertical fluxes were taken from the latter part of § 5 of Gough
(1977a). Also, modes were computed subject to various other upper boundary
conditions: vanishing of Eulerian pressure perturbation and of vertical
displacement, and matching to a running wave in an isothermal corona. The results
depended on the modes selected, but in all cases the deviations from the reference f
and p mode adiabatic eigenfrequencies were less than the uncertainties in the
corresponding observations.

6. SENSITIVITY ANALYSIS

This analysis was performed by computing the changes in the eigenfrequencies
of modes of degree 200 and 600 resulting from variations in the parameters
determining the equilibrium model. Composition, the atmospheric T-t relation, the
mixing length and the parameters defining the position of the transition between the
two asymptotic branches of the convective flux formula (cf. Gough and Weiss 1976)
were varied separately. Also, models were computed using a nonlocal convection
theory.

Broadly speaking, the eigenfrequencies were most strongly influenced by the
mixing length, which determines the adiabat deep in the convection zone and hence
controls the depth of that zone. This result confirms a hypothesis to this effect by
Gough (1977b) and ¥lrich and Rhodes (1977). Changes in the atmospheric structure had
very little effect on the f and p mode eigenfrequencies, except for the chromospheric
modes. Thus we conclude that provided the eigenvalue analysis is a good
representation of the five minute oscillations, the observations imply that the. depth
of the solar convection zone is about 2 x 105 km.

7. DISCUSSION

The conclusion of our sensitivity analysis, nahe]y that the k-w power spectra
of the five minute oscillations imply that the convection zone of the sun extends
some 30 percent of the solar radius beneath the photosphere, is almost unavoidable.
It must be borne in mind, however, that our inference is subject to the validity of
the linear normal mode analysis which, we must point out, has been challenged
(Rosenwald and Hill 1980).
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Because it is difficult to reconcile Hill and Caudell's (1979) g-mode
interpretation of the 45™ and 66™ modes of Brown, Stebbins and Hi1l (1978) with a
deep convection zone (Dziembowski and Pamjatnykh 1978), Christensen-Dalsgaard,
Dziembowski and Gough (1980) enquired whether a model with a shallow convection zone
could be viable. They concluded that such a model might be consistent with Hi]] and
Caudell's (1979) interpretation, though they did not actually construct one that
successfully reproduced the observations. However, one cannot entertain the
hypothesis that the solar convection zone is shallow without refuting the analysis
summarized in this report. Rosenwald and Hill (1980) have gone some way towards
doing so, by pointing out that the boundary conditions we apply in the chromosphere
may be too poor an approximation to reality. They cite the determination by Hill,
Rosenwald and Caudell (1978) of the spatial structure of the modes in the solar
atmosphere, and show that this structure is not inconsistent with there being
substantial deviations from the frequencies we have calculated. Nevertheless, the
case is not proven: Stebbins (1980) has some further observational evidence to
support Rosenwald and Hill's hypothesis, but Brown and Harrison (1980) observations
seem to suggest a spatial structure more like that of the usual analysis such as that
which we have reported here. None of the evidence is conclusive and we must await
further observations.

Granted that this gross issue will eventually be resolved, what more might
one expect to learn from the five minute oscillations? Of course the oscillations
carry information about the large scale motion beneath the photosphere and the
convective fluctuations, but one would like also to be able to measure some
properties of the stratification in the superadiabatic boundary layer. Our
expekiments with modified convection formulae have revealed that to render this
possible one must improve the resolution of the k-u power spectra substantially. We
have also found that all the p modes of degree 200 and 600, which we presume are not
atypical, are stable when their interaction with the convection is taken into
account. The decay rates of the nonchromospheric modes yield quality factors as low
as 100, which correspond to the current resolution 1imit of the observations. The
required improvements in resolution may not, therefore, be easily obtainable, and
hence measurements of subtle features of the temperature and density stratification
beneath the photosphere are probably not imminent.

* * * * *

We are grateful to J. Christensen-Dalsgaard, C.J. Durrant, P. Souffrin and

J.-P. Zahn for useful discussions.
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HOW DEEP IS THE SOLAR CONVECTION ZONE ?
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ABSTRACT

The interpretation by Hill and Caudell (1979) of some of their solar
oscillation data as being due to g modes of degree greater than 20 seems to imply
that the solar convection zone is much shallower than that in standard solar models,
probably representing only a few per cent of the radius. We attempt here to match
the observed periods in models of this nature; the rather complicated spectrum of
oscillations in such models can be understood in terms of the asymptotic behavior of
modes of large degree. Possible excitation mechanisms for the modes are briefly
discussed.

1. INTRODUCTION

Since the initial announcement of observations of large scale solar
oscillations (Hill, Stebbins and Brown 1976; Brookes, Isaak and van der'Raay 1976;
Severny, Kotov and Tsap 1976); it has been clear that such oscillations may represent
very powerful probes of the structure of the solar interior (Scuflaire et al. 1975;
Christensen-Dalsgaard and Gough 1976; Iben and Mahaffy 1976). For this potential to
be realized, however, one must obtain some information about the horizontal structure
of the motion as specified by its horizontal wavenumber, ki, or the degree, %, of the
oscillation. ) ,
Until recently the five minute oscillations were the only class of solar
oscillations for which such information was available. As discussed by Berthomieu et
al. (1980) and Lubow, Rhodes and Ulrich (1980), good agreement between the
theoretically predicted frequencies as functions of ky and the ridges of maximum
power in the observed k - w diagram can be engineered. 0On the other hand, these
modes are sensitive to the structure of only the outer few percent of the sun;
indirectly, through the value of the entropy in the adiabatic part of the convection
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zone, they provide information about the depth of the convection zone, but not about
the structure of the regions deeper down.

To investigate these deeper parts of the sun one must consider modes of lower
degree and for these, mainly because their amplitudes are quite low, the horizontal
structure is difficult to. determine. Therefore considerable importance is attached
to the announcement by Hill and Caudell (1979) of evidence for the nature of the
horizontal structure of two of the modes observed by Brown, Stebbins and Hill (1978)
(see the review by Hill 1980). By comparing the power at two different scan
amplitudes across the solar 1imb, Hi11 and Caudell inferred that the modes with
periods of about 66 and 45 minutes had % values in excess of 20." This conclusion was
based on an analysis of the dependence of detector sensitivity upon %, the details of
which may be somewhat uncertain; the basic observational material is yet rather
limited, and the statistical significance of the result is probably not yet clear.
Nevertheless, the result, if confirmed, may give important information about the
solar interior, and it therefore merits some theoretical attention. Furthermore, it
is an instructive exercise in helioseismology to take the observations at face value
and confront the predicted modes of oscillation of solar models with them.

It was pointed out by Dziembowski and Pamjatnykh (1978) that the observed
modes could not be interpreted in terms of a standard solar model. In the inferred
range of & the periods of the f and p modes are all shorter than the observed
periods. Hence the observed modes must be gravity modes, and such modes are largely
confined to regions of the model within which their frequencies are below the local
buoyancy frequency. The re]ativeTy extensive outer convection zone causes these
regions to be deep in the solar model, and the modes are therefore very efficiently
trapped, the maximum of the relative displacement being larger than its surface value
by a typical factor of 105, It is difficult to reconcile this result with the
amplitudes observed at the surface, and to envisage an excitation mechanism for the
modes. Moreover, it appears very likely that the coherence between the trapping
region and the surface would be destroyed by nonlinear effects.

As stressed by Dziembowski and Pamjatnykh (1978) and Gough (1978), these
problems may be avoided in solar models with a very thin convection zone. It is
therefore interesting that such models have been discussed in a quite different
context. To account for the Tow observed solar neutrino counting rate obtained by
Davis (see e.g. Davis 1978), Joss (1974) suggested that the sun had initially a very
low abundance Z of heavy elements, and that the convection zone was subsequently
enriched with heavy elements by accreted interstellar material to give the present
observed value of Z of about 0.02. This hypothesis was tested by Christensen-
Dalsgaard, Gough and Morgan (1979) who computed consistent evolution sequences of
solar models affected by accretion. Owing to the relatively low opacity in the
interior of these models, their convection zones are shallower than those of a
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standard solar model and, when Z is sufficiently small in the interior, the buoyancy
frequency has-a local maximum close to the bottom of the convection zone. This may
provide a region that can trap relevant g modes.

Thus it appears possible that these or similar models may have modes of
oscillation corresponding to those that appear to have been observed by Hill and
Caudell, and the present paper reports an attempt to investigate this possibility.
Relevant parts of the asymptotic theory of nonradial oscillations are reviewed in §
2. In 8§ 3 the models computed by Christensen-Dalsgaard et al. are discussed, and § 4
studies in some detail the oscillations of one of these models, comparing them with
those of a standard solar model. In § 5 we consider the oscillations of chemically
homogeneous envelopes having very thin convection zones. Finally,s 6 contains a
summary of the results and a brief discussion of the various possible ways in which
the modes might be excited. '

2. THE ASYMPTOTIC BEHAVIOR OF NONRADIAL OSCILLATIONS OF LARGE DEGREE

As a background to the numerical results presented later; we review some
results from the asymptotic theory of nonradial oscillations with large 2. The
derivation is discussed by Christensen-Dalsgaard (1979) (see also Shibahashi and
Osaki 1976; Dziembowski 1977; Gough 1977; Dziembowski and Pamjatnykh 1978).

Using JWKB analysis one finds that the amplitude gy of the radial component
of the displacement has the approximate form ’

£.(r) = 2 V2|1 - s 2l - W]/
X [cl exp(®) + c) exp(-é)] . (2.1)

Here w is the frequency of oscillation; S, and N are Tocal acoustic and buoyancy
frequencies, given by

5,2 = a(2 + 1)c?/r? (2.2)
and
Nz . [1 d%np _ dine (2.3)
=9 rl dr dr ’

where ¢ = (I"Ip/p)l/2 is the adiabatic sound speed, p and p are pressure and density,
ry = (denp/denp)g where s is specific entropy, and g is the gravitational
acceleration; furthermore
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r
¢=1I k. dr' (2.4)

where the 1dcal radial wavenumber kr satisfies

kr2=—(———l’”‘2‘1<"—;—-><-—“’2—> : (2.5)
r w S

L

Equation (2.1) is not valid close to the turning points where k,.2 = 0, near the
singular point at the center, nor near the surface where the equilibrium structure no
longer varies on a length scale much greater than that of the oscillations. The
eigenfunctions can be expressed in terms of Airy functions near the turning points
and Bessel functions near the center, and near the surface in terms of either Bessel
functions or confluent hypergeometric functions depending on the value of & The
resulting consistent asymptotic representation leads to the determination of the
constants cp and cp in equation (2.1). )

Given &, the model is thus separated into regions where k. > 0 and where g,
oscillates as a function of r (these regions are called oscillatory), and regions
(called evanescent) where kr2 < 0 and &, decays or grows exponentially. To each
oscillatory region belongs a set of modes whose eigenfunctions are large only in the
given regioh and whose eigenfrequencies can be estimated by considering that region
in isolation. These modes, which one may call the local modes of the region,
normally correspond approximately to global modes--that is to say, modes of the model
as a-whole. This correspondence fails to be true only when the frequencies of two
local modes belonging to different oscillatory regions are almost identical. In such
cases the frequencies of the dlobal modes generally exhibit 'avoided crossings,' and
the corresponding eigenfunctions interchange their nature (for a discussion of this
phenomenon see, for example, von Neumann and Wigner 1929; Aizenman, Smeyers and
Weigert 1977; Christensen-Dalsgaard 1979; Gabriel 1980). Thus it is often useful to
classify global modes according to the oscillatory region that controls their
behavior. It must be kept in mind, however, that this classification is not
invariant under continuous variations of the model (or variations in ), since it
changes in the neighborhood of avoided crossings. Specific examples of this are
given in s4. .

One may note from equation (2.1) that the ratio between the amplitudes of &,
in two adjacent oscillatory regions is of the order of magnitude:

rp\3/2]o(r,) |1/2 L[r2 1/2 \2 2\|1/24,|
<W> [Tw o e (1—2><15_2> iR

where ry and ro are the boundaries of the intervening evanescent region. Thus, when
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% is large, the degree of trapping of a mode (the ratio between its amplitude in the
oscillatory region to which it belongs and its amplitude in the neighboring
oscillatory regions) may be extremely large.

For large £ the model has an oscillatory region close to the surface; the
corresponding modes have frequencies whose squares increase approximately linearly
with 2. These are the five minute oscillations and gravity waves trapped above the
convection zone. Only the latter can have frequencies in the relevant range, but ‘it
seems unlikely that these could have values of 2 appropriate to reproduce the data.
In what follows we shall therefore restrict attention to that part of the sun
contained beneath the top of the convection zone.

When the model has a convective envelope, 522 > N2 everywhere for
sufficiently large 2. In that case there are oscillatory regions where w2 < N2, The
corresponding modes are gravity waves trapped between consecutive zeros of N2 - wz;
their frequencies approximately satisfy ’

12 raf (2 W2\, !
2(%+ 1) ol -2 L=wln-2z2) , 2.7
R [ S O I

where ry and rp are consecutive zeros of N2 - w2, with N2> w2 in (risrp); and n is a
positive integer such that the number of zeros in £, between rj and rp is n - 1,
Equation (2.7) is valid only if N2 is sufficiently smooth (it cannot be used if N2 is
represented by, say, a step function or if N2 changes very rapidly), and the
oscillatory region (ry,rp) must not be 'too close' to the singularity at the center
and the near singularity at the surface. In particular, if w2 is very small,
equation (2.7) should be replaced by the expression given by Vandakurov (1967) which
properly takes the singularities into account. Furthermore (rl,rz) must be well
separated from any neighboring oscillatory regions, and N2 - w2 must not become very
small in the interior of (rl,rz) by, for example, N2 having a Tocal minimum slightly
above w2. When (2.7) is valid the Tlocal spectrum is considerably simplified,
provided that wz/sz2 is much smaller than 1; in this case the local squared frequency
wf o(n,2) is a function of only (n - 1/2)/0a(2 + 1)1Y/2. Thus, if [2(2 + 1)1}/2 is
approximated by £ + 1/2,

1
n-=

s (2.8)

2 =
®10¢ (n,2) = F 2+l
2

where the function f depends on the behavior of N2 in the region considered and can

be computed from equation (2.7). When w2 is close to a local maximum Nm2 of N2,

2

Nz(r) may be represented by a parabola in (2.7); if, furthermore, wz/sl is neglected

compared with 1, the approximate solution to equation (2.7):
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2 1
L. @ (n, %) ) 28n -3
N 2 L+ % (2.9)
m
is obtained, where
2
2 _ 1"m %N
BS = . N_z_._z. i , (2.10)
- dr rErn

rm being the position of the maximum of N2, Equation (2.9) is clearly a special
instance of the general relation (2.8). Thus each local maximum Nm2 of N2 has an
associated class of local modes, with squared frequencies tending to Nm2 like ¢~ as
¢ »o. Evidently the global spectrum for models with several local maxima in N2
could be extremely complicated.

3. PROPERTIES OF THE SOLAR MODELS

The solar models used here were computed using a modified version of
Eggleton's (1972) evolution program. Opacities were obtained by linear interpolation
from the tables of Cox and Stewart (1970), and the energy generation rate was
computed with reaction rates from Fowler, Caughlan and Zimmerman (1975), assuming the
p-p chain and the CNO cycle to be always in nuclear equilibrium. The accretion of
interstellar material was modelled by increasing Z in the convection zone at such a
constant rate as to reproduce the present surface value Z, which was taken to be
0.02; the change in thé mass of the model due to accretion was neglected. It was
assumed that matter enriched with heavy elements was not mixed beneath the base of
the convection zone. The initial model was assumed to be in thermal equilibrium and
chemically homogeneous, with abundances by mass Xo and Z, of hydrogen and heavy
elements respectively. For a given value of Z,, the model was calibrated by
adjusting Xo and the ratio o of the mixing length to pressure scale height to obtain
a luminosity of 3.83 x 1033 erg s~L and a radius of 6.96 x 1010 cm at an age of 4.75
x 109 years. Further information about how the models were calculated was given by
Christensen-Dalsgaard, Gough and Morgan (1979).

Three evolutionary sequences were computed. One of these, Model A, is
homogeneous in Z and serves as a reference standard model; the other two, Model B and
Model C, having values of Zo of 0.004 and 0.001 respectively, suffer accretion. Some
relevant information about these three models is contained in Table 1. (Note that
Table 1 of Christensen-Dalsgaard, Gough and Morgan 1979 contains two misprints: the
present central densities of Models B and C should be 135 and 129 g cm'3J
From Table 1 it can be seen that only Model C has a convection zone that is
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sufficiently thin as to render it possible for modes trapped in the interior to have
observable amplitudes at the surface. This is also the only model considered with a
predicted neutrino capture rate which is consistent with the observed value of 1.6 =
0.4 SNU (Davis 1978). Our subsequent discussion will therefore be devoted mainly to
this model.

The asymptotic analysis in § 2 showed that the modes of oscillation are
largely shaped by the behavior of the buoyancy and acoustic frequencies. In Figure
1, N2 and 5202 in units of gg/rg are plotted against x = r/rg for Model A (dashed
Tines) and Model C (solid 1ines). The rather complicated behavior of N2 is most
easily understood by rewriting equation (2.3) as

2
9
2 .1 - 3Lnp danX
N =73 [(-Vad v + (3%) dmnp] : (3.1)
[ psT
where v,q = (3 #n T/ 2n p)g, v = d 2n T/d 2n p and & = - (3 2n p/3 gn T)p. In

models 1ike those considered here, without convective cores, the term in danX/denp
gives a positive contribution to N2 in the region where hydrogen has been partly
depleted by nuclear burning; this causes the pronounced local maximum in N2 close to
x = 0.1 in both models. (The small feature close to x = 0.17 is an artifact,
probably caused by the use of Tinear interpolation for the opacity; in fact, in both
models it coincides almost exactly with the point where T = 1.0 x 107K). Further out
the sound speed ¢ decreases with increasing x, whereas g has a fairly broad maximum
near x = 0.2 and decreases approximately as x~2 when x > 0.4 (this outer region
contributes relatively little to the mass of the model); the rapid decrease in g
outweighs the decrease in ¢ for intermediate x, 1eading to a decrease in N2, Very
near the surface the decrease in c2 dominates. In the models considered here the
maximum in g combined with a decrease in Vv around x = 0.3 causes the second local
maximum close to x = 0.35. This maximum, however, is absent in some 'standard'
models of the sun (e.g. the model considered by Christensen-Dalsgaard 1979).

At the bottom of the convection zone V,4 - v, and hence N2, tend to zero. In
models with a deep outer convection zone, 1ike Model A, N2 therefore decreases
monotonically from an interior maximum. But in Model C the convection zone is so
thin that the rapid decrease in c2.in the outer parts of the model causes a third
Tocal maximum in N2. The curious shape of N2 near this maximum results from the
retreat of the convection zone during evolution, which produces a zone in which Z,
and hence opacity, increases outwards. In fact the position of the maximum in N2
corresponds, in the mass coordinate, to the base of the convection zone in the zero-
age model.
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Figure 1. The squared buoyancy frequency N2 and acoustic frequency 5202 in Model A
(dashed 1ines) and Model C (fully drawn lines). The observed squared frequencies are

indigated by ogp 2 and %bs 22. For ease of reference the local maxima and minima
in N4 have been i%%e]ed. ?
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4., THE OSCILLATIONS OF THE MODELS

The main purpose of the present work is to attempt to understand the
observations of solar modes of oscillation with periods of 66 and 45 minutes and
values of ¢ in excess of 20. Even so, it is useful to take a wider look at the
spectrum of oscillations in order to generally understand the oscillations of these
and similar models and thus to consider whether modifications of the models might be
able to provide better agreement with the observations.

In the remainder of the paper, frequencies will always be given in
dimensionless form, in terms of

2 _ 2
" = w rz/gS . (4.1)

In this unit the squared frequencies of the observed oscillations are U%bs,l = 6.4
and 03¢ 5 = 13.8.

Figure 1 shows that N2 in Model C has three prominent peaks in regions
designated Mj, My, and M3, separated by the minima m; and mp. Each of these peaks,
Mi,
label ggi)(z = 2'), where as in equation (2.7) n (=1, 2, .. .) is one higher than

supports a local spectrum of modes for sufficiently large 2. These modes we

the number of zeros of £, in the oscillatory region corresponding to M;, and 2' s
the value of %. 7
The qualitative nature of the spectrum of oscillations in this model at large

2 thus depends strongly on the value of o2 When o2

is less than the minimum value
N%l of N2 at my (which is about 7.7), there is just one class of g modes; these
possess squared frequencies approximately satisfying (2.7) with rp close to the
center and rp close to the bottom of the convection zone. As o2 increases above
N2,
of modes trapped within the region M;, the latter modes having squared frequencies
tending towards the maximum Nﬁ of N2 at M; (which is about 12.9) as & tends to

infinity. Finally the interior modes divide into modes trapped within MZ and M3 when

however, the g modes split into a class of modes trapped beneath m; and a class

o2 pecomes greater than N% (about 12.0), with squared frequencies tending towards
Nﬁz ® 16.9 and Nﬁ3” 15.9 respectively as & tends to infinity.

In Model A, N2 has only two peaks, M3 and Mj; here there is a single class of
g modes forg2< N%- (about 16.5). For o2 > N%- this splits into modes trapped in
the two peaks, with squared frequencies tending to Nﬁb = 17.3 and N§i_ ~ 20.4. This
requires ¢ to be sufficiently large to allow Mé to support the g{z mode; equation
(2.7) can be used to estimate that g has to be at least 20. For smaller values of &,
the spectrum of this model is presumably very similar to the spectrum of the solar
model studied by Christensen-Dalsgaard (1979).

The positions of the observed frequencies are also indicated on Figure 1 with
dot-dashed lines. For the higher frequency the evanescent region between the surface
and the outermost oscillatory region has about the same geometrical depth in the two
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models. In Model C, N2 is ke]ative]y large, greater than ngs 2/2, in most of the

evanescent region. Hence the degree of trapping of a mode at ¢ 2 need not be

impossibly large in this model, provided that a mode associatedoxféh M2 could be
found. Model A, on the other hand, exhibits the strong trapping of interior g modes
found in standard solar models. At the lower frequency the evanescent region in
Model C is essentially just the very thin convection zone, and here one expects no
problems with trapping; in Model A the evanescent region is still quite deep at this
frequency, and the trapping correspondingly strong.

To support these qualitative predictions we have made extensive calculations
of modes of Model C. 1In all cases the Eulerian perturbation in the gravitational
potential was neglected, and the differential equations were solved using the
constant coefficient method first used by Gabriel and Noels (1976) and described in
Christensen-Dalsgaard (1979). The correction to the frequency, caused by the
perturbation in the gravitational potential, was found using the Cowling (1941)
perturbation approach. The computed squared frequencies are shown on Figure 2,
plotted against 2, which is here regarded as a continuous variable (this is
mathematically permissible, although of course only the integer values of g have
physical significance). Some of the modes have been labeled with their Eckart (1960)
classification, first used for modes of nonradial stellar oscillation by Scuflaire
(1974) and Osaki (1975); this classification has the virtue of being invariant under
continuous variations in ¢ (or in any parameter characterizing the model), but it is
not directly related to the physical nature of the mode. On the figure are also
indicated the observed squared frequencies (dot-dashed 1ines), the maxima Nﬁl R Nﬁz
and Nﬁ (dashed 1ines) and the minima N2 and N2 (dotted 1ines) of N2.

The global f mode is evidently always t%e surface mode of the model. The
remaining modes are all gravity modes. We first consider the Tow-order modes, with
frequencies in the neighborhood ofcs%bs 2. Table 2 gives some pﬁepert1es of these
modes at & = 20; 1&,| 1. /&, | js the ratio of the maximum to the surface value of
IErl, Xmax 1S the position where |€r| has its maximum, and E is the normalized
pulsational energy

E= Jgﬂarlz + 2(241) |€h|2]pr‘2dr‘/ [M|gr(r-s)|2] , (4.2)

where & is the amplitude of the horizontal component of the displacement vector.
Furthermore, Figure 3 shows £,. as a function of x for the same seven modes. From the
figure it is evident that the global 91, 93 and g4 modes correspond to the local
g{3) R g£3) and g§3) modes, whereas the global g, mode is the local g{z) mode; the
global gg mode has to some extent the nature of the local g&z) mode, although its
frequency is too close to Nm2 to effectively trap it in Mj On the other hand the gq
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Figure 2. Squared frequencies for se]egted modes in Model C, as functions of g. The
observed values are indicatedzby %obs and o, 22 , and the Tocal maxima Nf. (i =
1, 2, 3) and local minima N&. (1 =’il, 2) of Rﬁ’are also shown. The distandes of
closest approach of the curvngs at the avoided crossings beyond £ = 29 have been
exaggerated.
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and g7 modes clearly belong to the interior of the model as a whole. The separation
of the Towest order modes into two classes is confirmed by Table 2, which furthermore
shows that the modes associated with My are much less severely trapped than those
belonging to Ms.

Figure 2 shows that the g; and go modes engage in an avoided crossing when %
is close to 35; for greater values of 2, the g; mode thus corresponds to the local
9{2) mode, and the g, mode to the local g§3)
the frequencies of the gg and gg modes begin to approach each other fairly

mode. Moreover it is clear that, once
above Nj ,
rapidly; however there is no avoided crossing between these two modes, merely an
accidental close approach of their frequencies between 2 = 30 and 40. (On the other
hand it is evident that a slight modification of the model to increase the
frequencies of the g(3) modes a Tittle could change this behavior into two close
avoided crossings; this would almost certainly happen as a consequence of the
evolution of the model, if followed to a slightly greater age.)

The pulsational energy E increases rapidly with £, as is shown in Figure 4.
For the g1 and g, modes in particular, where u varies relatively little over the
range of ¢ considered, log E increases essentially Tinearly with &, as might be
expected from equation (2.6).

For comparison, Table 3 shows the same quantities as Table 2, but for the
lowest order modes in Model A, in addition to a mode close to the second observed
frequency. Clearly the modes belonging to M, in Model C are much less effectively
trapped than the modes with similar frequencies in Model A. Note that although there
is no clear separation of modes belonging to NE and to M}, the behavior of the energy
of the g mode departs from the general increase in E with decreasing order. This
may indicate that this mode is progressing toward an association with Nﬁ. In fact
the gq and gg modes engage in a weak avoided crossing between & = 25 and 30, and the
95(2=30) mode quite definitely belongs to M.

It appears to be quite difficult to match ngs,z in Model C. Since we must
require that £ be greater than 20, the first possible identification is g(2=27), but
for this mode the energy is implausibly large. The same is true of gg(2=38), even
thoudh this is a mode belonging to Mp. If we relax the bound on % somewhat, g3(2=17)
might be considered, but equally plausible identifications could be found in a
standard model. And one would have to consider values of & as Tow as 12 (which is
probably ruled out by the observations) to identify the observed mode with gfz), an

identification which might otherwise be attractive. At an only slightly lower value
of % one could make the far more natural choice of the envelope f mode in a standard
model. However it might be pointed out that by increasing the opacity in the region

around M, and hence decreasing N2, it may be possible to reduce the frequency of the

(2)

9 (2 = 20) mode enough to bring it into agreement with dobs,2.

Turning now to the 66 minute mode with squared dimensionless frequency
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Table 2.

Mode o2 1 &rImax Xmax E
lepls

9 15.19 6.2x10% 0.10 2.8x107
% 14.73 1.1x102 0.37 2.0x102
9 14.10 5.8x103 0.09  2.7x10°
% 13.08 1.2x103 0.08 9.4x108
5 12.29 22 0.44 11
% 12..05 53 0.07 20
g 11.36 37 0.07 10

Modes with £ = 20, in Model C. The table shows the

Eckart classification, the squared dimensionless frequency,
the ratio between maximum and surface displacement, the
position of maximum displacement and the normalized
pulsational energy (defined in equation 4.2).
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Figure 3. The amplitude Er(x) of the radial displacement for the seven first g modes
at 2 = 20, in Model C. The abscissa is uniform in x, from o (1eft) to unity (right).
The Eckart classification_of the modes is indicated, as well ‘as their squared
dimensionless frequencies o 4.
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Figure 4. The dependence of TogyqE (cf. equation 4.2) on ¢, for the first seven g
modes in Model C.
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Table 3.
Mode o? | £pImax Xmax E
lepls
9 19.36 4.5x107 0.10 1.3x1013
9 17.79 1.7x106 0.08 2.2x1010
9 16.77 8.8x10% 0.08 8.4x107
9 16.32 1.8x10% 0.08 7.8x100
o 15.61 3.9x10* 0.07 1.1x10
% 14.84 2.3x10% 0.07 4.5x10°
9 14.10 2.2x10% 0.06 3.2x106
% 13.36 1.8x10* 0.06 2.0x10°
922 6.41 2.8x103 0.04 1.4x10%

Modes with £ = 20, in Model A.

meaning as in Table 2.

The symbols have the same
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U%bs,l = 6.4, Table 3 shows this mode to be severely trapped in standard solar
models, although the degree of trapping is an order of magnitude less than for the 45
minute mode. The situation is quite different in Model C as can be seen from Figure
5. As expected, a number of possible identifications exist here with modes having
relatively small energies. Indeed, for frequencies below le, there are many modes
with comparable energies.

It is of some interest to consider the variation of o2

and 1log E with 2, in
the light of the qualitative discussion at the beginning of this section. To
facilitate this, circles have been put on the curves in Figure 5 to indicate the
values of & where the frequency of the corresponding mode crosses le. Wheno? is
significantly smaller than N% r all modes evidently belong to the same class, with o2
increasing at about the same rate and with a rather slowly varying E. For o2 > N% ,
however, one clearly distinguishes in Figure 2 the Tocal g{l) mode for which }2
increases more slowly with & than the remaining modes which are trapped in the

1) mode is changed progressively from

interior. The global classification of the g{
g17(% = 23) to gp1(2 = 40) in a sequence of avoided crossings between this mode and
the interior g modes. This is also evident from Figure 5. Here the bottom envelope
of the curves corresponds to the energy of the g{l) mode, indicated by a dashed line,
and increases slowly with ¢. In contrast, the energy of the modes trapped in the
interior grows very rapidly with 2. This is caused by the rapid increase in the

2 jncreases above N% ; see equation (2.6)

width of the evanescent region below M aso
and Figure 1. At the points of avoided crossing of the frequencies, where in Figure
5 the 1og E curves cross, there is an exchange of physical nature between the two
modes involved.

Figure 6 shows & (x) for a few of the modes included in Figure 5. At & =20
the behavior of Er is qualitatively very similar for the three modes shown, since
these modes all have frequencies below N . At £ = 30, on the other hand, there is a
clear distinction among the modes between interior g modes and modes associated with
Mys this value of ¢ is close to the avoided crossing between g;g and g19- The latter
mode has the character of the g{l) mode, whereas gjg is @ mixture between this and

the interior g modes. The g7 and gpg modes belong predominantly to the interior.

5. A SEQUENCE OF ENVELOPE MODELS

The preceding section demonstrated the difficulty of explaining the 45 minute
mode in terms of the contaminated model considered there. No plausible {in the sense
of having a reasonably small pulsational energy) identification of this mode was
found for values of 2 above 20. While it was argued that the structure of the
interior of the model could possibly be modified sufficiently to accommodate the 45
minute mode as one trapped in the peak in N2 designated M2 on Figure 1, it is clearly
more attractive to look for a model where the mode could be trapped in a peak
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Figure 5. The dependence of 10979E on &, for modes in the neighborhood of "(z)bs 1°
6.4, in Model C. The circles indjicate the values of & where the frequencies criss
the Tocal minimum N in N. The dashed line shows the energy of the local g9
mode, computed in an e]nVe1ope model extending down to x = 0.68.
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Figure 6. Er(x) for selected modes in Model C; see caption to Figure 3.
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corresponding to My, close to the bottom of the convection zone.  This would require
the maximum value N2 of N2 in this peak to be above 13.8.

In an attempt to investigate this we have computed a sequence of chemically
homogeneous solar envelope models, varying the ratio o« of mixing length to pressure
scale height and hence the depth of the convection zone. In Figure 7 the fully drawn
curves show the behavior of N2 in these models, each curve being labeled with the
corresponding value of a. For comparison the dashed curve shows N2 in Model c,
discussed in 8§ 3 and 4; as usual the dot-dashed horizontal lines indicate the
observed modes.

Clearly the main effect of increasing o is to truncate at progressively
greater depth the otherwise rapid increase of N2 towards the surface. But there is
also a general change in the behavior of N2 beneath the convection zone, due to
changes in the structure of the model. For a > 0.6, N2 no longer has a significant
local maximum in the region considered.

When o« € 0.6 we can adopt the notation of § 4, by designating the peak in N2
as Mi. With this is then associated a spectrum of local g(l) modes with frequencies
above the minimum le of N beneath the peak, and tending towards the maximum Ny as ¢
tends to infinity. These modes can be calculated with considerable accuracy in the
envelope models by applying a condition at the inner boundary which isolates the
solution growing exponentially towards the surface; clearly the inner boundary must
be in the evanescent region (see e.g. Dziembowski 1977). However, it should be
noticed that o2 = 6.4 is below or close to N,Zn in all the envelopes. Thus the 66
minute mode cannot be discussed on the basis of the envelope models alone. Like
Model C, complete models based on these envelopes would predict a rich spectrum at
long peériods.

Using the technique sketched above we have computed the g{l) and ggl) modes
in the envelopes with o = 0.001, 0.4, 0.45 and 0.5, for values of g2 up to 100; the
results are presented in Figures 8 and 9, the curves being labeled by the value of o
and the classification. The observed value of o2 = 13.8 is shown in both figures as
a dot-dashed line. For « = 0.001 and 0.4 it is possible to find a mode with o2 =
13.8, but only for values of £ close to or considerably in excess of 100, whereas
when o 2 0.45 the maximum of N2, and hence the squared frequencies of the g(l) modes,
are below 13.8. ‘

On the other hand the envelope models considered here are probably not
realistic outer regions of complete solar models. Any solar model with a very thin
outer convection zone must presumably have abnormally low opacities in the interior
(otherwise the nuclear energy generation rate would not balance the observed
luminosity). Excluding the possibility of gross errors in the opacity tables this
would then imply a model with & structure similar to that of Model C. It is
obviously impossible to predict the detailed behavior of N2 pelow the convection zoné
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Figure 7. The squared buoyancy frequency N2 in a sequence of envelope models (fully
drawn 1ines) and in Model C (dashed 1ine). The fully drawn curves are 1abe211ed with
the ratio between the mixing Tength and the pressure scale height. Sobs, 1 and
I 0bs,2 indicate the observed modes.
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Figure 8. Squared dimensionless frequencies, against %, for the local gl(l)and g(z)
modes in the envelopes with o = 0.001 and 0.4. The curves are labelled with the

value of o and the name of the mode. G%bs 2 indicate the observed 45 minute mode.
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Figure 9. Squared dimensionless frequencies, against &, for the local g1 and g
modes in the envelopes with a = 0.45 and 0.5 (fully drawn lines) and in Mode'll2 o
{(dashed 1ine). Al1 curves are labelled with the name of the mode and the fully drawn
curves in addition with the value of a. The observed 45 minute mode is indicated by

ofbs,2*
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in such a model without an evolution calculation for the whole model, but some
indication of the effect of low Z in the interior can be seen by comparing Model C
with the envelope computed with o= 0.5, whose convection zone has approximately the
same depth. As seen from Figure 7 there is a general increase in Nz, caused by the
decrease in the opacity and the corresponding increase inV,q - V; consequently the
maximum in N is both higher and considerably wider. The effect on the frequencies
can be seen on Figure 9, where the dashed curves show o2 in Model C. These
frequencies are considerably greater than those of the homogeneous envelope with the
same depth of convection zone, and for given g, o2 is also significantly larger than
the value for the envelope with « = 0.45 (where the maximum value of N2 is about the
same as in Model C); this is due to the increased width of the trapping region.

Thus it appears possible that a solar model with a sufficiently shallow
convection zone may have a g(l) mode with o2 = 13.8, particularly if the interior of
the model is very deficient in heavy elements. But it should be noticed that the
g&l) mode wou]d almost certainly have a fairly high cz, thus raising the problem of
why this mode is not observed.

6. DISCUSSION AND CONCLUSION

Hi1l and Caudell (1979) concluded that two of the observed solar modes of
oscillation, with periods of 45 and 66 minutes, had values of & in excess of 20.
This interpretation of the observations almost certainly cannot be reconciled with
standard models of solar structure, which predict an unacceptably large ratio between
the maximum and surface displacement for modes corresponding to the observed periods.
The main reason for this is the relatively deep outer convection zones of such
models. We have thus been led to study solar models whose convection zones are
shallow. .

The present work has analyzed the oscillations of one such model of the whole
sun, originally computed by Christensen-Dalsgaard, Gough and Morgan (1979) in an
attempt to produce a model with a Tow neutrino flux; a sequence of envelope models
was also examined. In no case was there difficulty in reproducing the 66 minute
mode; indeed all the models considered have a Targe number of modes with periods
larger than about 60 minutes and with relatively small pulsational energies.

The 45 minute mode could not be identified in the complete solar model
studied in§ 4. However, it appeared 1ikely that a similar model could be made to
trap such a mode at the principal maximum of NZ for reasonably small values of 2,
after only a relatively modest modification to its structure. The maximum relative
displacement would still be rather large, of the order of a few hundred times the
surface displacement, but not so large as to rule out such an identification a
priori. Alternatively, as was shown in § 5, this mode could be trapped close to the
surface of a chemically homogeneous envelope, but only for values of 2 above 100 and
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only if the depth of the convection zone were less than 1 percent of the solar
radius. Taking into account the fact that a complete model with a very thin
convection zone probably has a highly Z-deficient interior, the depth of the
convection zone in a model reproducing the observed mode can perhaps be increased to
0.02 - 0.03 rg, but the required values of & are probably still close to 100. The
sensitivity of the observational technique to oscillations with such high ¢ is
relatively low, however (cf. Hi11 1978; Hi1l and Caudel1 1979}, and it is not clear
that they would be detectable.

We have so far tried only to match the observed periods and ignored the
question of the excitation of the modes. It appears rather unlikely that the modes
considered here are self-excited. This is certainly true if the modes are trapped in
the deep interior of the model, as considered above for the 45 minute mode; in this
case the radiative damping is very strong, due to the short horizontal wavelength of
the mode. If the modes are trapped near the base of a very thin convection zone
there remains a slight possibility that they may be destabilized by the « - mechanism
operating in the hydrogen ionization zone, though convective damping is 1ikely to
dominate (cf. Berthomieu et al. 1980). In any case this possibility is unlikely to
be realized for the 66 minute mode, which has comparable amplitudes throughout the
entire model and is therefore presumably quite heavily damped in the radiative
interior. The issue deserves further study, even though this would be beset by the
inevitable problems encountered in treating the convective fluxes.

If the linear modes are not self-excited, they must be driven by some
nonlinear mechanism. Gravity modes trapped close to the base of a thin convection
zone might be excited stochastically by the turbulence. Their amplitudes are
relatively large throughout the entire convection zone, and can therefore be
reasonably expected to interact with convective motions having turnover times
comparable with their periods. However, it would be hard to explain why only modes
with periods close to 45 and 66 minutes are excited. To be sure, there may be
several modes contributing to Hill and Caudell's data, especially near or above the
66 minute period where many Tow frequency modes may be present, but it is apparent
that the range of frequencies of 'possible' modes is greater than that observed:

A more promising possibility in this respect, perhaps, is resonant excitation
by the five minute oscillations, arising principally from three-mode interactions.
For modes trapped close to the surface this kind of excitation appears to be
energetically possible, and might explain why only selected modes are observed. But
it does not seem plausible for modes trapped beneath the prinicipal maximum of N2
because of the large energy of such modes, un]ess‘phase is maintained with the
exciting modes for very long periods of time. In this connection it is of some
interest that Severny, Kotov and Tsap (1978) point out that the structure of the 160
minute solar oscillation changes on a time scale of a year, pointing strongly to
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nonlinear effects: the linear time scale for the growth or decay of a low degree g
mode with such a period is probably in excess of 100 years. \

Quite apart from the obvious difficulties in explaining the observed modes,
the models considered here face other problems. From the contributions of Berthomieu
et al. (1980) and Lubow, Rhodes and Ulrich (1980) to these proceedings it is clear
that the thin convection zones of those models would ruin the impressive agreement
between theory and observation for the five minute oscillations (see also Gough 1977;
Ulrich and Rhodes 1977); however, Rosenwald and Hill (1980) suggest that the
resulting discrepancy might be removed by a modification of the outer boundary
conditions possibly due to nonlinear effects. Furthermore, it might be pointed out
that the discovery by Claverie et al. (1980) of discrete frequencies in the whole-
disk Doppler data close to a period of five minutes seems to favor models with
convection zones that are somewhat thinner than in a standard model, although perhaps
not as shallow as in the models considered here (cf. Christensen-Dalsgaard and Gough
1980). An objection which is unrelated to solar oscillations comes from the fact
that the proposed models need convection zones rich in heavy elements overlying
interiors with very Tow Z. Such a configuration is 1iable to be destroyed by the
fingering instability (e.g. Turner 1973), which is known to occur in similar
oceanographic and laboratory circumstances. This would cause mixing of heavy
elements into the interior of the model, thus modifying its structure and increasing
the amount of interstellar material which must be accreted to account for the
observed surface Z. Accepting a model with a thin convection zone also aggravates
the problem of explaining the photospheric 1ithium abundance. Finally, the
calibration of the model discussed in §§ 3 and 4 requires a helium abundance Y =
0.16, which is somewhat below estimates of the cosmic abundance (Danziger 1970), and
below the abundances fashionable in current cosmological theories.

It is obvious from the discussion above that interpreting the observations as
having resulted from g modes with large 2 gives rise to serious theoretical problems.
It is not easy to find models that exhibit the observed modes. Furthermore the
models proposed here may contain internal inconsistencies, and they depart
considerably from those computed with the standard theories of stellar evolution,
implying perhaps a need for revision of this theory. Although such theoretical
difficulties cannot by themselves falsify the interpretation by Hill and Caudell
(1979), they would seem to indicate that a close look for possible alternative
explanations is needed, as well as much more extensive observational material. On
the theoretical side there is an evident need to understand the excitation of the
proposed modes; it may also be of some interest to synthesize theoretical power
spectra at different scan amplitudes on the basis of a given solar model and some
reasonable hypothesis regarding the excitation mechanism, to try to understand why
only two modes (or groups of modes) at large 2 appear to be observed. There is a
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similar need to understand the isolated 160 minute oscillation discovered by Severny,
Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976).

If the observations of g modes with large & are confirmed, they would be
highly valuable as a probe of the solar interior. Indeed, the discussion in § 3 of
the behavior of the buoyancy frequency shows this to be very sensitive to details of
the structure of the sun's radiative interior. Section 2 then shows the same to be
the case for the spectrum of g modes. On the other hand, p modes depend
predominantly on only the outer layers. Therefore g modes can provide data that is
superior to those from the p modes for diagnosing the deep interior of the sun.

* * * * *
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NONRADIAL OSCILLATIONS OF SOLAR MODELS WITH AN INITIAL
DISCONTINUITY IN HYDROGEN ABUNDANCE

A. Boury, R. Scuflaire, A. Noels, and M. Gabriel
Institut d'Astrophysique
Universite de Liege, Belgium

ABSTRACT

Solar models are calculated with low central hydrogen abundance. The
stability of these models is investigated. The eigenspectrum is computed and
compared with the SCLERA observations of solar oscillation.

1. INTRODUCTION

In an attempt to solve the solar neutrino problem, Faulkner, Da Costa and
Prentice (1975) followed a suggestion of Prentice (1973) and constructed models of
the sun in which the initial hydrogen content in a small central region was much
smaller than that in the rest of the star. Although the models which give the
observed solar luminosity at the present solar age yield neutrino fluxes that are too
large, they are interesting because they exhibit oscillatory modes connected with the
discontinuity in density that is associated with the discontinuity in chemical
composition. Moreover, the possible observations of the oscillation spectrum of the
sun by the SCLERA group (Brown, Stebbins and Hill 1976, 1978) could permit comparison
between various solar models (Scuflaire et al. 1976; Christensen-Dalsgaard and Gough
1976; Hill and Caudell 1979).

2. MODELS AND OSCILLATION PERIODS

Following Faulkner, Da Costa and Prentice (1975), an evolutionary sequence
was computed by the Henyey method of a 1 M, star of heavy element abundance Z = 0,02
and of initial hydrogen abundance X = X. = 0.1 in the region m(r)/Mg £0.03and X =
Xg elsewhere. The value of Xg necessary to fit the Tuminosity at evolutionary age
4.7 x 109 years to the present solar luminosity was found to be 0.7813. The
evolutionary sequence was constructed with a ratio of mixing Tength 2/H to the
pressure scale height equal to 1.5; this ratio had to be adjusted to 2.15 in order to
match the present value of the solar radius to within less than l\percent. A second
sequence with Xc = 0 for m(r)/MO £ 0.03 and Xg = 0.794 elsewhere was also calculated.
The behavior of the models of this second sequence being qualitatively the same as
that of the models with X, = 0.1, no precise adjustments of X¢ and 2/H were made to
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achieve a precise fit with the present sun.

The properties of the models tested for vibrational instability are listed in
Table 2 where xp, XDi and XDO respectively represent the non-dimensional distance of
the discontinuity to the center of the star and the hydrogen abundance on the inner
and outer sides of the discontinuity. Models 1, 2, 3, 7, and 8 correspond to the
approach to the main sequence; Model 6 corresponds to the present sun.

The integration of the fourth order differential system of nonradial
adiabatic oscillations was then performed following the scheme given in Boury et al.
(1975). The fourth column of Table 2 gives the periods of the modes g; through gg
for the horizontal wavenumber £ = 1. In the fourth column of Table 3, we list for 2
=1 to 10 the periods of the modes associated with the discontinuity in density.
These modes have a very large amplitude in a narrow layer centered on the
discontinuity. With respect to solar seismology, Table 4 provides a list of periods
of Model 6 corresponding to the present sun; this allows for a comparison with the
SCLERA periods. It is immediately seen that the predicted spectrum is much more
compact than the observed spectrum. This compactness comes from the high central
condensation of the star due to the very low central abundance of hydrogen. 1In the
present state of observations, models with the assumed distribution of hydrogen do
not pass the test of solar seismology.

3. VIBRATIONAL STABILITY
The damping coefficient °'k,z relative to the k mode associated with the 2th
harmonic is written, as usual, in the following form (Boury et al. 1975):

%k,

Ma Ma Ma

I (%_[) se dm = f (%) 6(]- div ?)dm + I (I‘3 _§3>_>§_p_5 (ez*"]‘\!‘yp)dm]

l 0 k,f/ 0 k,Q/ P 0 P P
-2 M
o [" lorl an J
0 | 9%

I T T s T (1)

M
2 2
20 [O |§[‘| dm K2

where all the terms are expressed in terms of the adiabatic solution. The third
integral in equation (1) expresses the influence of the mechanical effects of
convection. V is the mean velocity of turbulence and €y stands for the rate per unit
mass of dissipation of turbulent kinetic energy into heat (Ledoux and Walraven 1958;
Gabriel et al. 1975). All1 other symbols have their usual meaning. Table 2 gives the
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Periods of Adiabatic Oscillation and Vibrational Stability Results:

Table 2.

g-modes of 2 =1

Model w?

Mode

o'"l years*
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* A negative signs means instability.
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Table 2. Cont.
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[N sl e Ran]

1
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1.536
1.813
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* A negative signs means instability.
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Table 3. Periods of Adiabatic Oscillations and Vibrational Stability :

Discontinuity Modes

—
o

a) Model 1
1 Mode wz P(s) Ey Er EE(D) A Eo ¢-1 years
1 P 18.605 2.097(3) 6.094(34) 2.289(38) 8.775(34) 7.990(37) 4.901(4)
Py 21.825 1.936(3) 5.488(34) 3.998(38) 1.270(35) 1.462(38) 3.008(4)
2 Py 69.615 1.084(3) 6.168(35) 9.731(37) 1.390(36) 3.886(37) 3.117(5)
3 P 113.65 8.483(2) 1.002(36) 1.788(38) 3.554(36) 7.882(37) 2.958(5)
4 Pg 156.63  7.227(2) 1.228(36) 7.506(37) 6.573(36) 2.386(37) 6.099(5)
5 Py 198.64 6.417(2) 1.389(36) 8.889(37) 1.058(37) 1.830{37) 8.939(5}
6 P; 240.26 5.835(2) 1.506(36) 1.726(37} 1.556(37) 5.971(35) 4.209(6)
7 Pg 282.13 5.384(2) 1.651(36) 2.006(37) 2.099(37) -1.187(34) 4.097(6)
8 Py 323.45 5.029(2) 1.732(36) 2.949(37) 2.762(37) 4.970(35) 3.195(6)
9 Pg 364.68 4.736(2) 1.800(36) 3.431(37) 3.513(37) 1.800(31) 3.022(6)
P1g 405.86 4.489(2) 1.858(36) 4.427(37) 4.352(37) 1.435(35) 2.601(6)

b) Model 8
1 Py 260.54  1.794(3) 1.013(35) 3.035(38) 2.280(33) 1.179(38) 3.150(4)
2 P 119.35 8.382(2) 6.820(35) 6.243(39) 3.190(35) 2.313(39) 7.852(3)
) Py 277.24 5.500(2) 1.714(36) 5.922(39) 3.121(36) 1.714(39) 1.781(4)
8 573.71 3.823(2) 2.729(36) 2.801(39) 1.774(37) 7.096(34) 6.342(6)
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Table 4.

Observed

1=4 1=6 1=8

1=2

1=0

71.1

70.7 (gg)

66.25

9.9

OO N~~~ OO
— e —)

0) and

The identification of the modes is

Last
(1978) in the

D indicates a discontinuity mode.

Periods (in minutes) of model 6 ("present sun") for radial (1
=2,4,6,8) modes.

non-radial (1
column gives solar periods observed by Brown et al.

given in parentheses.
range 10m-70m.
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values of Ey, Ep, Ep, and the e-folding time 1/c' for the low order g modes
corresponding to £ = 1. A negative sign for 1/¢' means instability and growth of the
oscillation amplitude. For the models with X, = 0.1, the g3 mode becomes unstable in
the approach to the main sequence in Model 2 close to the temporary minimum in the
ratio p./p, due to the slight expansion of the central regions accompanying the onset
of nuclear reactions. The instability subsists more than 109 years, until the
central condensation has reincreased enough to produce a corresponding increase in
amplitude in the envelope which is large enough to damp the oscillation. The
“present sun" is stable. The differences in the results for Models 5 and 6 are due
to the difference in radii of the two models, the large difference in their ratios of
%./p, and from the high sensitivity of the eigenvalues and eigenfunctions to p./p.

In the sequence X, = 0, the instability appears in the g, mode. Let us
recall here that in the standard solar evolution of models less condensed than the
present ones, a phase of instability towards the gy and g3 modes occurs (Boury et al.
1975). The modes associated with the discontinuity turn out to be very stable (Table
3). The destabilizing effect of the nuclear energy term is largely overcome by the
large perturbation of the temperature gradient, which appears as the radial part %%%
of the term 6(%'div F). The seventh cog%mn of Table 3 shows the gontribution Eﬁ(D)
of the discontinuity to the integral /-5 dSL. A steep change in density would have
the same stabilizing effect as a strict discontinuity.

In conclusion, the evolution of the sun when starting with a small (or zero)
hydrogen abundance in a small central region presents the same instability as the
standard evoiution towards low-order g nonradial modes for £ = 1; however, the
spectrum of the model corresponding to the present solar age is not compatible with
the observations.
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NONRADIAL OSCILLATIONS WITH HIGH 2-VALUES

C.A. Rouse
General Atomic Company
San Diego, California

ABSTRACT

A few eigenfunctions with high 2-values for nonradial oscillations of the
1968 nonstandard solar model (Rouse 1977, 1979 and references therein) are discussed.
Particular attention is given to eigenfunctions for periods near 45.5 and 67.2
minutes (Brown, Stebbins and Hill 1978). The Unno theory of stability of the solar
core (Unno 1975) is used to delineate the regions where the waves propagate as
acoustic waves, gravity waves, or are evanescent. Of particular interest is that the
eigenfunction with ¢ = 20 indicates that a relative displacement at the solar surface
of 1077 is consistent with a relative displacement of about 2 x 10-2 in the gravity
wave propagation region of the solar interior for this mode of oscillation.

1. INTRODUCTION

The fundamental interest in the calculation of a few eigenfunctions with high
g-values for nonradial modes of oscillation of the 1968 nonstandard solar model
(Rouse 1977, 1979 and references therein) js that it provides yet another test of the
limitations of that model.

By way of a brief background to the 1968 solar model, it was developed as a
part of a project at the Naval Research Lab, Washington, D.C., to study the
determination of the helium abundance of the solar photosphere by the theoretical
prediction of 1ine and continuum radiation from a solar-model photosphere where the
envelope and photosphere were calculated with an assumed abundance of helium (Rouse
1968b, 1969, 1971). This project itself was one phase of a program for calculating
an accurate model of the solar interior that I formulated in 1963-64, after I came to
the conclusion in the fall of 1963 that the interior structure of the sun was not
understood (Rouse 1964, 1968a, 1972). By this approach, the abundance of helium in
the solar photosphere is removed as a free parameter in solar evolution calculations.

The next phase, had the work been funded from 1969 on, was to 1ook into the
problem of the temperature gradient in the convection region of the sun (four
unpublished proposals). In 1976, after I heard of the SCLERA observations of solar
oscillations, I realized that the prediction of his observed spectrum and the
comparison of my predictions with those based upon the standard model of the sun
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could be a test of the 1968 model as it stood. The results for radial oscillations
are reported in Rouse (1977) and the results for nonradial oscillations with & < 11
are reported in Rouse (1979). Except for the Pg and Py periods of the radial modes
of oscillation, the agreements of the other radial periods and of the nonradial p-
mode periods with those predicted with the standard model indicates that, since
used a real-gas adiabatic temperature gradient in the envelope and photosphere, an
accurate mixing length theory is only needed to approximate second-order effects in

the solar convective region.

2. RESULTS

Now we have the exciting possibility that the SCLERA program may be able to
determine the 2-index of some of their observed periods of solar oscillation (Hill
and Caudell 1979; Brown, Stebbins and Hill 1978). 1In order to determine the
consistency of the 1968 model predictions with their interpretation of possible
observations of nonradial modes with 2 between about 20 and 25 or so, a few
eigenfunctions were calculated with high g2-values. The results for £ = 8, 11, 20,
24, and 28 are given in Figures 1 through 5, respectively. A few calculations were
also .performed with 28 <2 < 100. The results with ¢ = 100 will be described later.

.In the figures are shown the 2, gy, period Tin minutes, v in mHz, the peaks
of the é;— eigenfunctions, nodes, and values at x = 1.0, regions where A5 0, and the
regions where the waves can propagate as acoustic waves (a), gravity waves (g), or
are evanescent (e) (Unno 1975). For & values to 24, eigenvalues to 18 digits were
required. For & = 28 in Figure 5, an eigenvalue to 18 digits was not quite accurate
enough to satisfy the boundary conditions at x = 1.0, doing so at x = 0.986.
However, for nonradial oscillations with periods near 45.5 minutes, an f or g; mode
is possible for 2 = 100. To 18 digits with I = 46.6957 minutes, either mode is
possible. A computer with more digits in double or quadruple precision is needed.

Of particular interest is the 2 = 20, g3 eigenfunction shown in Figure 3.
Regarding the relative displacement, §r/r, at x = 1.0 and the three peaks between x =
0.345 and x = 0.520, a relative displacement at the solar surface of 10'7, a value
consistent with observations, would imply relative displacements of about 2 x 10-2 or
less in the g-propagation region of this solar model. This supports the Hill and
Caudell (1979) interpretation of two oscillations found in the 1973 observations as
possible g-modes of oscillation with 2 in the range 20 to 25 in that the interior
amplitude is not unphysical as with other models.

As a test of the limitations of the 1968 model or any solar model, as the
SCLERA observations are narrowed to specific 2-modes of oscillation, an agreement in
oscillation period with an eigenfunction such as in Figure 3, would indicate that the
structure of that solar model in the g-propagation zone would be close to physical
reality. If true in the present case, the structure of the 1968 solar model from
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1968 NONSTANDARD SOLAR MODEL
Al A0

! ! A<O i A0 A0
<O} (unstable) | (stable) i (unstable)
0.l 02 03 04 05 06 O7 08 09 110
A =8, gz
02=1.435499x |0°¢
T =87.403'
Y =0.19069 mHz
-3
21g x=0.880"
é_r ‘ )
' - 2.30°
1.80 A
e e e lo ¢
x=0.325" x=0.54*
X

Figure 1. Eigenfunction calculated for the 1968 nonstandard solar model with ¢ = 8.

{968 NONSTANDARD SOLAR MODEL

Al ASO | A<O I A0 AsO
<O§ (unstable) (stable) i (unstable)
0.1 02 03 04 05 06 07 08 09 1|0
.[ = ',g[
02=3.576382 x 10
T=55.374'
v=,30l10 mHz
2.50™ .
5!’ //—\ x=0.845
T ‘
|.4O'5')
e l g l e l a
x=0.375* x=0.48* x=0.90*
X

Figure 2. Eigenfunction calculated for the 1968 nonstandard solar model with ¢ = 11.
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(968 NONSTANDARD SOLAR MODEL

Al AO A<O i A0 A0
<0 (unstable) E (stable) i (unstable)
0.1 2 03 04 05 06 07 08 09 10
L=20, g3
0 =1.9795..x 107
T=74.430"
Y =0.2239 mHz
4287° 389° X
Sr N\ T x=.960
- N
r 3.20° 205"
e | g | e |a
x=.345" x=.520" x=973/"
X

Figure 3. Eigenfunction calculated for the 1968 nonstandard solar model with ¢ = 20.

1968 NONSTANDARD SOLAR MODEL

Al MO A<O I A0 AfO
<O} (unstable) | (stable) ! (unstable)
0l 02 03 04 05 06 07 08 09 I
1=24,g3
02:2.25877...% 107
T -69.677"

Y =0.2392 mHz

-1 =i

700" 667
or T x=96865
T- \/7 L)
550" 237 P
e [ g | e [o
x=.350" x=5I5" x=9775"
X

Figure 4. Eigenfunction calculated for the 1968 nonstandard model with g = 24
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1968 NONSTANDARD SOLAR MODEL
AL A0 A<O i A0 AgO
<0} (unstable) | (stable) | (unstable)
O.1 02 03 04 05 06 07 08 09 I
L=28
02=244994O56.‘.36X|O'G" + EXACT EIGEN-VALUE REQUIRES
T =662386| MORE THAN (8 DIGITS
Y =0.2516 mHz
121" qu7e
S o~ x=0.972
- s t
r 0.6°13 ﬁ|46"7=/’
e | o | e o
+ + te
x=.355 x=.505 x=,981™
Y=7 ex=0.986"
X
Figure 5. Eigenfunction calculated for the 1968 nonstandard model with g = 28.
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about x = 0.34 to the photosphere would be supported by the above as well as by other
observational results. This would put another constraint on the model of the solar
core: it must not only be consistent with a positive solar neutrino measurement, but
must also be consistent with the basic aspects of the model of the envelope and
photosphere derived in the 1968 solar model, photospheric helium abundance study.
Now, what is given up by my 1963-64 approach to solar model calculation? The
answer is that nothing basic is given up at all. What is retained is the principle
of the scientific method. My use of real-gas physics from the start (in 1962) (see
Rouse 1964), my effort to remove the photospheric helium abundance as a free
parameter, and my test calculations of periods of solar oscillation to demonstrate
the accuracy of my 1968 envelope and photosphere calculations--they all were designed

to put these aspects of solar model calculation on a firm physical and mathematical
footing. In this way, attention can be focused on the problems of the solar curve--
which is precisely how I viewed the solar problem in 1963, a view strongly supported
by the subsequent solar neutrino experiment results.
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TIME-VARYING GRAVITATIONAL MULTIPOLE MOMENTS CORRESPONDING
TO NONRADIAL SOLAR OSCILLATIONS
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ABSTRACT :

Hi1l (1978) and Severny, Kotov and Tsap (1976) and others have reported
oscillations in the apparent radius of the sun of amplitude R which have been
interpreted as arising from mechanical vibrations of various normal modes. A future
space mission is being discussed whereby a probe will pass within 4 Ry of the sun.
This probe would have sufficient sensitivity to measure an oscillating
(dimensionless) quadrupole moment Jp' at the 1077 1evel. In this paper we consider
the relationship between various multipoles and 6Rg/Rg» We calculate the multipole
moments for the Cowling polytropic model and an approximate solar model. We find
J5'/(6Re/Rg) to be v 1073 for both models.

1. INTRODUCTION

Hill and co-workers and others, (Hill 1978; Severny, Kotov and Tsap 1976)
have published observations which they have interpreted in terms of oscillations of
the sun. One of us has recently proposed using a satellite to measure any associated
oscillating gravitational multipole moments (Douglass 1978). NASA currently has
under consideration a proposal to fly such a "Solar Probe" satellite to within about
4Rg sometime in the 1980's (see Bender 1978 and Roxburgh 1978). The purpose of this
paper is to report preliminary calculations of the time-varying multipole moments
associated with several of the nonradial modes of solar oscillation. Such
calculations are necessary in order to assess the feasibility of spacecraft
measurements of the oscillating multipoles.

The importance of direct measurements of the gravitational moments associated
with solar oscillations derives from the fact that they provide direct probes of the
solar interior, somewhat analogous to seismic measurements on the earth. The
continuing inability of theory to achieve a generally accepted resolution of the
solar neutrino problem (cf. Fowler 1974, Bahcall 1978) is a clear demonstration that
the interior of the sun is more mysterious than had been recognized previously. In
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these circumstances, additional information is essential to improve our
understanding, and space probe measurements of the time-dependent gravitational
potential provide one of the few ways of obtaining such information.

The plan of this paper is as follows. In§ 2 we first define the multipole
moments of the gravitational potential, and we relate our definitions of the
multipole moments to other conventions (especially for the static quadrupole). We
also outline briefly the elements of nonradial stellar oscillaton theory and relate
them to the gravitational multipoles. In § 3 we describe the approximate solar
models used for these calculations, and we give a brief description of the numerical
techniques used to solve the eigenvalue problem for the oscillations. The results of
our calculations for several of the nonradial oscillation modes are tabulated, and
graphs of some quantities of interest are presented. A discussion of the results, in
§ 4, concludes the paper. '

2. FORMULATION OF THE PROBLEM
2.1. Gravitational Multipole Moments

The gravitational potential &(r,t) exterrnal to a given time varying density
distribution p(r,t) is given by the usual integral
s 1
o(,t) = -6 AL T (1)
¥ -7
With the aid of the Legendre polynomial expansion for | #-%'| 1 and the spherical
harmonics addition theorem, (1) may be rewritten in the form

GM 2 R_\e
o(rsesp,t) = -—= ¥ 3 Ylm(e,qa)(-;o-) dom(t) (2)

220 m=-g

where the instantaneous dimensionless multipole moment is defined by

- 1 . 4'll' |2 1 t 1 1 1 R
Ia(8) = L gty [ e (e e ) ()
00

a(8tet) . (3)

Here we have specialized to the sun, with Mg and Rg being the solar mass and radius,
respectively, do' the differential element of solar angle, and we have used the
definition of the spherical harmonics given by Messiah (1958 pp. 492ff). Note that
with these definitions, Joo(t) = (4m)~1/2

As a special case, we must have Jy, =0, because it is proportional to the

location of the center of mass of the star.
For infinitesimal oscillations, we take

s(Fot) = q>(°)(r?) +o'(Ft)
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and for an eigenmode of given (&,m), we write
! > _n "[o-t
o (Fit) = oy n(r) Yo (654) e s (4)
where o is the oscillation eigenfrequency.
Similar relations hold for the density perturbations. When these relations
are inserted in (2) and (3) and the angular integrals are evaluated, we obtain
o(ft) = f 8, (r) ¥, (0,4) 't
£20 maop M 2
L
2 GM_ /R
= _eo(2e) 24 jot
P (r) Iem Yam(®50) @ (5)
where
Ao an (Ren e,
em- o -2 Tp+1 Bomr (e )" Cdrt . (6)

L
MQ RQ

The orthogonality of the spherical harmonics requires that all contributions
to azm come only from oscillations with the same (2,m). Further, in this expansion &

= 0 corresponds to the unperturbed state.
Other definitions of the dimensionless quadrupole moment are also in use (cf

Kaula 1968, especially p. 67). For example if the potential is expanded as

GM R \2 2
- __e “0) (3cos® -~ 1
#= - [1+J2 (r)( 2 )]
then our moment is related to the Jj' by
' 5 1/2
J2 = <1E) J20 ~ 0.63J20

2.2 Nonradial Stellar Oscillations
Nonradial spheroidal oscillations of stars are described by a fourth-order

system of linear differential equations, which may be written in the form (cf. Osaki

and Hansen 1973)

3) sy g - _aea(f, £+ 8) (7a)

1 df2
? dr dr
r Y‘
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-E%E-Q =% -0+ ér %—%% (7b)
o2, =§<F\ (7d)
- b (rzsr) SEICREV (7e)

Here ¢ is the r-dependent part of the gravitational potential perturbation, as in
(4); ¢, h
eigenvector ¢ (related to the velocity perturbation by V' o= iaz); & is the r-
dependent part of div %, and % is defined by

and £, are the radial and transverse amplitudes of the displacement

A
X =

o |-o>

A
+¢ (8)

where P is the pressure perturbation. All quantities in these equations that are not
distinguished by a supernumerary carat refer to the unperturbed equilibrium model.

Other quantities we shall find convenient to have at our disposal are the
definition of the density perturbation

A
p

=_£r%%-pé (9)
and

- danp 1 danP
R (10)

Note that N2 = -Ag defines the Brunt-Vdisdl14 frequency N; it becomes imaginary in
regions of convective instability (A > 0).

Specification of the nonradial eigenvalue problem is completed by giving the
four spatial boundary conditions, two each at the center and at the surface of the
star (cf. Osaki and Hansen 1973).

For purposes of numerical computation it is convenient to rewrite the
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eigenvalue problem (7) in terms of the dimensionless Dziembowski (1971) variables:

yp = Er (11a)

vy = R/gr = (8 + Bro)/gr (11b)

yg = ®/gr (11c)
and

vy = (d¥/dr)/g (11d)

where g = GMr/r'2 is the local acceleration due to-gravity. We refer the interested
reader to Osaki and Hansen (1973) and to Dziembowski (1971) for the forms of the
equations in terms of these variables. For our present purposes it is sufficient
merely to give the results in terms of these quantities; for example:

A

. =1y (12a)
A gy

P X o2

Ct 7% (12b)
ro [+

and
4 pgr |
o= rhyg ¢t TP (v, - ¥3) - (12c)

Although the oscillation variables are defined only in the interior of a
star, the gravitational potential must be continuous across the stellar surface. We
can therefore express the dimensionless multipole moments of the potential in terms
of these pulsation variables. In particular, at the solar surface, (5) and (11)

yield
GM aM_ /R \ GM
R ) =8 —o. (“e( 9]} o_ %
y3(r=Ry) =2 _(R.)/ R, [R (—R—> sz]/R_,' “Jom - (13)

[} [} [}

Thus, the gravitational multipole moments are obtained as a trivial byproduct of the
nonradial oscillation calculations. Alternatively, of course, one may use (6) to
evaluate the J,p directly.

We shall express the amplitude of the oscillation (and hence the actual value
of jzm) in terms of the fractional radial displacement amplitude Er(r = Rg)/Rgy =
8Ry /R
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3. THIS CALCULATION

To solve the nonradial oscillation eigenvalue problem, one must begin with a
detailed numerical model for the unperturbed star. We have employed two such models:
a polytrope with n = 3 and a model from an evolutionary sequence for the sun.

The first model we used was the polytropic (n =3, N =%) model, following
Cowling (1941). The most important virtue of this model is that a few eigenfunctions
are tabulated (Cowling 1941 and Kopal 1949), so that the moments can be evaluated
immediately by equation (6). The results for this model are presented in Tables 1
and 2.

The second, evolutionary model was taken from a sequence constructed to study
the deep solar interior. The parameters of this model are given in Table 3. Note
that the radius of the model differs significantly from that of the sun. This is a
consequence of our use of very crude, purely radiative envelope models in the
computation of this evolutionary sequence. In fact, although the outermost ~ 10-7 Ma
of the sun are actually convective, we have forced this region to be radiative. This
has little effect on the deep interior of the model because of the well-known
convergence of stellar models to the radiative solution at large depths (cf.
Schwarzschild 1958). However, use of the incorrect temperature gradient in the
surface layers does lead to the incorrect stellar radii and thus affects the pressure
and temperature in the outer parts of the model.

Apart from this one aspect, however, the model provides a reasonable
approximation of the present sun. In particular, the model calculations have
employed a standard Newton-Raphson evolutionary program, and the physics employed to
describe the material properties of the stellar matter are the usual ones. The
equation of state corresponds to a mixture of ideal gases plus radiation (electron
degeneracy is included, although it is never very important). Opacities are
interpolated in Los Alamos tables having Z = 0.02 (cf. Cox and Stewart 1970), and
nuclear reaction rates for both the P-P chain and the CNO cycle are included as given
by Clayton (1968), with the fast reactions all taken to be in equilibrium.

To employ the approximate solar model as a basis for nonradial oscillation
calculations, it is necessary to compute detailed distributions of a variety of
structural and thermodynamic parameters throughout the star. Most of these
quantities are already available from the evolutionary calculations. Because of the
crude approximation employed for the solar envelope, however, it was necessary to
reconstruct separately the run of parameters appropriate to the outer layers of the
model. This was done with a separate program, and care was taken to ensﬁre that the
structure variables were as monotonic and smooth as possible across the
envelope/interior interface.

This model was then used as input to the Osaki-Hansen nonradial oscillation
code (see Osaki and Hansen 1973 for details of the numerical methods used). This
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Table 1. The Polytrope Model
Parameter Value
n 3
N 3/2
M/Mg 1
R/Ry 1
log pc(gm/cm3) 1.88
Table 2. Results (¢ = 2)
Iben (1976)
Mode Period(min) Period(min) Freq(Hz) 3zm/-§—r
®
f 56.6 49.19 3.39 -4 0.91 -3
99 76.9 56.00 2.98 -4 2.04 -3
9 105.4 65.21 2.56 -4 2.19 -3
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Table 3. Parameters of the Approximate Solar Model

Parameter Value
M/My 1.000
L/L0 1.074
R/Rg 1.38
age (yrs) 4.201 x 109
log Pc(dynes cm-2) 17.387
log T, (°K) 7.193
log pc (9 cn™3) 2.189
X 0.71

z 0.02
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code employs Newton-Raphson iterations to relax an approximate solution of the
eigenvalue problem to a converged solution. Our convergence criterion was that the
sum of the absolute values of the corrections to the eigenfunction be less than 10-9
times the sum of the absolute values of the eigenfunction itself.

The results of our calculations are given in Tables 4 and 5 for nonradial p-,
f-, and g-modes corresponding to 2 = 2 and 3. In addition to the actual eigenperiods
obtained for our approximate model, we have listed eigenperiods scaled to the correct
solar radius according to

= -3/2
Tscaled "model(Rmode1/Re) 3 (14)

this scaling would be exact for the p- and f-modes, if the structure of the pulsation
eigenfunctions were invariant. Of course they are not, and we have accordingly
included also the solar eigenperiods calculated by Iben (1976) to provide an estimate
of the accuracy of these results. The dimensionless multipole moments 32m and the
ratios it/ir at the stellar surface are also given in these tables; these
dimensionless quantities are expected to be approximately invariant under the
scaling. They should thus be correct to about the same degree that the scaled
eigenperiods reproduce Iben's results.

4. DISCUSSION

The most obvious advantage of the proposed gravitational measurement is that
jt is a real whole-body measurement. Only whole-body oscillations could conceivably
cause perturbations in the potential, and since a "drag-free" satellite will
faithfully follow these perturbations, the only serious impediment to the experiment
comes from the Doppler tracking system.. For example, no sophisticated knowledge of
the time-dependent brightness distribution in the photosphere is necessary to
interpret the results. Thus a positive result is likely to be uncontroversial.

A major disadvantage of the method is the limited data collection time
available for the proposed mission (10-20 hours up close).

We have presented above the formalism that determines the ratio of two
quantities that can, in principle, be measured separately for a solar oscillation,
the radial displacement and the gravitational moment. If ground based measurements
of the radial displacement were reliable enough and well understood, then their
comparison to a moment measurement would provide additional information. This is
another way of saying that their ratio is model dependent, as can be seen by
comparison of our two calculations. Our first look at this suggests that a major
effect is caused by the degree of central condensation: when it is larger, the
moment/displacement ratio is smaller. Perhaps other information of this kind can be
discovered by further study of different models. '

We would 1ike to suggest that in future calculations of solar oscillations it
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Non-Radial Oscillation Moments of the Approximate Solar Model

=2

Iben (1976)

Mode Period(min) Pei(i:gzi((e:i n) Period(min)  Frequency(Hz) Jm/g—; 8,0/8Ir
P12 15,04 9.28 8.77 1.88 -3 1.00 -6 0.00215
P11 16.26 10.03 9.44 1.77 -3 -2.24 -6 0.00267
P10 17.70 10.92 10.21 1.63 -3 1.81 -6 0.00325
Pg 19.39 11.96 11.18 1.49 -3 -3.42 -6 0.00419
Pg 21.42 13.21 12.33 1.35 -3 3.58 -6 0.00531
P; 23.89 14.74 13.74 1.213 -3 -5.98 -6 0.00683
Pg 26.90 16.59 15.54 1.073 -3 7.73 -6 0.00892
P5 30.68 18.93 17.88 9.32 -4 -1.30 -5 0.01188
Py 35.50 21.90 21.10 7.90 -4 2.26 -5 0.0162
P3 41.60 25.66 25.60 6.51 -4 -5.15 -5 0.0226
Py 48.72 30.06 32.61 5.11 -4 1.14 -4 0.0314
P1 56.36 34,77 43,75 3.81 -4 -8.36 -5 0.0423
f 65.53 40.43 49,19 3.39 -4 -2.75 -4 0.0575
9; 75.65 46.67 56.00 2.98 -4 3.67 -4 0.0769
9, 89.76 55.37 65.21 2.56 -4 2.02 -3 0.1085
95 108.36 66.85 77.16 2.16 -4 3.67 -3 0.1590
9 128.78 79.44 90.85 1.835 -4 4,23 -3 0.224
95 150.8 93.03 104.7 1.592 -4 4,01 -3 0.308
9 172.8 106.6 118.6 1.405 -4 3.45 -3 0.405
97 —_— — 132.6 1.257 -4 —— —_—
9g 217.9 134.4 146.7 1.136 -4 2.25 -3 0.645
9q 241.0 148.7 160.9 1.036 -4 1.75 -3 0.791
910 264.8 163.3 174.9 9.53 -5 1.33 -3 0.956
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3

Iben (1976)

Mode Period(min) Pzgilg?min) Period(min)  Frequency(Hz) azm/%g’ Et/ar
P12 "14.61 9.01 8.53 1.95 -3 2.24 -7 0.00198
P11 15.77 9.73 9.17 1.82 -3 -9.63 -7 0.00246
P10 17.13 10.57 9.90 1.68 -3 5.06 -7 0.00306
Pg 18.72 11.55 10.76 1.55 -3 -1.43 -6 0.00384
Pg 20.62 12.72 11.82 1.41 -3 1.18 -6  0.00486
Py 22.92 14.14 13.11 1.27 -3 -2.33 -6 0.00622
Pe 25.73 15.87 14.76 1.129 -3 2.56 -6 0.00808
Pg 29.25 18.04 16.94 9.84 -4 -4.58 -6 0.01071
Py 33.69 20.78 19.72 8.45 -4 6.69 -6 0.01451
P3 39.47 24.35 23.91 6.97 -4 -1.34 -5 0.0203
Py 46.81 28.88 29.95 5.56 -4 2.69 -5 0.0289
pl* 51.58 31.82 40.45 4.12 -4 5.22 -6  0.0353
f* 59.54 36.73 44.67 3.73 -4 -7.21 -5 0.0473
gl* 67.29 41.51 51.92 3.21 -4 -2.17 -5 0.0607
9, 76.97 47.48 57.21 2.91 -4 2.83 -4 0.0819
93 87.29 53.85 63.33 2.63 -4 6.13 -4 0.1028
9 100.46 61.97 72.17 2.31 -4 9.81 -4 0.1364
9g 115.49 71.25 81.59 2.04 -4 1.18 -3 0.1806

*Note that the Py and 9 modes for g = 3 have 3 nodes while the f mode has 2;

see Dziembowski (1971) and Robe (1968) for further discussion.
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would be useful to include a calculation of the moments for possible later comparison
to satellite data.

The next step is to repeat our calculations for a more realistic solar model.
These results will be reported in another paper. It is these moments that Wou]d be
most appropriate for evaluating the feasibility of the satellite experiment.

* * * * *

This research supported in part by the National Science Foundation.
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ABSTRACT

The relation between the amplitudes of the gravitational potential
perturbation and the displacement eigenfunctions of adiabatic oscillations of a solar
model is discussed, and numerical results are tabulated for a selection of modes of
Tow degree. In particular, a solar quadrupole oscillation with period 160™ and rms
surface velocity of 1 ms~1 would induce a perturbation in the external gravitational
potential with an oscillating quadrupole moment of amplitude about one-third that of
the static moment that would be produced by a uniform interior rotation of the sun
with angular velocity comparable with that observed on the surface. It is concluded
that quadrupole oscillations might be detectable gravitationally.

1. INTRODUCTION

The announcement of the detection of global oscillations of the sun (Hil1,
Stebbins and Brown 1976; Severny, Kotov and Tsap 1976; Brookes, Isaak and van der
Raay 1976) immediately raised the question of whether the associated gravitational
radiation could be measured. In particular, J. Hough (private communication) and J.
Weber (private communication) enquired whether the amplitudes of the variations in
the solar quadrupole moment associated with modes that might be responsible for the
data are large enough to be detected by ground-based observations. The conclusion at
that time was that the amplitudes were too low.

At this workshop, Johnson et al. (1980) have addressed themselves to the
issue of whether the quadrupole variations might be detected by future
extraterrestrial probes. Their discussion is based on modes of oscillation of a
polytrope: they have asked how well their modes approximate those of more realistic
solar models and, in particular, whether the latter predict substantially larger
fluctuations in the external gravitational potential. We are in a position to give
an immediate answer to that question, since the perturbation to the gravitational
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potential is one of the eigenfunctions of our normal mode computations (Christensen-
Dalsgaard, Dilke and Gough 1974). Here we present a selection of our results, some
of which may be compared with those of Johnson et al. (1980). We find that for most
modes of the solar model the gravitational potential perturbations are indeed larger
than those of their polytropic counterparts, but by how much is dependent on the
criterion for comparison.

2. RELATION BETWEEN DISPLACEMENT AND THE PERTURBATION IN THE GRAVITATIONAL POTENTIAL
After the usual separation of variables with respect to spherical polar

coordinates (r, 8, ¢), the displacement eigenfunction € nam of a normal mode of order

n may be written

)sin

m
Enz(x)Pz(cose cos

m¢

m sin :
Pz(cose)cos m¢ sine t (1)

™y
1

=
El}

=
P
*
Z

(<%

[a+]

nm n

m Pm

. cos
innz(x)sine 2 m

(cose)s1.n ¢
where x = r/R, R is the radius of the sun, Wng is the oscillation eigenfrequency and
PE is the associated Legendre function of degree 2. The corresponding Eulerian
perturbations to density p and gravitational potential ¢ are

m sin .
(x)Pz(cose)cos mé sine ot (2)

°Mm=°%z
sin

® am T Tf’anz(x)Pz(cose)cos m¢ sinwp,t (3)

where M is the solar mass, G is the gravitational constant and o = 3M/(4nR3)is the
mean density of the sun. Since there is a neglible amount of matter ‘in the
chromosphere, corona and the solar wind, the perturbation to the gravitational
potential outside the sun is determined uniquely by that in the photosphere. Thus it
is sufficient to determine 5n£(1L

The perturbations ®' and p' are related by a Poisson equation. This may be
solved to yield the gravitational potential perturbation in the photosphere (e.g.
Christensen-Dalsgaard 1976; cf. Cowling 1941):

1
(1) = 5T (o) + [ S e (4)

where po(x) is the unperturbed density measured in units ofp. Elimination of Snz

using the continuity equation
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- -2 d 2 = -1 -
Prg = X T (XTpgEpg) * (2 + 1)xTpm (5)

yields a direct relation between 8n¢ and the displacement amplitudes:

1
B, 2_235 - fo x2+1po(,x) [Em(x) + (2 + 1)ﬁn2(x)]dx
1 -~
. [O KOO [E 0 + 0+ 1 ]ax . ©)

The kernel K, is displayed in Figure 1 for several values of g. For r> R the

3, (r/R) = 5n2(1)(R/r)2+] ) (7)

When computing eigenfunctions it is most convenient to specify some amplitude
at a fixed point in space. Current observations measure conditions at the surface,
and usually our normalization is Ehz(l) = 1. From a physical point of view this is
not necessarily a good choice, since surface amplitudes can be boor reflections of
the eigenfunctions in the interior (e.g. Christensen-Dalsgaard, Dziembowski and Gough
1980). It is sometimes more instructive to consider an L2 norm of the displacement
such as I,gp, defined by

= 3 . 2. = .2 .
Iem 2[ Po Engm Enem X Sinodxdedy = 1om Sin7up,t 3 (8)
4qR
1
3 - 3 (24m)! ~2 <2 2
Lnem = %(1%00) 7037 (a-m)] [0 p0[:5n2 * 2(£+])nnz] xtdx o, (9)

where 8, is the Kronecker delta. This quantity is related to the total energy Ej,
of the oscillations through the equation

_LF 2 2
Enem = 51 MR™ w . (10)

3. ASYMPTOTIC PROPERTIES OF MODES OF HIGH ORDER OR HIGH DEGREE

We first estimate the gravitational potential perburbation when n or 2 is
large. Not only does this provide us with the asymptotic properties of these extreme
modes, but also it should indicate the trends in all but perhaps the modes of Towest
order or degree.
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Figure 1. Kernels K¥(x) = [32/(22 + 1)] ¥l 0%(x) for ¢ = 2,3,4 and 5 for the solar
model. The dashed curve is K2(x) for the polytrope of index 3.
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Relative to the mean displacement amplitude, Iéml decreases as n, or 2,
increases, at least when n, or ¢, is large: As n increases at constant &, JWKB
analysis shows that in the regions of the star where the displacement is significant,
the displacement eigenfunctions of both the p and the g modes oscillate spatially
with a characteristic wavelength that is inversely proportional to n (e.g.,
Christensen-Dalsgaard, Dziembowski and Gough 1980). Thus according to Riemann's
lemma applied to equation (6) one must expect that for modes normalized with Ingm =
1, 5m(1) < O(n'l) as n* =, and Papaloizou (private communication) has shown that
5,‘2(1) < O(n'z). To determine the actual behavior requires a more careful asymptotic
analysis {cf. Zahn, 1970).

The behavior of & (1) as & increases requires separate discussions for the p
and g modes. For the global g modes the dominant factor is the decrease with & of
the kernel Kz(x) when x < 1. When 2 is large g modes are confined beneath the
convection zone, and when & is sufficiently large they are trapped near the maxima of
the buoyancy frequency. Thus the displacement amplitudes are significant only when x
< Xe < 1, for some X¢ that is at or beneath the bottom of the convection zone.
Taking the axisymmetrical mode as an example, one can see from equations (6) and (9)
that at fixed Tpyo, 18,,(1)] < 0(21/2¢%) as ¢ = The behavior of the p modes is
different. As & increases these modes become more and more severely confined to the
surface Tayers of the star, where the density is low. Consequently they induce
smaller and smaller absolute density perturbations. As % » =, the penetration depth
is 0(1['1 R). If the stratification of the upper envelope is approximated by a
polytrope of index u, the mass involved in the oscillation decreases as 2_“-1. Hence

Enz increases as £2 /2 and ¥Ne(1) =

for the axisymmetrical mode at constant I
oz "%y,

It may be more natural to consider the behavior of 5'm(1) at constant ENM,

_ -1

®ng = 0(n ")

= 0(n) and & o (1) s O(n-3). As % increases the g mode frequencies approach

ngo ’

As n+ =, for the g modes, whence <im(l) = 0(rrl), whereas for the p
modes w, o g
the maxima of the buoyancy frequency and the behavior of q’nz(l) is the same as when
the norma]izationinz =1 1is applied; for the p modes w o= O(JI,1 2) as & * =, and

) ng
anz (1) = 0(2'(11""1)/2 ).

4. GRAVITATIONAL POTENTIAL PERTURBATIONS ASSOCIATED WITH MODES OF LOW ORDER AND
DEGREE

Surface amplitudes of the perturbations to the gravitational potential are
presented in Table 1 for a selection of the modes of lowest degree. The equilibrium
solar model is Model A of Christensen-Dalsgaard, Gough and Morgan (1979), whose
properties are summarized in these proceedings by Christensen-Dalsgaard, Dziembowski
and Gough (1980). The normal mode analysis was performed in the adiabatic
approximation, in a manner similar to that described by Christensen-Dalsgaard, Dilke
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and Gough (1974).

The modes of Towest degree that perturb the gravitational potential outside a
star are the quadrupole modes. Monopole perturbations in the gravitational potential
are not possible because the mass of the star is conserved; oscillatory dipole
perturbations are not possible because the external field would be precisely that of
a spherically symmetrical mass distribution whose center of mass is moving with
respect to the frame of the equilibrium model. Dipole perturbations to & are induced
inside the star, however. One can see formally from the perturbation equations that
the measure of the dipole moment $n1(1) is zero, since when 2 = 1 the integral in
equation (6) is proportional to the coefficient ¢; of Christensen-Dalsgaard (1976),
whose vanishing is equivalent to the stationarity of the center of mass. The essence
of an alternative demonstration is given by Zahn (1970). Note however that had
Cowling's approximation, which ignores &'in the computation of £, been used, the
center of mass would have been predicted to move under dipole oscillations. If ¢
were to have been computed subsequently from £ using equation (6), it would have been
found not to vanish when r > R.

Inspection of Table 1 reveals that the decrease of ]5n2(1)| with nand & at
fixed }an discussed in the previous section is evident even when n and 2 are quite
low. This is as one might expect, since when the density perturbation oscillates
spatially on a shorter and shorter Tength scale, cancellation amongst its
contributions to the gravitational potential from different regions in the star
increases.

In trying to gain further insight into the nature of these modes, and to
understand the differences between the results presented in Table 1 and those for a
polytrope of index 3, one can be guided by JWKB analysis. Though strictly valid only
for modes of large order, the results do correctly indicate the qualitative behavior
of all but the few Towest order modes. The asymptofic formula for€ is given, for
example, by Christensen-Dalsgaard, Dziembowski and Gough (1980); we omit subscripts
on eigenfunctions and eigenvalues from here on. It is evident that the spatial
structure of & depends crucially on the value of v compared with the buoyancy
frequency N and the acoustic frequency s%; if wis either'greater than or less than
both N and $* the eigenfunctions are oscillatory in space, and if w lies between N
and S* they are evanescent. The p modes have frequencies that exceed appropriate
averages of S%, and g mode frequencies are less than appropriate averages of N.

In Figure 2, Ny and S% are plotted for the solar model and the polytrope.
The major differences between the two models are in the forms of No.  When x < 0.64,
N, is greater for the solar model, a result of the spatial variation in chemical
composition produced by nuclear reactions. In the envelope, Ny changes sign at the
base of the convection zone of the solar model, whereas in the polytrope it remains
positive and diverges towards the surface where the scale height falls to zero.



Table 1.
z Mode Period(min) Lo 2,(1) <E>m(1)/f’2mbo Ingo
2 g 17.5 1.8x10% -3.8x10% _p8x10% -2.1x10°1
2 p, 32.4 4.5x10° 9.1x10%  1.3x100! 9.0 x 10710
2 p 43.4 3.1x10°% -4.7x10° 26x10! -6.3x107°
2 f 48.2 1.3x10°  2.7x10% 7.4x10?% -4.0x107°
2 g 57.3 1.1x10°  47x10°%  1.2x10! 8.4x107°
2 g, 65.6 3.8x10% 1.1x10%  1gx10!  2.2x107?
2 g 102 5.7x100  1.7x10%  7.0x10% 5.4 x107°
2 gy 157 s1x10l 1.2x10% 1.8x102 57x10°8
3 g 16.6 9.5 x 10'; -1.6 x 10'2 1.6 x 10‘2 9.5 x 10'15
3 p 29.6 2.0 x 107 3.3 x 107 7.2 x 107 3.5 x 107
3 p 39.8 9.5 x 1o‘§ -1.3 x 10‘2 1.2 x 10’; -1.8 x 10'2
3 f 43.5 2.0x10° -9.3x107% -2.0x107% -1.5x 10
3 g 50.8 1.7 x 10'2 1.1 x 10‘2 2.6 x 10'2 2.0 x 10'2
3 g, 57.4 1.5x10°  3.2x10° g.0x10% 6.7x10
3 g 79.4 1.1x10%  7.0x100°  6.6x10% 2.0x10°
3 g, 158 81x10t 5.2x10° s58x10%  3.0x108
4o 15.9 5.7 x 10'; -5.9 x 1o‘i 7.8 x 10'; 3.9 x 10'15
4 p, 27.8 1.1 x 10 1.3 x 10° 3.8 x 107 1.5 x 107
4 p 37.6 4.8 x 10° -5.0x107% -7.0x10% -7.7x 10710
4 f 41.5 7.6 x 10°  -2.7x 107 -3.0x10° -4.6 x 10710
4 g 46.9 3.3x10°  5.1x100% 88x10°  1.0x107°
4 g, 52.3 29x10%  1.5x10°%  28x10% 3.2x107°
4 g 67.9 2.2x10°3  3.5x10° 7.2x10%  9.9x107°
4 g, 159 1.9 3.1x100  22x10°  2.0x 108

Photospheric amplitudes 5nz(1) of the perturbed gravitational potential for a selec-
tion of modes of low degree. Included are the g modes with periods close to 160™.
The amplitudes 6nz(1) and the norms inzo for the axisymmetrical modes correspond to
the normalization Eng(l) = 1. The quantity VIR is the value of 5nz(1) for the
axisymmetrical mode with rms radial velocity amplitude V, averaged over the photo-
sphere, of 1 ms'l. To obtain the corresponding values Jngm for values of m greater
than zero, multiply Jnso by [?(z-m)!/(z+m)!]%. anm scales linearly with V. For
comparison, the corresponding measure J2 of the static gravitational quadrupole
moment induced by a uniform rotation of the sun with period 25?4 would be 1.8 x 10'7.
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model, dashed lines for the polytrope of index 3;. for the latter it was assumed that
the polytrope is composed of a perfect gas with vy =5/3. The cusp in N2 for the

solar model at x = 0.17 is an artifact which has probably resulted from having

interpolated opacity tables linearly.
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Consider first the p modes, whose motion is almost radial. These are
evanescent in the cores of both models and oscillatory in the envelopes, except in a
thin layer near the surface of the polytrope. The greatest contribution to the
perturbed gravitational potential associated with such modes comes from near the base
of the oscillatory region. This is partly because the sound speed Cg increases with
depth, and the wavelength of the spatial oscillations does likewise. Thus the
largest coherently moving mass of fluid is that 1ying beneath the innermost node in
E. One might wonder, of course, whether the decrease with depth of the oscillation
amplitude outweighs this factor, but it is not the case. In the JWKB approximation &
varies approximately as x-l(pCS)-1 sin (wféghx) in the oscillatory region, so the
integrand in equation (6) is approximately proportional to x’z(p/cs)l/2 sin (mmgl dx).
Provided & is not too large, the rapid variation of p/cS causes the amplitude of the
sinusoid to increase with depth.

It is evident from this argument that at x = 1 the phase of the p-mode
gravitational potential perturbation is determined by the displacement beneath its
innermost node. Thus 3(1) is negative for odd order modes and positive for even
modes, irrespective of degree. It is also evident that because the densities and
sound speeds in the solar model and polytrope are roughly similar throughout most of
their interiors, as can be seen from Figures 1 and 2, so must be the eigenfunctions.
Consequently the amplitudes 8-(1) predicted by the two models should be very similar,
provided the eigenmodes are normalized to have constant energy; this is indeed the
case. There is some difference, however, when the normalization is a constant
surface displacement. Because in the polytrope density falls the more steeply with
radius near the surface, the displacement eigenfunction rises the more rapidly.
Hence at fixed surface amplitude, the polytropic p modes have the lower energy, and
perturb @ less. '

The differences between g modes of the solar model and the polytrope are more
complicated, and here we shall concentrate on the major aspects that concern ¢. One
can see from Figure 2 that in the solar model g-mode eigenfunctions are oscillatory
in the interior, where w2< N2 and w2 < Si and the modes behave locally as g modes,
and also in the outer regions where wz > N2 and w2 > Si and the modes behave locally
as p modes. There is a thin evanescent region between. On the other hand polytropic
g modes are oscillatory only in the interior. A second notable difference between
the models is that the variation of N2 in the region where the kernels K* are
substantial is less in the polytrope than it is in the solar model.

The JWKB approximation to the radial displacement for g modes is ()<3pN)-1/2
s1'n[m'1 /2(3F1) s x'lNdx]. Because in the solar model N decreases with x in the
region where K¥ is relatively large, the wavelengths of the g modes increase with x.
In the oscillatory region above x = 0.3, the amplitude of the sinusoid in %he
asymptotic approximation increases with x, almost exactly compensating the decline in
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K¥(x) in the integrand in equation (6) when £ = 2, and overcompensating when 2 > 2.
Moreover, except for the modes of lowest order, the oscillatory region in the
convection zone is too weak to produce a node in the displacement eigenfunctions.
Thus one would expect the dominant contribution to/é(l) to come from the region above
the outermost node, and this is indeed the case for all the g modes 1isted in Table
1, even though the amplitudes of the oscillations in their eigenfunctions increase

with x more slowly than (x3p )-1/2. In this outer regionn >0, being Pt at x =1

312 and consequently a(1) > 0.

if w is measured in units of (GM/R

Except for the modes of lowest order, n is equal to the number of nodes 1n%.
Because the variation of N causes the relative spacing of those nodes to vary with x
more widely in the solar model, the uppermost node is deeper in the sun than it is
for a mode with the same n and ¢ in a polytrope of index 3. Thus there is a Targer
mass oscillating in phase where the contribution to #(1) is greatest, and the
potential perturbation at constant T is greater for the solar model than for the

/Il/2 for the solar model is

polytrope. For the 95(2 = 2) mode, for example, &(1)
five times that for the polytrope. This difference is reduced, but not removed, if
the comparison is made at constant amplitude of the displacement at the surface,
since the larger evanescent region in the polytrope produces a greater reduction in
the surface amplitude relative to the amplitude in the interior. The ratio of the
potential perturbations in the two models due to gs(z = 2) oscillations with like
surface amplitudes is only 2.5. Note, however, that this compensating factor
decreases as the period increases above about 140m, since the evanescent region then
increases for the solar model and decreases for the polytrope.

We should remark that if instead comparison between the solar model and the
polytrope is made at constant surface amplitude for g modes of the same degree but
with about the same frequency, the differences are reduced still further, because in
the oscillatory regions N2 is Tower for the polytrope and therefore n is lower for a
given frequency. The values of & (1) for quadrupole modes in the solar model with
periods near 160m are only about 30 percent greater than those of polytropic modes
with similar periods. We should also note that a solar model with a deeper
convection zone, and hence a larger evanescent region at low frequencies, produces
higher values of 3(1) at fixed surface amplitude. For example, a model with heavy
element abundance Z = 0.02 computed with the stellar evolution program described by
Christensen-Dalsgaard (1980) has a convection zone 2.0 x 105 km deep, in agreement

with conclusions drawn from analyses of the five minute oscillations by Berthomieu et
al. (1980) and Lubow (1980). This model supports a glo(z = 2) mode (whose period of
166m is the closest amongst the quadrupole modes to 160m) which for a given surface
amplitude has an associated 3-(1) some 50 percent greater than that quoted in Table 1
for gg(z = 2).

The discussion above describes all but the solar f, gl and g? modes. In the
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polytrope the g1 and 92

modes follow the trends of the g modes of higher order and
the f mode is a genuine surface mode; but in the solar model the surface oscillatory
region imparts a strong p-mode character to these oscillations, and the f mode has g-
mode character in the deep interior where its frequency is below N. Consequently the
solar modes tend to have more nodes than their po]ytropic counterparts, which
produces substantial cancellations in the integral in equation (6), reduces #(1)

below the polytropic values and, in the case of the f mode, even changes its sign.

5. DISCUSSION

0f the modes of Tow degree, quadrupole oscillations generate the greatest
perturbations to the gravitational potential when normalized to constant photospheric
velocity amplitude. Moreover, it is the quadrupole perturbations that decline most
gradually with distance from the sun. Therefore the oscillations that
extraterrestrial probes are most likely to detect are those with ¢ = 2.
‘ It is straightforward to show that a solar quadrupole oscillation with rms
photospheric radial velocity amplitude V would perturb the velocity of a body in
orbit a distance d from the center of the sun by an amount whose component along the
line of sight to the earth is about

L2 i
v=ad, (B E?fﬂ—— Vsin(w , t4y) , (1)
n2m

Here o is a factor of order unity and the values of a and ¥ depend on the elements of
the orbit and m. An electromagnetic signal to the earth of frequency vemitted by
such a body would be Doppler shifted by an amdunt Av = vv/c, where ¢ is the speed of
light. In the period range 102 - 1045, according to Estabrook et al. (1979), it
should be possible to detect oscillations in the Doppler shift of signals from
extraterrestrié] probes if the amplitudes Av/v are no less than a few parts in 1015,
and one such probe is planned to pass within about 3 solar radii of the sun.
Suppose, for example, we regard the solar gg(z = 2) oscillation as a
contender for the cause of the 160" spectral line shift oscillations discovered by
Severny, Kotov and Tsap (1976) and Brookes, Isaak and van der Raay (1976). This mode
would induce in a signal from a probe an oscillatory Doppler shift with amplitude
AV/V = 10'10V(R/d)4, where V is measured in ms . Though it would be naive to
believe that the solar line shifts measured by Brookes, Isaak and van der Raay
(1976); and Severny, Kotov and Tsap (1976) are simply the result of a pure Doppler
shift from the large scale oscillation velocity of the mode, it is not unreasonable
to suspect that the quoted shifts of about 1 ms—1 might not be wholly
unrepresentative of the oscillation amplitude V. If that were indeed the case, the

gravitational field perturbations of at least the 160™ oscillations should be
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detectable. Moreover, the amplitude of the oscillatory gravitational quadrupole
moment would be only a factor 3 or so less than the static component Jo induced by
centrifugal forces if the solar rotation were approximately uniform.
* * * * *
We are grateful to G.W. Gibbons, J. Hough, J. Papaloizou, J.E. Pringle, R.
Scuflaire and J. Weber for interesting conversations on this subject.
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ABSTRACT

An improved observing technique has been used to look for long period
oscillations in the brightness of the extreme solar limb. This technique provides a
means for analyzing power spectra to secure a signature characteristic of the
signal's origin. Results show significant improvement in the discrimination between
solar oscillations, other signals, and noise. Long period intensity oscillations can
be seen at the extreme solar 1imb.

1. INTRODYCTION

In the last few years, interest in stellar and solar pulsation has been
growing. Knowledge of solar pulsations in particular has expanded greatly with the
identification of the five minute oscillation as the superposition of many low
amplitude p-modes (Deubner 1975) and the discovery of longer period (up to 1 hour)
oscillations (Hi11 and Stebbins 1975; Brown, Stebbins and Hi11 1978), a very long
period (2 hr 40 min) oscillation (Severny, Kotov and Tsap 1976), and short period
oscillations (e.g., Deubner 1976). With the exception of the first, all of the
others are exceedingly difficult to detect by any method. Naturally, researchers
sought stronger confirmation through intercomparison of different observational
methods. Such intercomparison (see Hill 1978 for a summary) based on the theory of
solar pulsation, did not confirm the difficult observations. Further, the
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intercomparison ‘revealed contradictions in the easy observations, namely the robust
five minute oscillation. This has prompted, in some circles, reexamination of
pulsation theory as applied to the solar envelope. The program reported here
attempts to provide empirical answers to questions about the theory. .

The theory of pulsation begins with the conservation laws, conservation of
mass, conservation of momentum, and conservation of energy from which a wave equation
can be derived. Sink and source terms must be filled in explicitly; most notably the
radiative dissipation is represented by the Eddington approximation. Assuming small
amplitudes, the equations are linearized. The particular solutions are computed with
the aid of a model atmosphere and physical parameters such as the pressure and
temperature derivatives of the opacity. The solutions predict the eigenfunctions,
both amplitude and phase, versus height for displacement, velocity, temperature,
pressure, etc. In order to arrive at a general solution, some assumption must be
made about the boundary conditions so that some linear combination of solutions can
be computed. In this paper, nature's solution is examined for insight into the
theoretical approach.

The solar five minute oscillation is the most easily observable stellar
pulsation known. It is robust. It can be spatially resolved on the sun's surface.
It can be resolved, to some extent, in height throughout the photosphere and low
chromosphere. The varying superposition of p-modes naturally generates a range of
amplitudes from 25 m/sec {Tower amplitudes are very uncommon) to 1000 m/sec. Theory
(Hi11, Caudell and Rosenwald 1979) predicts these modes should have similar
eigenfunctions (< 10% maximum, point-to-point variation between displacement
eigenfunctions below the temperature minimum). This is important since the changing
superposition might otherwise result in a changing solution. One difficulty, common
to all observations of spectral lines, is separating line formation effects from the
global pulsation effects. This problem will be addressed in future work; the focus
in this paper is the observed velocity response, its form and linearity.

2. METHOD

The method used to analyze the velocity response is somewhat intricate. To
prepare the reader, it is summarized beforehand. A high resolution spectral line
profile is acquired every few seconds for about forty minutes. This time sequence of
line profiles is reduced to nine velocity time series by determining the Doppler
shift at nine depths in the 1ine. From each velocity time series, a time series of
velocity amplitude is then extracted, the collection of which characterize the
velocity eigenfunction. A relative eigenfunction is obtained by selecting one string
as a reference and computing the ratio of the amplitude at each of the other line
depths to the reference depth. An average, relative eigenfunction is obtained by
averaging the eight ratios over all time steps and all time strings. Standard
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deviations are similarly compiled. The final result is an average velocity amp]itudé
at eight photospheric heights in the units of the amplitude at the reference height.
Each average is accompanied by its standard deviation.

In a parallel analysis of the amplitude time series the linearity of the
photosphere's response to an oscillation can be tested by comparing the response at
each 1ine depth with the response at the reference depth as the amplitude of
oscillation changes. To this end, the amplitudes are discretized into 25 m/s ranges,
the time strings are searched, and the occurrences of a particular amplitude and
associated reference amplitude are counted for each line depth. The result is eight
two-dimensional histograms showing the frequency of occurrence of an amplitude at one
depth when a given amplitude is found at the reference depth. The ridges in these
functions are straight in the event of linear response, and curved in the presence of
non-linearities. So much for the summary.

An Fe I spectral 1ine, 5434A, was chosen for the work reported here; three
pther Fe I lines were also used, but will be reported elsewhere. This line is
distinguished by being the g = 0 1ine formed at the greatest height (530 km above
Tgogo = 1» Altrock et al. 1975); it is also unblemished by blends and blessed by a
multi-Tevel, non-LTE calculation. The data were acquired using the Vacuum Tower
Telescope, the Echelle spectrograph and the Diode Array at Sacramento Peak
Observatory. The spectrograph sampled a small patch 1" x 4" at disk center; the line
profile and surrounding continuum were digitized into 64 samples, each 14.6 mA wide. In
8.55 seconds the profile was sampled 512 times, averaged and recorded. This
procedure was repeated 256 times to form a sequence approximately 37 minutes long.

The data used here, 57 sequences, have been selected to exclude those
affected by clouds, instrumental problems, and other non-solar idiosyncrasies--about
35 hours of data. These data were gathered in two observing runs, 7-8 November 1978
and 8-12 February 1979,

Data reduction was begun by interpolating the line profiles on a four-times
denser grid using Fourier bandwidth Timited interpolation (the Fourier methods used
in this study follow the work of Brault and White 1971). High spectral frequencies
were suppressed to reduce ringing between original data points. The interpolation
was performed in anticipation of determining the bisector of the line between
original data points. Fourier interpolation followed by linear interpolation on the
denser grid improves the accuracy of bisector determination over simple linear
interpolation on the original grid.

Before proceeding with the velocity derivation, it is wise to carefully
define the measurement leading to velocity. Generally, an oscillation will affect
the spectral line position through the Doppler shift and the spectral 1ine shape
through induced, frequency dependent, intensity variations. Ideally, one would like
to follow the velocity of one gas element on the sun by tracing the changes at one
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depth in a spectral line. However, opacity perturbations may well cause light
forming a particular part of a spectral line to emanate from slightly different parts
of the solar atmosphere during an oscillation. Rigorous identification of the
Doppler shift would require better knowledge of line formation than is presently
available, and a very detailed description of the pulsation. Progress can be made,
though, through empirical definition of a "velocity-1ike" signal.

The grid of Tine depth points is defined by a preselected series of line
widths, the first width being the spectral sample size and successive widths being
two sample sizes larger than the previous. In this manner, nine depth points are
defined which correspond to independent spectral samples. The velocity associated
with a preselected width is determined by locating the bisector of the line at that
point where the line has that width. Thus the reduction proceeds by analyzing each
line profile for a bisector at nine different line widths and forming time strings of
these nine quantities. Figure 1 shows a sample line profile and the line depths at
which the velocities are determined. Quantities pertaining to the depth points will
be referred to by the numbers 1 to 9 ranging from the deepest to the shallowest point
in the T1ine, or from the highest to the lowest point in the solar atmosphere.

The nine time strings (see Figure 2) are bandpassed using Fourier methods.
Processing removes the average and a linear trend, applies a 10% cosine bell to the
end points, Fourier transforms the signals into the frequency domain, and bandpasses
the transform. The bandpass filter tapers the transform from zero at 1.125 mHz to
its full value at 2.475 mHz and from full value at 4.725 mHz to zero again at 6.075
mHz, the full width at half maximum is 3.60 mHz, centered at 3.60 mHz. The filter
parameters were chosen to include all power in the five minute band as manifested in
an average of 30 power spectra. The bandpassed transforms are used to generate the
oscillatory amplitude as a function of time.

The amplitude A(t) of a time series x(t) can be computed from a complex
function called the analytic signal z(t),

z(t) = A(t) exp (e[t]) = x(t) + ix(t) , (1)

where ¢(t) is the phase and %(t) is the quadrature function associated with x(t), the
signal under analysis. The signal and its quadrature form a Hilbert transform pair,
defined by
x(t) = princi ]_wx_(.f_)d_T
(t) = principal value of {“ f pee . (2)

The amplitude is the magnitude of the analytic function which can be easily computed
from the discrete Fourier transform. For further information on the analytic signal
and Hilbert transforms, see White and Cha (1973), being leery of sign errors,
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